Chapterse-wise 15 Years Solved Papers With Video Solutions CLASS 10th
 MATHEMATICS

Basic and Standard 2020-2021 With Reduced Syllabus

INDIA's Ist Full Video Book

For Science and SST Book Add
9461443210 or 9530143210
in your class whatsapp group.
Other Subject will be send only in your class whatsapp group

How to See Videos?

Click on Youtube Icon attached with Question.

Click/Touch also QR Code attached with Question. No Need to Scan It.

CHAPTER 1

REAL NUMBERS

SUMMARY

1. Algorithm : An algorithm means a series of well defined step which gives a procedure for solving a type of problem.
2. Lemma : A lemma is a proven statement used for proving another statement.
3. Fundamental Theorem of Arithmetic : Every composite number can be expressed (factorised) as a product of primes and this factorisation is unique apart from the order in which the prime factors occur.
4. If p is prime number and p divides a^{2}, then p divides a, where a is a positive integer.
5 . If x be any rational number whose decimal expansion terminates, then we can express x in the form $\frac{p}{q}$, where p and q are co-prime and the prime factorisation of q is of the form $2^{n} \times 5^{m}$, where n and m are nonnegative integers.
5. Let $x=\frac{p}{q}$ be a rational number such that the prime factorisation of q is not of the form $2^{n} \times 5^{m}$, where n and m are non-negative integers, then x has a decimal expansion which terminates.
6. Let $x=\frac{p}{q}$ be a rational number such that the prime factorisation of q is not of the form $2^{n} \times 5^{m}$, where n and m are non-negative integers, then x has a decimal expansion which is non-terminating repeating (recurring).
7. For any two positive integers p and $q, \operatorname{HCF}(p, q) \times$ LCM $(p, q)=p \times q$.
8. For any three positive integers p, q and r,
$\operatorname{LCM}(p, q, r)=\frac{p \times q \times r \times \operatorname{HCF}(p, q, r)}{\operatorname{HCF}(p, q) \times \operatorname{HCF}(q, r) \times \operatorname{HCF}(p, r)}$
$\operatorname{HCF}(p, q, r)=\frac{p \times q \times r \times \operatorname{LCM}(p, q, r)}{\operatorname{LCM}(p, q) \times \operatorname{LCM}(q, r) \times \operatorname{LCM}(p, r)}$

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

ONE MARK QUESTIONS

Multiple Choice Questions

1. The sum of exponents of prime factors in the primefactorisation of 196 is
(a) 3
(b) 4
(c) 5
(d) 2

VIDEO
Click Here
[Board 2020 OD Standard]
Prime factors of 196,

$$
\begin{aligned}
196 & =4 \times 49 \\
& =2^{2} \times 7^{2}
\end{aligned}
$$

The sum of exponents of prime factor is $2+2=4$.
Thus (b) is correct option.
2. The total number of factors of prime number is
(a) 1
(b) 0
(c) 2
(d) 3

Ans :
[Board 2020 Delhi Standard]
There are only two factors (1 and number itself) of any prime number.

Thus (c) is correct option.
3. The HCF and the LCM of $12,21,15$ respectively are
(a) 3,140
(b) 12,420
(c) 3,420
(d) 420,3

Ans :
[Board 2020 Delhi Standard]

We have

$$
\begin{aligned}
& 12=2 \times 2 \times 3 \\
& 21=3 \times 7
\end{aligned}
$$

Click Here
$\operatorname{HCF}(12,21,15)=3$
$\operatorname{LCM}(12,21,15)=2 \times 2 \times 3 \times 5 \times 7=420$
Thus (c) is correct option.
4. The decimal representation of $\frac{11}{2^{3} \times 5}$ will
(a) terminate after 1 decimal place
(b) terminate after 2 decimal place
(c) terminate after 3 decimal places
(d) not terminate

Ans :
[Board 2020 SQP Standard]
We have $\quad \frac{11}{2^{3} \times 5}=\frac{11}{2^{3} \times 5^{1}}$
Denominator of $\frac{11}{2^{3} \times 5}$ is of the form $2^{m} \times 5^{n}$, where m, n are non- negative integers. Hence, $\frac{11}{2^{3} \times 5}$ has terminating decimal expansion.

Now $\quad \frac{11}{2^{3} \times 5}=\frac{11}{2^{3} \times 5} \times \frac{5^{2}}{5^{2}}$

$$
=\frac{11 \times 5^{2}}{2^{3} \times 5^{3}}=\frac{11 \times 25}{10^{3}}=0.275
$$

So , it will terminate after 3 decimal places.
Thus (c) is correct option.
5. The LCM of smallest two digit composite number and smallest composite number is
(a) 12
(b) 4
(c) 20
(d) 44

Click Here
Ans :
[Board 2020 SQP Standard]
Smallest two digit composite number is 10 and smallest composite number is 4 .

$$
\operatorname{LCM}(10,4)=20
$$

Thus (c) is correct option.
6. HCF of two numbers is 27 and their LCM is 162 . If one of the numbers is 54 , then the other number is
(a) 36
(b) 35
(c) 9
(d) 81

Ans :
[Board 2020 OD Basic]
Let y be the second number.
Since, product of two numbers is equal to product of LCM and HCM,

$$
\begin{aligned}
54 \times y & =\mathrm{LCM} \times \mathrm{HCF} \\
54 \times y & =162 \times 27 \\
y & =\frac{162 \times 27}{54}=81
\end{aligned}
$$

Thus (b) is correct option.
7. HCF of 144 and 198 is
(a) 9
(b) 18

(c) 6
(d) 12

Ans :
[Board 2020 Delhi Basic]
Using prime factorization method,
and

$$
\begin{aligned}
144 & =2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
& =2^{4} \times 3^{2}
\end{aligned}
$$

$$
\begin{aligned}
198 & =2 \times 3 \times 3 \times 11 \\
& =2 \times 3^{2} \times 11
\end{aligned}
$$

$$
\operatorname{HCF}(144,198)=2 \times 3^{2}=2 \times 9=18
$$

Thus (b) is correct option.
8. 225 can be expressed as
(a) 5×3^{2}
(b) $5^{2} \times 3$
(c) $5^{2} \times 3^{2}$
(d) $5^{3} \times 3$

Ans :
[Board 2020 Delhi Basic]
By prime factorization of 225 , we have

$$
\begin{aligned}
225 & =3 \times 3 \times 5 \times 5 \\
& =3^{2} \times 5^{2} \text { or } 5^{2} \times 3^{2}
\end{aligned}
$$

Thus (c) is correct option.
9. The decimal expansion of $\frac{23}{2^{5} \times 5^{2}}$ will terminate after how many places of decimal?
(a) 2
(b) 4
(c) 5
(d) 1

VIDEO
Click Here
Ans :
[Board 2020 OD Basic]

$$
\begin{aligned}
\frac{23}{2^{5} \times 5^{2}} & =\frac{23 \times 5^{3}}{2^{5} \times 5^{2} \times 5^{3}} \\
& =\frac{23 \times 125}{2^{5} \times 5^{5}}=\frac{2875}{(10)^{5}} \\
& =\frac{2875}{100000}=0.02875
\end{aligned}
$$

Hence, $\frac{23}{2^{5} \times 5^{2}}$ will terminate after 5 five decimal places.
Thus (c) is correct option.
10. The decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after
(a) one decimal place
(b) two decimal places
(c) three decimal places
(d) four decimal places

Ans :
[Board 2020 Delhi Standard]
Rational number,

$$
\frac{14587}{1250}=\frac{14587}{2^{1} \times 5^{4}}=\frac{14587}{2^{1} \times 5^{4}} \times \frac{2^{3}}{2^{3}}
$$

$$
\begin{aligned}
& =\frac{14587 \times 8}{2^{4} \times 5^{4}}=\frac{116696}{(10)^{4}} \\
& =11.6696
\end{aligned}
$$ Click Here

Hence, given rational number will terminate after four decimal places.
Thus (d) is correct option.

No Need to Buy any Question Bank or Sample Chapter From
 Market. Download Free PDF of all Study Material from

 www.cbse.online11. $2 . \overline{35}$ is
(a) an integer
(b) a rational number
(c) an irrational number
(d) a natural number

Ans:
[Board 2020 Delhi Basic]
$2 . \overline{35}$ is a rational number because it is a non terminating repeating decimal.
Thus (b) is correct option.

12. $2 \sqrt{3}$ is
(a) an integer
(b) a rational number
(c) an irrational number
(d) a whole number

Ans :
[Board 2020 OD Basic]
Let us assume that $2 \sqrt{3}$ is a rational number.
Now $\quad 2 \sqrt{3}=r$ where r is rational number
or $\quad \sqrt{3}=\frac{r}{2}$
Now, we know that $\sqrt{3}$ is an irrational number, So, $\frac{r}{2}$ has to be irrational to make the equation true. This is a contradiction to Click Here our assumption. Thus, our assumption is wrong and $2 \sqrt{3}$ is an irrational number.
Thus (c) is correct option.
13. The product of a non-zero rational and an irrational number is
(a) always irrational
(b) always rational
(c) rational or irrational
(d) one

Ans :

Product of a non-zero rational and an irrational number is always irrational i.e., $\frac{3}{4} \times \sqrt{2}=\frac{3 \sqrt{2}}{4}$ which is irrational.
Thus (a) is correct option.
14. For some integer m, every even integer is of the form
(a) m
(b) $m+1$
(c) $2 m$
(d) $2 m+1$

Ans :
We know that even integers are $2,4,6, \ldots$
So, it can be written in the form of $2 m$ where m is a integer.

$$
\begin{aligned}
m & =\ldots,-1,0,1,2,3, \ldots \\
2 m & =\ldots,-2,0,2,4,6, \ldots
\end{aligned}
$$

Thus (c) is correct option.
15. For some integer q, every odd integer is of the form
(a) q
(b) $q+1$
(c) $2 q$
(d) $2 q+1$

Ans:
We know that odd integers are $1,3,5, \ldots$
So, it can be written in the form of $2 q+1$ where q is integer.

$$
\begin{aligned}
q & =\ldots,-2,-1,0,1,2,3, \ldots \\
2 q+1 & =\ldots,-3,-1,1,3,5,7, \ldots
\end{aligned}
$$

Thus (d) is correct option.
16. If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3}$, where x, y are prime numbers, then $\operatorname{HCF}(a, b)$ is
(a) $x y$
(b) $x y^{2}$
(c) $x^{3} y^{3}$
(d) $x^{2} y^{2}$

Ans:

We have

$$
\begin{aligned}
a & =x^{3} y^{2}=x \times x \times x \times y \times y \\
b & =x y^{3}=x \times y \times y \times y \\
\operatorname{HCF}(a, b) & =\operatorname{HCF}\left(x^{3} y^{3}, x y^{3}\right) \\
& =x \times y \times y=x y^{2}
\end{aligned}
$$

HCF is the product of the smallest power of each common prime factor involved in the numbers.
Thus (b) is correct option.
17. If two positive integers p and q can be expressed as $p=a b^{2}$ and $q=a^{3} b$; where a, b being prime numbers, then $\operatorname{LCM}(p, q)$ is equal to
(a) $a b$
(b) $a^{2} b^{2}$
(c) $a^{3} b^{2}$
(d) $a^{3} b^{3}$

Ans :
We have

$$
p=a b^{2}=a \times b \times b
$$

and

$$
q=a^{3} b=a \times a \times a \times b
$$

$$
\operatorname{LCM}(p, q)=\operatorname{LCM}\left(a b^{2}, a^{3} b\right)
$$

$$
=a \times b \times b \times a \times a=a^{3} b^{2}
$$

LCM is the product of the greatest power of each prime factor involved in the numbers.
Thus (c) is correct option.
18. The values of x and y in the given figure are

(a) 7,13
(b) 13,7
(c) 9,12
(d) 12,9

Ans :

Hence

$$
\begin{aligned}
1001 & =x \times 143 \Rightarrow x=7 \\
143 & =y \times 11 \Rightarrow y=13
\end{aligned}
$$

Thus (a) is correct option.
19. The least number that is divisible by all the numbers from 1 to 10 (both inclusive)
(a) 10
(b) 100
(c) 504
(d) 2520

Ans :
Factor of 1 to 10 numbers

$$
\begin{aligned}
1 & =1 \\
2 & =1 \times 2 \\
3 & =1 \times 3 \\
4 & =1 \times 2 \times 2 \\
5 & =1 \times 5 \\
6 & =1 \times 2 \times 3 \\
7 & =1 \times 7 \\
8 & =1 \times 2 \times 2 \times 2 \\
9 & =1 \times 3 \times 3 \\
10 & =1 \times 2 \times 5 \\
\operatorname{LCM}(1 \text { to } 10) & =\mathrm{LCM}(1,2,3,4,5,6,7,8,9,10) \\
& =1 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7
\end{aligned}
$$

$$
=2520
$$

Thus (d) is correct option.

Don't Take Printout of This PDF. Buy Hard Book at Price Less then price of Printouts.

CLICK TO BUY HARD BOOK

20. If p_{1} and p_{2} are two odd prime numbers such that $p_{1}>p_{2}$, then $p_{1}^{2}-p_{2}^{2}$ is
(a) an even number
(b) an odd number
(c) an odd prime number
(d) a prime number

Ans :
$p_{1}^{2}-p_{2}^{2}$ is an even number.
Let us take

$$
p_{1}=5
$$

$$
\text { and } \quad p_{2}=3
$$

Click Here

Then, $\quad p_{1}^{2}-p_{2}^{2}=25-9=16$
16 is an even number.
Thus (a) is correct option.
21. The rational form of $0.2 \overline{54}$ is in the form of $\frac{p}{q}$ then $(p+q)$ is
(a) 14
(b) 55
(c) 69
(d) 79

Ans :
Let,

$$
\begin{align*}
& x=0.2 \overline{54}, \text { then } \\
& x=0.2545454 . \tag{1}
\end{align*}
$$

\qquad
Multiplying equation (1) by 100, we get

$$
\begin{equation*}
100 x=25.4545 \tag{2}
\end{equation*}
$$

Subtracting equation (1) from equation. (2), we get

$$
99 x=25.2 \Rightarrow x=\frac{252}{990}=\frac{14}{55}
$$

Comparing with $\frac{p}{q}$, we get

$$
p=14
$$

and

$$
q=55
$$

Hence,

$$
p+q=14+55=69
$$

Alternative :

$$
0.2 \overline{54}=\frac{254-2}{990}=\frac{252}{990}=\frac{14}{55}
$$

Thus (c) is correct option.
22. The rational number of the form $\frac{p}{q}, q \neq 0, p$ and q are positive integers, which represents $0.1 \overline{34}$ i.e., (0.1343434 \qquad .) is
(a) $\frac{134}{999}$
(b) $\frac{134}{990}$
(c) $\frac{133}{999}$
(d) $\frac{133}{990}$

Ans :

$$
0.1 \overline{34}=\frac{134-1}{990}=\frac{133}{990}
$$

Thus (d) is correct option.
23. Which of the following will have a terminating decimal expansion?
(a) $\frac{77}{210}$
(b) $\frac{23}{30}$
(c) $\frac{125}{441}$
(d) $\frac{23}{8}$

Ans :
For terminating decimal expansion, denominator must the form of $2^{m} \times 5^{n}$ where n, m are non-negative integers.
Here, $\quad \frac{23}{8}=\frac{23}{2^{3}}$
Here only 2 is factor of denominator so terminating. Thus (d) is correct option.
24. If $x=0 . \overline{7}$, then $2 x$ is
(a) $1 . \overline{4}$
(b) $1 . \overline{5}$
(c) $1 . \overline{54}$
(d) $1 . \overline{45}$

Ans :
We have $\quad \begin{aligned} x & =0 . \overline{7} \\ 10 x & =7 . \overline{7}\end{aligned}$
Subtracting, $\quad 9 x=7$
$x=\frac{7}{9}$
$2 x=\frac{14}{9}=1.555$

$$
=1 . \overline{5}
$$

25. Which of the following rational number have nonterminating repeating decimal expansion?
(a) $\frac{31}{3125}$
(b) $\frac{71}{512}$
(c) $\frac{23}{200}$
(d) None of these

Ans :

$$
\begin{aligned}
3125 & =5^{5}=5^{5} \times 2^{0} \\
512 & =2^{9}=2^{9} \times 5^{0} \\
200 & =2^{3} \times 5^{2}
\end{aligned}
$$

Thus 3125,512 and 200 has factorization of the form $2^{m} \times 5^{n}$ (where m and n are whole numbers). So given fractions has terminating decimal expansion.
Thus (d) is correct option.
26. The number $3^{13}-3^{10}$ is divisible by
(a) 2 and 3
(b) 3 and 10
(c) 2, 3 and 10
(d) 2, 3 and 13

Ans :

$$
\begin{aligned}
3^{13}-3^{10} & =3^{10}\left(3^{3}-1\right)=3^{10}(26) \\
& =2 \times 13 \times 3^{10}
\end{aligned}
$$

Hence, $3^{13}-3^{10}$ is divisible by 2,3 and 13 . Thus (d) is correct option.
27. 1. The L.C.M. of x and 18 is 36 .
2. The H.C.F. of x and 18 is 2 .

What is the number x ?
(a) 1
(b) 2
(c) 3
(d) 4

Ans :

LCM $\times \mathrm{HCF}=$ First number \times second number
Hence, required number $=\frac{36 \times 2}{18}=4$
Thus (d) is correct option.
28. If $a=2^{3} \times 3, \quad b=2 \times 3 \times 5, \quad c=3^{n} \times 5 \quad$ and $\operatorname{LCM}(a, b, c)=2^{3} \times 3^{2} \times 5$, then n is
(a) 1
(b) 2
(c) 3
(d) 4

Ans :
Value of n must be 2 .
Thus (b) is correct option.
29. The least number which is a perfect square and is divisible by each of 16,20 and 24 is
(a) 240
(b) 1600
(c) 2400
(d) 3600

Ans :
The LCM of 16,20 and 24 is 240 . The least multiple of 240 that is a perfect square is 3600 and also we can easily eliminate choices (a) and (c) since they are not perfect square number. 1600 is not multiple of 240 .
Thus (d) is correct option.
30. $n^{2}-1$ is divisible by 8 , if n is
(a) an integer
(b) a natural number
(c) an odd integer
(d) an even integer

Ans :
Let, $\quad a=n^{2}-1$
For $n^{2}-1$ to be divisible by 8 (even number), $n^{2}-1$ should be even. It means n^{2} should be odd i.e. n should be odd.

If n is odd, $\quad n=2 k+1 \quad$ where k is an integer

$$
\begin{aligned}
a & =(2 k+1)^{2}-1 \\
& =4 k^{2}+4 k+1-1 \\
& =4 k^{2}+4 k \\
a & =4 k(k+1)
\end{aligned}
$$

At $k=-1, \quad a=4(-1)(-1+1)=0$
which is divisible by 8 .
At $k=0, \quad a=4(0)+(0+1)=0$
which is divisible by 8 .
Hence, we can conclude from above two cases, if n is odd, then $n^{2}-1$ is divisible by 8 .
Thus (c) is correct option.
31. When 2^{256} is divided by 17 the remainder would be
(a) 1
(b) 16
(c) 14
(d) None of these

Ans: (a) 1
When 2^{256} is divided by 17 then,

$$
\frac{2^{256}}{2^{4}+1}=\frac{\left(2^{4}\right)^{64}}{\left(2^{4}+1\right)}
$$

By remainder theorem when $f(x)$ is divided by $x+a$ the remainder is $f(-a)$.
Here,

$$
f(x)=\left(2^{4}\right)^{64} \text { and } x=2^{4} \text { and } a=1
$$

Hence, remainder $f(-1)=(-1)^{64}=1$
Thus (a) is correct option.

For all sample papers visit www.cbse.online

32. Assertion : $\frac{13}{3125}$ is a terminating decimal fraction.

Reason : If $q=2^{m} 5^{n}$ where m, n are non-negative integers, then $\frac{p}{q}$ is a terminating decimal fraction.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
We have $\quad 3125=5^{5}=5^{5} \times 2^{0}$
Since the factors of the denominator 3125 is of the form $2^{0} \times 5^{5}, \frac{13}{3125}$ is a terminating decimal
Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) Thus (a) is correct option.
33. Assertion : 34.12345 is a terminating decimal fraction.

Reason : Denominator of 34.12345 , when expressed in the form $\frac{p}{q}, q \neq 0$, is of the form $2^{m} \times 5^{n}$, where m and n are non-negative integers.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

$$
34.12345=\frac{3412345}{100000}=\frac{682469}{20000}=\frac{682469}{2^{5} \times 5^{4}}
$$

Its denominator is of the form $2^{m} \times 5^{n}$, where $m=5$ and $n=4$ which are non-negative

VIDEO Click Here integers.
Thus both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). Thus (a) is correct option.
34. Assertion : The HCF of two numbers is 5 and their product is 150 , then their LCM is 30
Reason : For any two positive integers a and b, $\operatorname{HCF}(a, b)+\operatorname{LCM}(a, b)=a \times b$.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans: (c) Assertion (A) is true but reason (R) is false.

We have,

$$
\begin{aligned}
\operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b) & =a \times b \\
\operatorname{LCM} \times 5 & =150 \\
\mathrm{LCM} & =\frac{150}{5}=30
\end{aligned}
$$

Thus (c) is correct option.
Fill in the Blank Questions
35. If every positive even integer is of the form $2 q$, then every positive odd integer is of the form where q is some integer.
Ans :
$2 q+1$
Click Here
36. The exponent of 2 in the prime factorisation of 144 , is

Ans:

4
37. $\sqrt{2}, \sqrt{3}, \sqrt{7}$, etc. are \qquad numbers.
Ans :
Irrational

38. Every point on the number line corresponds to a number.
Ans :
Real

39. The product of three numbers is \qquad to the product of their HCF and LCM.

Ans :

Not equal
40. If p is a prime number and it divides a^{2} then it also divides \qquad where a is a positive integer.
Ans :
a

41. Every real number is either a \qquad number or an \qquad number.

Ans :
Rational, irrational

42. Numbers having non-terminating, non-repeating decimal expansion are known as \qquad
Ans :
Irrational numbers

Very Short Answer Questions

43. What is the HCF of smallest primer number and the smallest composite number?
Ans :
[Board 2018]
Smallest prime number is 2 and smallest composite number is 4 . HCF of 2 and 4 is 2 .
44. Write one rational and one irrational number
 Click Here lying between 0.25 and 0.32 .
Ans :
[Board 2020 SQP Standard]
Given numbers are 0.25 and 0.32 .
Clearly

$$
0.30=\frac{30}{100}=\frac{3}{10}
$$

Thus 0.30 is a rational number lying between 0.25 and 0.32 . Also $0.280280028000 \ldots .$. has non-terminating non-repeating decimal expansion. It is an irrational number lying between 0.25 and 0.32 .
45. If $\operatorname{HCF}(336,54)=6$, find $\operatorname{LCM}(336,54)$.

Ans :
[Board 2019 OD]

$$
\begin{aligned}
\mathrm{HCF} \times \mathrm{LCM} & =\text { Product of number } \\
6 \times \mathrm{LCM} & =336 \times 54 \\
\mathrm{LCM} & =\frac{336 \times 54}{6} \\
& =56 \times 54=3024
\end{aligned}
$$

Thus LCM of 336 and 54 is 3024 .
46. Explain why 13233343563715 is a composite number? Ans :
[Board Term-1 2016]
The number 13233343563715 ends in 5. Hence it is a multiple of 5 . Therefore it is a composite number.
47. a and b are two positive integers such that the least prime factor of a is 3 and the least prime factor of b is 5 . Then calculate the least prime factor of $(a+b)$.
Ans :
[Board Term-1 2014]
Here a and b are two positive integers such that the least prime factor of a is 3 and the least prime factor of b is 5 . The least prime
 factor of $(a+b)$ would be 2 .
48. What is the HCF of the smallest composite number and the smallest prime number?
Ans:
[Board Term-:

The smallest prime number is 2 and the smallest composite number is $4=2^{2}$.
Hence, required HCF is $\left(2^{2}, 2\right)=2$.
49. Calculate the HCF of $3^{3} \times 5$ and $3^{2} \times 5^{2}$.

Ans :

HCF $\left(3^{3} \times 5,3^{2} \times 5^{2}\right)=3^{2} \times 5$

$$
=9 \times 5=45
$$

50. If $\operatorname{HCF}(a, b)=12$ and $a \times b=1,800$, then find LCM (a, b).
Ans :
We know that

$$
\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b
$$

Substituting the values we have

$$
\begin{aligned}
12 \times \operatorname{LCM}(a, b) & =1800 \\
\text { or, } \quad \operatorname{LCM}(a, b) & =\frac{1,800}{12}=150
\end{aligned}
$$

51. What is the condition for the decimal expansion of a rational number to terminate? Explain with the help of an example.
Ans:
[Board Term-1 2n16l
The decimal expansion of a rational number terminates, if the denominator of rational number can be expressed as $2^{m} 5^{n}$ where m
 and n are non negative integers and p and q both co-primes.
e.g.

$$
\frac{3}{10}=\frac{3}{2^{1} \times 5^{1}}=0.3
$$

52. Find the smallest positive rational number by which $\frac{1}{7}$ should be multiplied so that its decimal expansion terminates after 2 places of decimal.
Ans :
[Board Term-1 2016]
Since

$$
\frac{1}{7} \times \frac{7}{100}=\frac{1}{100}=0.01
$$

Thus smallest rational number is $\frac{7}{100}$
53. What type of decimal expansion does a rational number has? How can you distinguish it from decimal expansion of irrational numbers?
Ans:
[Board Term-1 2016]
A rational number has its decimal expansion either terminating or non-terminating, repeating An irrational numbers has its

decimal expansion non-repeating and non-terminating.
54. Calculate $\frac{3}{8}$ in the decimal form.

Ans :
[Board 2008]

Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online

55. The decimal representation of $\frac{6}{1250}$ will terminate after how many places of decimal?
Ans :
[Board 2009]

We have

$$
\begin{aligned}
\frac{6}{1250} & =\frac{6}{2 \times 5^{4}}=\frac{6 \times 2^{3}}{2 \times 2^{3} \times 5^{4}} \\
& =\frac{6 \times 2^{3}}{2^{4} \times 5^{4}}=\frac{6 \times 2^{3}}{(10)^{4}} \\
& =\frac{48}{10000}=0.0048
\end{aligned}
$$

Thus $\frac{6}{1250}$ will terminate after 4 decimal places.
56. Find the least number that is divisible by all numbers between 1 and 10 (both inclusive).
Ans :
[Board 2010]
The required number is the LCM of $1,2,3,4,5,6$, $7,8,9,10$,

$$
\begin{aligned}
\mathrm{LCM} & =2 \times 2 \times 3 \times 2 \times 3 \times 5 \times 7 \\
& =2520
\end{aligned}
$$

VIDEO
Click Here
57. Write whether rational number $\frac{7}{75}$ will have terminating decimal expansion or a non-terminating decimal.
Ans :
[Board Term-1 2017, SQP]

We have

$$
\frac{7}{75}=\frac{7}{3 \times 5^{2}}
$$

Since denominator of given rational number
VIDEO Click Here is not of form $2^{m} \times 5^{n}$, Hence, It is nonterminating decimal expansion.

TWO MARKS QUESTIONS

58. If HCF of 144 and 180 is expressed in the form $13 m-16$. Find the value of m.
Ans:
[Board 2020 SQP Standard]
According to Euclid's algorithm any number a can be written in the form,

$$
a=b q+r \text { where } 0 \leq r<b
$$

Applying Euclid's division lemma on 144 and 180 we have

$$
\begin{aligned}
& 180=144 \times 1+36 \\
& 144=36 \times 4+0
\end{aligned}
$$

Here, remainder is 0 and divisor is 36 . Thus HCF of 144 and 180 is 36 .

Now

$$
\begin{aligned}
36 & =13 m-16 \\
36+16 & =13 m \\
52 & =13 m \Rightarrow m=4
\end{aligned}
$$

59. Find HCF and LCM of 404 and 96 and verify that $\mathrm{HCF} \times \mathrm{LCM}=$ Product of the two given numbers.
Ans :
[Board 2018]
We have

$$
\begin{aligned}
404 & =2 \times 2 \times 101 \\
& =2^{2} \times 101
\end{aligned}
$$

$$
\begin{aligned}
96 & =2 \times 2 \times 2 \times 2 \times 2 \times 3 \\
& =2^{5} \times 3
\end{aligned}
$$

$$
\operatorname{HCF}(404,96)=2^{2}=4
$$

$$
\operatorname{LCM}(404,96)=101 \times 2^{5} \times 3=9696
$$

$$
\mathrm{HCF} \times \mathrm{LCM}=4 \times 9696=38784
$$

Also,

$$
404 \times 96=38784
$$

Hence, $\mathrm{HCF} \times \mathrm{LCM}=$ Product of 404 and 96
60. Find HCF of the numbers given below:
$k, 2 k, 3 k, 4 k$ and $5 k$, where k is a positive integer.
Ans :
[Board Term-1 2015, Set-FHN8MGD]
Here we can see easily that k is common factor between all and this is highest factor Thus HCF of $k, 2 k, 3 k, 4 k$ and $5 k$, is k.

61. Find the HCF and LCM of 90 and 144 by the method of prime factorization.
Ans :
[Board Term-1 2012]

We have

$$
\begin{aligned}
90 & =9 \times 10=9 \times 2 \times 5 \\
& =2 \times 3^{2} \times 5
\end{aligned}
$$

and

$$
\begin{aligned}
144 & =16 \times 9 \\
& =2^{4} \times 3^{2} \\
\mathrm{HCF} & =2 \times 3^{2}=18 \\
\mathrm{LCM} & =2^{4} \times 3^{2} \times 5=720
\end{aligned}
$$

62. Given that $\operatorname{HCF}(306,1314)=18$. Find LCM $(306,1314)$
Ans :
[Board Term-1 2013]
We have $\operatorname{HCF}(306,1314)=18$

$$
\operatorname{LCM}(306,1314)=?
$$

Let $a=306$ and $b=1314$, then we have

$$
\operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b)=a \times b
$$

Substituting values we have

$$
\begin{aligned}
\operatorname{LCM}(a, b) \times 18 & =306 \times 1314 \\
\operatorname{LCM}(a, b) & =\frac{306 \times 1314}{18}
\end{aligned}
$$

$$
\mathrm{LCM}(306,1314)=22,338
$$

63. Complete the following factor tree and find the composite number x.

Ans:
[Board Term-1 2015]
We have
and

$$
\begin{aligned}
& y=5 \times 13=65 \\
& x=3 \times 195=585
\end{aligned}
$$

64. Explain why $(7 \times 13 \times 11)+11$ and $(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)+3$ are composite
numbers.
Ans : [Board Term-1 2012, Set-64]

$$
\begin{aligned}
(7 \times 13 \times 11)+11 & =11 \times(7 \times 13+1) \\
& =11 \times(91+1) \\
& =11 \times 92
\end{aligned}
$$

and

$$
\begin{aligned}
(7 \times 6 \times 5 \times 4 \times 3 & \times 2 \times 1)+3 \\
& =3(7 \times 6 \times 5 \times 4 \times 2 \times 1+1) \\
& =3 \times(1681)=3 \times 41 \times 41
\end{aligned}
$$

Since given numbers have more than two prime factors, both number are composite.

For Free PDFS of all sample papers visit

www.cbse.online

65. Complete the following factor tree and find the composite number x

Ans :
[Board Term-1 2015, Set DDE-M]

We have

$$
z=\frac{371}{7}=53
$$

$$
y=1855 \times 3=5565
$$

x
$=2 \times y=2 \times 5565=11130$

Thus complete factor tree is as given below.

66. Find the missing numbers a, b, c and d in the given factor tree:

Ans :
[Board Term-1 2012]

We have

$$
\begin{gathered}
a=\frac{9009}{3003}=3 \\
b=\frac{1001}{143}=7
\end{gathered}
$$

Since

$$
143=11 \times 13
$$

Thus $c=11$ and $d=13$ or $c=13$ and $d=11$
67. Complete the following factor tree and find the composite number x.

Ans :
[Board Term-1 2015, 2014]
We complete the given factor tree writing variable y and z as following.

We have

$$
\begin{aligned}
& z=\frac{161}{7}=23 \\
& y=7 \times 161=1127
\end{aligned}
$$

Composite number, $x=2 \times 3381=6762$
68. Explain whether $3 \times 12 \times 101+4$ is a prime number or a composite number.
Ans :
[Board Term-1 2016-17 Set; 193RQTQ, 2015, DDE-E]

A prime number (or a prime) is a natural number greater than 1 that cannot be formed by multiplying two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1×5 or 5×1, involve 5 itself. However, 6 is composite because it is the product of two numbers (2×3) that are both smaller than 6 . Every composite number can be written as the product of two or more (not necessarily distinct) primes.

$$
\begin{aligned}
3 \times 12 \times 101+4 & =4(3 \times 3 \times 101+1) \\
& =4(909+1) \\
& =4(910) \\
& =2 \times 2 \times(10 \times 7 \times 13) \\
& =2 \times 2 \times 2 \times 5 \times 7 \times 13 \\
& =\text { a composite number }
\end{aligned}
$$

69. Complete the factor-tree and find the composite number M.

Ans:
[Board Term-1 2013]
We have

$$
91=P \times Q=7 \times 13
$$

So $P=7, Q=13$ or $P=13, Q=7$

$$
\begin{aligned}
& O=\frac{4095}{1365}=3 \\
& N=2 \times 8190=16380
\end{aligned}
$$

Composite number,

$$
M=16380 \times 2=32760
$$

Thus complete factor tree is shown below.

70. Find the smallest natural number by which 1200 should be multiplied so that the square root of the product is a rational number.
Ans :
[Board Term-1 2016, 2015]
We have

$$
\begin{aligned}
1200 & =12 \times 100 \\
& =4 \times 3 \times 4 \times 25 \\
& =4^{2} \times 3 \times 5^{2}
\end{aligned}
$$

Here if we multiply by 3 , then its square root will be $4 \times 3 \times 5$ which is a rational number. Thus the required smallest natural number is 3 .
71. Can two numbers have 15 as their HCF and their LCM? Give reasons.
Ans :
[Board Te

LCM of two numbers should be exactly divisible by their HCF. Since, 15 does not divide 175, two numbers cannot have their HCF as 15 and LCM as 175.
72. Check whether 4^{n} can end with the digit 0 for any natural number n.
Ans :
[Board Term-1 2015, Set-FHN8MGD; NCERT]
If the number 4^{n}, for any n, were to end with the digit zero, then it would be divisible by 5 and 2.

VIDEO
Click Here
That is, the prime factorization of 4^{n} would contain the prime 5 and 2 . This is not possible because the only prime in the factorization of $4^{n}=2^{2 n}$ is 2 . So, the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of 4^{n}. So, there is no natural number n for which 4^{n} ends with the digit zero. Hence 4^{n} cannot end with the digit zero.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

73. Show that 7^{n} cannot end with the digit zero, for any natural number n.
Ans :
[Board Term-1 2012, Set-63]
If the number 7^{n}, for any n, were to end with the digit zero, then it would be divisible by 5 and 2.

That is, the prime factorization of 7^{n} would contain the prime 5 and 2 . This is not possible because the only prime in the factorization of $7^{n}=(1 \times 7)^{n}$ is 7 . So, the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of 7^{n}. So, there is no natural number n for which 7^{n} ends with the digit zero. Hence
7^{n} cannot end with the digit zero.
74. Check whether $(15)^{n}$ can end with digit 0 for any $n \in N$.
Ans :
[Board Term-1 2012]
If the number $(15)^{n}$, for any n, were to end with the digit zero, then it would be divisible by 5 and 2 .
That is, the prime factorization of $(15)^{n}$ would contain the prime 5 and 2 . This is not possible because the only prime in the factorization of $(15)^{n}=(3 \times 5)^{n}$ are 3 and 5 . The uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of $(15)^{n}$. Since there is no prime factor $2,(15)^{n}$ cannot end with the digit zero.
75. The length, breadth and height of a room are 8 m $50 \mathrm{~cm}, 6 \mathrm{~m} 25 \mathrm{~cm}$ and 4 m 75 cm respectively. Find the length of the longest rod that can measure the dimensions of the room exactly.
Ans :
[Board Term-1 2016]
Here we have to determine the HCF of all length which can measure all dimension.

Length, $\quad l=8 \mathrm{~m} 50 \mathrm{~cm}=850 \mathrm{~cm}$

$$
=50 \times 17=2 \times 5^{2} \times 17
$$

Breadth, $\quad b=6 \mathrm{~m} 25 \mathrm{~cm}=625 \mathrm{~cm}$

$$
=25 \times 25=5^{2} \times 5^{2}
$$

Height, $\quad h=4 \mathrm{~m} 75 \mathrm{~cm}=475 \mathrm{~cm}$

$$
=25 \times 19=5^{2} \times 19
$$

$$
\operatorname{HCF}(l, b, h)=\operatorname{HCF}(850,625,475)
$$

$$
=\operatorname{HCF}\left(2 \times 5^{2} \times 17,5^{2}, \quad 5^{2} \times 19\right)
$$

$$
=5^{2}=25 \mathrm{~cm}
$$

Thus 25 cm rod can measure the dimensions of the room exactly. This is longest rod that can measure exactly.
76. Show that $5 \sqrt{6}$ is an irrational number.

Ans :
[Board Term-1 2015]
Let $5 \sqrt{6}$ be a rational number, which can be expressed as $\frac{a}{b}$, where $b \neq 0 ; a$ and b are co-primes.

Now

$$
\begin{aligned}
5 \sqrt{6} & =\frac{a}{b} \\
\sqrt{6} & =\frac{a}{5 b}
\end{aligned}
$$

or, $\quad \sqrt{6}=$ rational
But, $\sqrt{6}$ is an irrational number. Thus, our assumption
is wrong. Hence, $5 \sqrt{6}$ is an irrational number.
77. Write the denominator of the rational number $\frac{257}{500}$ in the form $2^{m} \times 5^{n}$, where m and n are non-negative integers. Hence write its decimal expansion without actual division.
Ans :
[Board Term-1 2012, NCERT Exemplar]
We have

$$
\begin{aligned}
500 & =25 \times 20 \\
& =5^{2} \times 5 \times 4 \\
& =5^{3} \times 2^{2}
\end{aligned}
$$

Here denominator is 500 which can be written as $2^{2} \times 5^{3}$.

Now decimal expansion,

$$
\begin{aligned}
\frac{257}{500} & =\frac{257 \times 2}{2 \times 2^{2} \times 5^{3}}=\frac{514}{10^{3}} \\
& =0.514
\end{aligned}
$$

78. Write a rational number between $\sqrt{2}$ and $\sqrt{3}$.

Ans :
[K.V.S.]
We have $\sqrt{2}=\sqrt{\frac{200}{100}}$ and $\sqrt{3}=\sqrt{\frac{300}{100}}$
We need to find a rational number x such that

$$
\frac{1}{10} \sqrt{200}<x<\frac{1}{10} \sqrt{300}
$$

Choosing any perfect square such as 225 or
VIDEO 256 in between 200 and 300 , we have

$$
x=\sqrt{\frac{225}{100}}=\frac{15}{10}=\frac{5}{3}
$$

Similarly if we choose 256 , then we have

$$
x=\sqrt{\frac{256}{100}}=\frac{16}{10}=\frac{8}{5}
$$

79. Write the rational number $\frac{7}{75}$ will have a terminating decimal expansion. or a non-terminating repeating decimal.
Ans :
[Board 2018 SQP]
We have

$$
\frac{7}{75}=\frac{7}{3 \times 5^{2}}
$$

The denominator of rational number $\frac{7}{75}$ can not be written in form $2^{m} 5^{n}$ So it is nonterminating repeating decimal expansion.
80. Show that 571 is a prime number.

Ans :
Let

$$
\begin{aligned}
x & =571 \\
\sqrt{x} & =\sqrt{571}
\end{aligned}
$$

Now 571 lies between the perfect squares of $(23)^{2}=529$ and $(24)^{2}=576$. Prime numbers less than 24 are 2,3 , $5,7,11,13,17,19,23$. Here 571 is not divisible by any of the above numbers, thus 571 is a prime number.
81. If two positive integers p and q are written as $p=a^{2} b^{3}$ and $q=a^{3} b$, where a and b are prime numbers than verify $\operatorname{LCM}(p, q) \times \operatorname{HCF}(q, q)=p q$
Ans :
[Sample Paper 2017]

$$
\begin{aligned}
& \text { We have } \\
& p=a^{2} b^{3}=a \times a \times b \times b \times b \\
& \text { and } \\
& q=a^{3} b=a \times a \times a \times b \\
& \text { Now } \\
& \operatorname{LCM}(p, q)=a \times a \times a \times b \times b \times b \\
& =a^{3} b^{3} \\
& \text { and } \\
& \operatorname{HCF}(p, q)=a \times a \times b \\
& =a^{2} b \\
& \operatorname{LCM}(p, q) \times \operatorname{HCF}(p, q)=a^{3} b^{3} \times a^{2} b \\
& =a^{5} b^{4} \\
& =a^{2} b^{3} \times a^{3} b \\
& =p q
\end{aligned}
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality
We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.

THREE MARKS QUESTIONS

82. An army contingent of 612 members is to march behind an army band of 48 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
Ans :
[Board 2020 Delhi Basic]
Let the number of columns be x which is the largest number, which should divide both 612 and 48 . It means x should be HCF of 612 and 48.
We can write 612 and 48 as follows

$$
\begin{aligned}
612 & =2 \times 2 \times 3 \times 3 \times 5 \times 17 \\
48 & =2 \times 2 \times 2 \times 2 \times 3 \\
\operatorname{HCF}(612,28) & =2 \times 2 \times 3=12
\end{aligned}
$$

Thus HCF of 104 and 96 is 12 i.e. 12 columns are required.
Here we have solved using Euclid's algorithm but you can solve this problem by simple mehtod of HCF.
83. Given that $\sqrt{5}$ is irrational, prove that $2 \sqrt{5}-3$ is an irrational number.
Ans :
[Board 2020 SQP Standard]
Assume that $2 \sqrt{5}-3$ is a rational number. Therefore, we can write it in the form of $\frac{p}{q}$ where p and q are co-prime integers and $q \neq 0$.

Now $\quad 2 \sqrt{5}-3=\frac{p}{q}$
where $q \neq 0$ and p and q are co-prime integers.
Rewriting the above expression as,

$$
\begin{aligned}
2 \sqrt{5} & =\frac{p}{q}+3 \\
\sqrt{5} & =\frac{p+3 q}{2 q}
\end{aligned}
$$

Here $\frac{p+3 q}{2 q}$ is rational because p and q are co-prime integers, thus $\sqrt{5}$ should be a rational number. But $\sqrt{5}$ is irrational. This contradicts the given fact that $\sqrt{5}$ is irrational. Hence $2 \sqrt{5}-3$ is an irrational number.
84. Prove that $\frac{2+\sqrt{3}}{5}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.
Ans:
[Board 2019 Delhi]
Assume that $\frac{2+\sqrt{3}}{5}$ is a rational number. Therefore, we can write it in the form of $\frac{p}{q}$ where p and q are coprime integers and $q \neq 0$.

$$
\begin{aligned}
\frac{2+\sqrt{3}}{5} & =\frac{p}{q} \\
2+\sqrt{3} & =\frac{5 p}{q} \\
\sqrt{3} & =\frac{5 p}{q}-2 \\
\sqrt{3} & =\frac{5 p-2 q}{q}
\end{aligned}
$$

Since, p and q are co-prime integers, then $\frac{5 p-2 q}{q}$ is a rational number. But this contradicts the fact that $\sqrt{3}$ is an irrational number. So, our assumption is wrong. Therefore $\frac{2+\sqrt{3}}{5}$ is an irrational number.
85. Given that $\sqrt{3}$ is irrational, prove that $(5+2 \sqrt{3})$ is an irrational number.
Ans :
[Board 2020 Delhi Basic]
Assume that $(5+2 \sqrt{3})$ is a rational number. Therefore, we can write it in the form of $\frac{p}{q}$ where p
and q are co-prime integers and $q \neq 0$.
Now $\quad 5+2 \sqrt{3}=\frac{p}{q}$
where $q \neq 0$ and p and q are integers.
Rewriting the above expression as,

$$
\begin{aligned}
2 \sqrt{3} & =\frac{p}{q}-5 \\
\sqrt{3} & =\frac{p-5 q}{2 q}
\end{aligned}
$$

Here $\frac{p-5 q}{2 q}$ is rational because p and q are co-prime integers, thus $\sqrt{3}$ should be a rational number. But $\sqrt{3}$ is irrational. This contradicts the given fact that $\sqrt{3}$ is irrational. Hence $(5+2 \sqrt{3})$ is an irrational number.
86. Prove that $2+5 \sqrt{3}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.
Ans :
[Board 2019 OD]
Assume that $2+5 \sqrt{3}$ is a rational number. Therefore, we can write it in the form of $\frac{p}{q}$ where p and q are co-prime integers and $q \neq 0$.

$$
\begin{aligned}
2+5 \sqrt{3} & =\frac{p}{q}, \quad q \neq 0 \\
5 \sqrt{3} & =\frac{p}{q}-2 \\
5 \sqrt{3} & =\frac{p-2 q}{q} \\
\sqrt{3} & =\frac{p-2 q}{5 q}
\end{aligned}
$$

Here $\sqrt{3}$ is irrational and $\frac{p-2 q}{5 q}$ is rational because p and q are co-prime integers. But rational number cannot be equal to an irrational number. Hence $2+5 \sqrt{3}$ is an irrational number.
87. Given that $\sqrt{2}$ is irrational, prove that $(5+3 \sqrt{2})$ is an irrational number.

Ans :

[Board 2018]
Assume that $(5+3 \sqrt{2})$ is a rational number. Therefore, we can write it in the form of $\frac{p}{q}$ where p and q are co-prime integers and $q \neq 0$.

Now $\quad 5+3 \sqrt{2}=\frac{p}{q}$
where $q \neq 0$ and p and q are integers.
Rewriting the above expression as,

$$
\begin{aligned}
3 \sqrt{2} & =\frac{p}{q}-5 \\
\sqrt{2} & =\frac{p-5 q}{3 q}
\end{aligned}
$$

Here $\frac{p-5 q}{3 q}$ is rational because p and q are co-prime integers, thus $\sqrt{2}$ should be a rational number. But $\sqrt{2}$ is irrational. This contradicts the given fact that $\sqrt{2}$ is irrational. Hence $(5+3 \sqrt{2})$ is an irrational number.
88. Write the smallest number which is divisible by both 306 and 657.
Ans :
[Board 2019 OD]
The smallest number that is divisible by two numbers is obtained by finding the LCM of these numbers Here, the given numbers are 306 and 657 .

$$
\begin{aligned}
306 & =6 \times 51=3 \times 2 \times 3 \times 17 \\
657 & =9 \times 73=3 \times 3 \times 73 \\
\operatorname{LCM}(306,657) & =2 \times 3 \times 3 \times 17 \times 73 \\
& =22338
\end{aligned}
$$

Hence, the smallest number which is divisible by 306 and 657 is 22338 .
89. Show that numbers 8^{n} can never end with digit 0 of any natural number n.
Ans:
[Board Term-1 2015, NCERT]
If the number 8^{n}, for any n, were to end with the digit zero, then it would be divisible by 5 and 2 . That is, the prime factorization
 of 8^{n} would contain the prime 5 and 2 . This is not possible because the only prime in the factorization of $(8)^{n}=\left(2^{3}\right)^{n}=2^{3 n}$ is 2 . The uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of $(8)^{n}$. Since there is no prime factor $5,(8)^{n}$ cannot end with the digit zero.

For all sample papers visit www.cbse.online

90. 144 cartons of Coke cans and 90 cartons of Pepsi cans are to be stacked in a canteen. If each stack is of the same height and if it equal contain cartons of the same drink, what would be the greatest number of cartons each stack would have?
Ans :
[Board Term-1 2011]
The required answer will be HCF of 144 and 90 .

$$
\begin{aligned}
144 & =2^{4} \times 3^{2} \\
90 & =2 \times 3^{2} \times 5 \\
\operatorname{HCF}(144,90) & =2 \times 3^{2}=18
\end{aligned}
$$

Thus each stack would have 18 cartons.
91. Three bells toll at intervals of $9,12,15$ minutes respectively. If they start tolling together, after what time will they next toll together?
Ans:
[Board Term-1 2011, Set-44]
The required answer is the LCM of 9,12 , and 15 minutes.

Finding prime factor of given number we have,

$$
\begin{aligned}
9 & =3 \times 3=3^{2} \\
12 & =2 \times 2 \times 3=2^{2} \times 3 \\
15 & =3 \times 5 \\
\operatorname{LCM}(9,12,15) & =2^{2} \times 3^{2} \times 5 \\
& =150 \text { minutes }
\end{aligned}
$$

The bells will toll next together after 180 minutes.
92. Find HCF and LCM of 16 and 36 by prime factorization and check your answer.
Ans :
Finding prime factor of given number we have,

$$
\begin{aligned}
16 & =2 \times 2 \times 2 \times 2=2^{4} \\
36 & =2 \times 2 \times 3 \times 3=2^{2} \times 3^{2} \\
\operatorname{HCF}(16,36) & =2 \times 2=4 \\
\operatorname{LCM}(16,36) & =2^{4} \times 3^{2} \\
& =16 \times 9=144
\end{aligned}
$$

Check :
or,

$$
\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b
$$

$$
\begin{aligned}
4 \times 144 & =16 \times 36 \\
576 & =576
\end{aligned}
$$

Thus

$$
\mathrm{LHS}=\mathrm{RHS}
$$

93. Find the HCF and LCM of 510 and 92 and verify that $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two given numbers.
Ans :
[Board Term-1 2011]
Finding prime factor of given number we have,

$$
\begin{aligned}
92 & =2^{2} \times 23 \\
510 & =30 \times 17=2 \times 3 \times 5 \times 17 \\
\operatorname{HCF}(510,92) & =2 \\
\operatorname{LCM}(510,92 & =2^{2} \times 23 \times 3 \times 5 \times 14 \\
& =23460
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{HCF}(510,92) & \times \operatorname{LCM}(510,92) \\
& =2 \times 23460=46920
\end{aligned}
$$

Product of two numbers $=510 \times 92=46920$
Hence, $\quad \mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers
94. The HCF of 65 and 117 is expressible in the form $65 m-117$. Find the value of m. Also find the LCM of 65 and 117 using prime factorization method.
Ans:
[Board Term-1 2011, Set-40]
Finding prime factor of given number we have

$$
\begin{aligned}
117 & =13 \times 2 \times 3 \\
65 & =13 \times 5
\end{aligned}
$$

$$
\operatorname{HCF}(117,65)=13
$$

$$
\operatorname{LCM}(117,65)=13 \times 5 \times 3 \times 3=585
$$

$$
\mathrm{HCF}=65 m-117
$$

$$
13=65 m-117
$$

$$
65 m=117+13=130
$$

$$
m=\frac{130}{65}=2
$$

95. Express $\left(\frac{15}{4}+\frac{5}{40}\right)$ as a decimal fraction without actual division.
Ans :
[Board Term-1 2011, Set-74]
We have $\frac{15}{4}+\frac{5}{40}=\frac{15}{4} \times \frac{25}{25}+\frac{5}{40} \times \frac{25}{25}$

$$
\begin{aligned}
& =\frac{375}{100}+\frac{125}{1000} \\
& =3.75+0.125=3.875
\end{aligned}
$$

96. Express the number $0.3 \overline{178}$ in the form of rational number $\frac{a}{b}$.
Ans :
[Board Term-1 2011, Set-A1]
Let

$$
\begin{aligned}
x & =0.3 \overline{178} \\
x & =0.3178178178 \\
10,000 x & =3178.178178 \ldots \\
10 x & =3.178178 \ldots
\end{aligned}
$$

Subtracting, $\quad 9990 x=3175$

$$
\text { or, } \quad x=\frac{3175}{9990}=\frac{635}{1998}
$$

97. Prove that $\sqrt{2}$ is an irrational number.

Ans:
[Board Term-1 2011, NCERT]

Let $\sqrt{2}$ be a rational number.
Then

$$
\sqrt{2}=\frac{p}{q}
$$

where p and q are co-prime integers and $q \neq 0$ On squaring both the sides we have,

$$
\begin{aligned}
2 & =\frac{p^{2}}{q^{2}} \\
\text { or, } \quad p^{2} & =2 p^{2}
\end{aligned}
$$

Since p^{2} is divisible by 2 , thus p is also divisible by 2 .
Let $p=2 r$ for some positive integer r, then we have

$$
\begin{aligned}
p^{2} & =4 r^{2} \\
2 q^{2} & =4 r^{2} \\
q^{2} & =2 r^{2}
\end{aligned}
$$

Since q^{2} is divisible by 2 , thus q is also divisible by 2 . We have seen that p and q are divisible by 2 , which contradicts the fact that p and q are co-primes. Hence, our assumption is false and $\sqrt{2}$ is irrational.
98. If p is prime number, then prove that \sqrt{p} is an irrational.
Ans :
[Board Term-1 2013]
Let p be a prime number and if possible, let \sqrt{p} be rational

Thus

$$
\sqrt{p}=\frac{m}{n}
$$

where m and n are co-primes and $n \neq 0$.

Squaring on both sides, we get
or, $\quad p n^{2}=m^{2}$
Here p divides $p n^{2}$. Thus p divides m^{2} and in result p also divides m.
Let $m=p q$ for some integer q and putting $m=p q$ in eq. (1), we have
or,

$$
\begin{aligned}
p n^{2} & =p^{2} q^{2} \\
n^{2} & =p q^{2}
\end{aligned}
$$

Here p divides $p q^{2}$. Thus p divides n^{2} and in result p also divides n.
[$\because p$ is prime and p divides $n^{2} \Rightarrow p$ divides n]
Thus p is a common factor of m and n but this contradicts the fact that m and n are primes. The contradiction arises by assuming that \sqrt{p} is rational.

Hence, \sqrt{p} is irrational.
99. Prove that $3+\sqrt{5}$ is an irrational number.

Ans :
Assume that $3+\sqrt{5}$ is a rational number, then we have

$$
\begin{aligned}
3+\sqrt{5} & =\frac{p}{q}, \quad q \neq 0 \\
\sqrt{5} & =\frac{p}{q}-3 \\
\sqrt{5} & =\frac{p-3 q}{q}
\end{aligned}
$$

Here $\sqrt{5}$ is irrational and $\frac{p-3 q}{q}$ is rational. But rational number cannot be equal to an irrational number. Hence $3+\sqrt{5}$ is an irrational number.
100.Prove that $\sqrt{5}$ is an irrational number and hence show that $2-\sqrt{5}$ is also an irrational number.
Ans:
[Board Term-1 2011]
Assume that $\sqrt{5}$ be a rational number then we have

$$
\begin{aligned}
\sqrt{5} & =\frac{a}{b}, \quad(a, b \text { are co-primes and } b \neq 0) \\
a & =b \sqrt{5}
\end{aligned}
$$

Squaring both the sides, we have

$$
a^{2}=5 b^{2}
$$

Thus 5 is a factor of a^{2} and in result 5 is also a factor of a.

Let $a=5 c$ where c is some integer, then we have

$$
a^{2}=25 c^{2}
$$

Substituting $a^{2}=5 b^{2}$ we have

$$
\begin{aligned}
5 b^{2} & =25 c^{2} \\
b^{2} & =5 c^{2}
\end{aligned}
$$

Thus 5 is a factor of b^{2} and in result 5 is also a factor of b.
Thus 5 is a common factor of a and b. But this contradicts the fact that a and b are co-primes. Thus, our assumption that $\sqrt{5}$ is rational number is wrong. Hence $\sqrt{5}$ is irrational.
Let us assume that $2-\sqrt{5}$ be rational equal to a, then we have

$$
\begin{aligned}
2-\sqrt{5} & =a \\
2-a & =\sqrt{5}
\end{aligned}
$$

Since we have assume $2-a$ is rational, but $\sqrt{5}$ is not rational. Rational number cannot be equal to an irrational number. Thus $2-\sqrt{5}$ is irrational.
101. Show that exactly one of the number $n, n+2$ or $n+4$ is divisible by 3 .
Ans :
[Sample Paper 2017]
If n is divisible by 3 , clearly $n+2$ and $n+4$ is not divisible by 3 .
If n is not divisible by 3 , then two case arise
 as given below.
Case 1: $n=3 k+1$

$$
n+2=3 k+1+2=3 k+3=3(k+1)
$$

and $\quad n+4=3 k+1+4=3 k+5=3(k+1)+2$
We can clearly see that in this case $n+2$ is divisible by 3 and $n+4$ is not divisible by 3 . Thus in this case only $n+2$ is divisible by 3 .
Case 1: $n=3 k+2$

$$
n+2=3 k+2+2=3 k+4=3(k+1)+1
$$

and

$$
n+4=3 k+2+4=3 k+6=3(k+2)
$$

We can clearly see that in this case $n+4$ is divisible by 3 and $n+2$ is not divisible by 3 . Thus in this case only $n+4$ is divisible by 3 .
Hence, exactly one of the numbers $n, n+2, n+4$ is divisible by 3.

For all sample papers visit www.cbse.online

FOUR MARKS QUESTIONS

102. Prove that $\sqrt{3}$ is an irrational number.

Ans :
[Board 2020 OD Basic]
Assume that $\sqrt{3}$ is a rational number. Therefore, we can write it in the form of $\frac{a}{b}$ where a and b are coprime integers and $q \neq 0$.
Assume that $\sqrt{3}$ be a rational number then we have

$$
\sqrt{3}=\frac{a}{b}
$$

where a and b are co-primes and $b \neq 0$.
Now

$$
a=b \sqrt{3}
$$

Squaring both the sides, we have

$$
a^{2}=3 b^{2}
$$

Thus 3 is a factor of a^{2} and in result 3 is also a factor of a.

Let $a=3 c$ where c is some integer, then we have

$$
a^{2}=9 c^{2}
$$

Substituting $a^{2}=3 b^{2}$ we have

$$
\begin{aligned}
3 b^{2} & =9 c^{2} \\
b^{2} & =3 c^{2}
\end{aligned}
$$

Thus 3 is a factor of b^{2} and in result 3 is also a factor of b.
Thus 3 is a common factor of a and b. But this contradicts the fact that a and b are co-primes. Thus, our assumption that $\sqrt{3}$ is rational number is wrong. Hence $\sqrt{3}$ is irrational.
103. Prove that $\sqrt{5}$ is an irrational number.

Ans :
[Board 2020 OD Standard]
Assume that $\sqrt{5}$ be a rational number then we have

$$
\sqrt{5}=\frac{a}{b}
$$

where a and b are co-primes and $b \neq 0$.

$$
a=b \sqrt{5}
$$

Squaring both the sides, we have

$$
a^{2}=5 b^{2}
$$

Thus 5 is a factor of a^{2} and in result 5 is also a factor of a.
Let $a=5 c$ where c is some integer, then we have

$$
a^{2}=25 c^{2}
$$

Substituting $a^{2}=5 b^{2}$ we have

$$
\begin{aligned}
5 b^{2} & =25 c^{2} \\
b^{2} & =5 c^{2}
\end{aligned}
$$

Thus 5 is a factor of b^{2} and in result 5 is also a factor of b.
Thus 5 is a common factor of a and b. But this contradicts the fact that a and b are co-primes. Thus, our assumption that $\sqrt{5}$ is rational number is wrong. Hence $\sqrt{5}$ is irrational.
104. Find HCF and LCM of 378,180 and 420 by prime factorization method. Is HCF $\times \mathrm{LCM}$ of these numbers equal to the product of the given three numbers?
Ans :
Finding prime factor of given number we have,

$$
\begin{aligned}
378 & =2 \times 3^{3} \times 7 \\
180 & =2^{2} \times 3^{2} \times 5 \\
420 & =2^{2} \times 3 \times 7 \times 5 \\
\operatorname{HCF}(378,180,420) & =2 \times 3=6
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{LCM}(378,180,420) & =2^{2} \times 3^{3} \times 5 \times 7 \\
& =2^{2} \times 3^{3} \times 5 \times 7=3780 \\
\mathrm{HCF} \times \mathrm{LCM} & =6 \times 3780=22680
\end{aligned}
$$

Product of given numbers

$$
\begin{aligned}
& =378 \times 180 \times 420 \\
& =28576800
\end{aligned}
$$

Hence, $\mathrm{HCF} \times \mathrm{LCM} \neq$ Product of three numbers.

SUPPORT OUR MISSION

Click Here to Know About Mission

105.State Fundamental theorem of Arithmetic. Find LCM of numbers 2520 and 10530 by prime factorization by 3.

Ans :

[Board Term-1 2016]
The fundamental theorem of arithmetic (FTA), also called the unique factorization theorem or the unique-prime-factorization
 theorem, states that every integer greater than 1 either is prime itself or is the product of a unique combination of prime numbers.

OR

Every composite number can be expressed as the product powers of primes and this factorization is unique.
Finding prime factor of given number we have,

$$
\begin{aligned}
2520 & =20 \times 126=20 \times 6 \times 21 \\
& =2^{3} \times 3^{2} \times 5 \times 7 \\
10530 & =30 \times 351=30 \times 9 \times 39 \\
& =30 \times 9 \times 3 \times 13 \\
& =2 \times 3^{4} \times 5 \times 13 \\
\mathrm{LCM}(2520,10530) & =2^{3} \times 3^{4} \times 5 \times 7 \times 13 \\
& =294840
\end{aligned}
$$

106. Can the number $6^{n}, n$ being a natural number, end with the digit 5 ? Give reasons.
Ans :
[Board Term-1 2015]
If the number 6^{n} for any n, were to end with the digit five, then it would be divisible by 5 . That is, the prime factorization of 6^{n} would
 contain the prime 5 . This is not possible because the
only prime in the factorization of $6^{n}=(2 \times 3)^{n}$ are 2 and 3 . The uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of 6^{n}. Since there is no prime factor $5,6^{n}$ cannot end with the digit five.

For all sample papers visit www.cbse.online

107.State Fundamental theorem of Arithmetic. Is it possible that HCF and LCM of two numbers be 24 and 540 respectively. Justify your answer.
Ans :
[Board Term-1 2015]
Fundamental theorem of Arithmetic: Every integer greater than one ither is prime itself or is the product of prime numbers and that
 this product is unique. Up to the order of the factors. LCM of two numbers should be exactly divisible by their HCF. In other words LCM is always a multiple of HCF. Since, 24 does not divide 540 two numbers cannot have their HCF as 24 and LCM as 540 .

$$
\begin{aligned}
\mathrm{HCF} & =24 \\
\mathrm{LCM} & =540 \\
\frac{L C M}{H C F} & =\frac{540}{24}=22.5 \text { not an integer }
\end{aligned}
$$

108. For any positive integer n, prove that $n^{3}-n$ is divisible by 6 .
Ans :
[Board Term-1 2015, 2012]
We have

$$
\begin{aligned}
n^{3}-n & =n\left(n^{2}-1\right) \\
& =(n-1) n(n+1) \\
& =(n-1) n(n+1)
\end{aligned}
$$

Thus $n^{3}-n$ is product of three consecutive positive integers.
Since, any positive integers a is of the form $3 q, 3 q+1$ or $3 q+2$ for some integer q.
Let $a, a+1, a+2$ be any three consecutive integers.
Case I : $a=3 q$
If $a=3 q$ then,

$$
a(a+1)(a+2)=3 q(3 q+1)(3 q+2)
$$

Product of two consecutive integers $(3 q+1)$ and $(3 q+2)$ is an even integer, say $2 r$.
Thus $a(a+1)(a+2)=3 q(2 r)$

$$
=6 q r \text {, which is divisible by } 6 \text {. }
$$

Case II : $a=3 q+1$

If $a=3 q+1$ then

$$
\begin{aligned}
a(a+1)(a+2) & =(3 q+1)(3 q+2)(3 q+3) \\
& =(2 r)(3)(q+1) \\
& =6 r(q+1)
\end{aligned}
$$

which is divisible by 6 .
Case III : $a=3 q+2$
If $a=3 q+2$ then

$$
\begin{aligned}
a(a+1)(a+2) & =(3 q+2)(3 q+3)(3 q+4) \\
& =3(3 q+2)(q+1)(3 q+4)
\end{aligned}
$$

Here $(3 q+2)$ and $=3(3 q+2)(q+1)(3 q+4)$

$$
\begin{aligned}
& =\text { multiple of } 6 \text { every } q \\
& =6 r \text { (say) }
\end{aligned}
$$

which is divisible by 6 . Hence, the product of three consecutive integers is divisible by 6 and $n^{3}-n$ is also divisible by 3 .
109. Prove that $n^{2}-n$ is divisible by 2 for every positive integer n.
Ans:
[Board Term-1 2012 Set-25]
We have $\quad n^{2}-n=n(n-1)$
Thus $n^{2}-n$ is product of two consecutive positive integers.
Any positive integer is of the form $2 q$ or $2 q+1$, for some integer q.

Case 1: $n=2 q$
If $n=2 q$ we have

$$
\begin{aligned}
n(n-1) & =2 q(2 q-1) \\
& =2 m
\end{aligned}
$$

where $m=q(2 q-1)$ which is divisible by 2 .
Case 1: $n=2 q+1$
If $n=2 q+1$, we have

$$
\begin{aligned}
n(n-1) & =(2 q+1)(2 q+1-1) \\
& =2 q(2 q+1) \\
& =2 m
\end{aligned}
$$

where $m=q(2 q+1)$ which is divisible by 2 .
Hence, $n^{2}-n$ is divisible by 2 for every positive integer n.
110.Prove that $\sqrt{3}$ is an irrational number. Hence, show
that $7+2 \sqrt{3}$ is also an irrational number.
Ans:
[Board Term-1 2012]
Assume that $\sqrt{3}$ be a rational number then we have

$$
\begin{aligned}
\sqrt{3} & =\frac{a}{b}, \quad(a, b \text { are co-primes and } b \neq 0) \\
a & =b \sqrt{3}
\end{aligned}
$$

Squaring both the sides, we have

$$
a^{2}=3 b^{2}
$$

Thus 3 is a factor of a^{2} and in result 3 is also a factor of a.

Let $a=3 c$ where c is some integer, then we have

$$
a^{2}=9 c^{2}
$$

Substituting $a^{2}=9 b^{2}$ we have

$$
\begin{aligned}
3 b^{2} & =9 c^{2} \\
b^{2} & =3 c^{2}
\end{aligned}
$$

Thus 3 is a factor of b^{2} and in result 3 is also a factor of b.
Thus 3 is a common factor of a and b. But this contradicts the fact that a and b are co-primes. Thus, our assumption that $\sqrt{3}$ is rational number is wrong. Hence $\sqrt{3}$ is irrational.
Let us assume that $7+2 \sqrt{3}$ be rational equal to a, then we have

$$
\begin{aligned}
7+2 \sqrt{3} & =\frac{p}{q} \quad q \neq 0 \text { and } p \text { and } q \text { are co-primes } \\
2 \sqrt{3} & =\frac{p}{q}-7=\frac{p-7 q}{q} \\
\text { or } \quad \sqrt{3} & =\frac{p-7 q}{2 q}
\end{aligned}
$$

Here $p-7 q$ and $2 q$ both are integers, hence $\sqrt{3}$ should be a rational number. But this contradicts the fact that $\sqrt{3}$ is an irrational number. Hence our assumption is not correct and $7+2 \sqrt{3}$ is irrational.
111. Show that there is no positive integer n, for which $\sqrt{n-1}+\sqrt{n-1}$ is rational.
Ans :
[Board Term-1 2012]
Let us assume that there is a positive integer n for which $\sqrt{n-1}+\sqrt{n-1}$ is rational and equal to $\frac{p}{q}$, where p and q are positive integers and $(q \neq 0)$.

$$
\begin{equation*}
\sqrt{n-1}+\sqrt{n-1}=\frac{p}{q} \tag{1}
\end{equation*}
$$

or, $\quad \frac{q}{p}=\frac{1}{\sqrt{n-1}+\sqrt{n+1}}$

$$
\begin{aligned}
& =\frac{\sqrt{n-1}-\sqrt{n+1}}{(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n-1}-\sqrt{n+1})} \\
& =\frac{\sqrt{n-1}-\sqrt{n+1}}{(n-1)-(n+1)}
\end{aligned}
$$

or

$$
\begin{gather*}
\frac{q}{p}=\frac{\sqrt{n-1}-\sqrt{n+1}}{-2} \\
\sqrt{n+1}-\sqrt{n-1}=\frac{2 q}{p} \tag{2}
\end{gather*}
$$

Adding (1) and (2), we get

$$
\begin{equation*}
2 \sqrt{n+1}=\frac{p}{q}+\frac{2 q}{p}=\frac{p^{2}+2 q^{2}}{p q} \tag{3}
\end{equation*}
$$

Subtracting (2) from (1) we have

$$
\begin{equation*}
2 \sqrt{n-1}=\frac{p^{2}-2 q^{2}}{p q} \tag{4}
\end{equation*}
$$

From (3) and (4), we observe that $\sqrt{n+1}$ and $\sqrt{n-1}$ both are rational because p and q both are rational. But it possible only when $(n+1)$ and $(n-1)$ both are perfect squares. But they differ by 2 and two perfect squares never differ by 2 . So both $(n+1)$ and $(n-1)$ cannot be perfect squares, hence there is no positive integer n for which $\sqrt{n-1}+\sqrt{n+1}$ is rational.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CHAPTER 2

POLYNOMIALS

ONE MARK QUESTIONS

Multiple Choice Questions

1. If one zero of a quadratic polynomial $\left(k x^{2}+3 x+k\right)$ is 2 , then the value of k is
(a) $\frac{5}{6}$
(b) $-\frac{5}{6}$
(c) $\frac{6}{5}$
(d) $-\frac{6}{5}$

Click Here
Ans:
[Board 2020 Delhi Basic]
We have

$$
p(x)=k x^{2}+3 x+k
$$

Since, 2 is a zero of the quadratic polynomial

$$
\begin{aligned}
p(2) & =0 \\
k(2)^{2}+3(2)+k & =0 \\
4 k+6+k & =0 \\
5 k & =-6 \Rightarrow k=-\frac{6}{5}
\end{aligned}
$$

Thus (d) is correct option.
2. The graph of a polynomial is shown in Figure, then the number of its zeroes is

(a) 3
(b) 1
(c) 2
(d) 4

Ans :
[Board 2020 Delhi Basic]
Since, the graph cuts the x-axis at 3 points, the number of zeroes of polynomial $p(x)$ is 3 .
Thus (a) is correct option.
3. The maximum number of zeroes a cubic polynomial can have, is
(a) 1
(b) 4
(c) 2
(d) 3

Ans :
[Board 2020 OD Basic]
A cubic polynomial has maximum 3 zeroes because its degree is 3 .
Thus (d) is correct option.
4. If one zero of the quadratic polynomial $x^{2}+3 x+k$ is 2 , then the value of k is
(a) 10
(b) -10
(c) -7
(d) -2

Ans :
[Board 2020 Delhi Standard]
We have

$$
p(x)=x^{2}+3 x+k
$$

If 2 is a zero of $p(x)$, then we have

$$
\begin{aligned}
(2)^{2}+3(2)+k & =0 \\
4+6+k & =0 \\
10+k & =0 \Rightarrow k=-10
\end{aligned}
$$

Thus (b) is correct option.
5. The quadratic polynomial, the sum of whose zeroes is -5 and their product is 6 , is
(a) $x^{2}+5 x+6$
(b) $x^{2}-5 x+6$
(c) $x^{2}-5 x-6$
(d) $-x^{2}+5 x+6$

Ans :
[Board 2020 Delhi Standard]
Let α and β be the zeroes of the quadratic polynomial, then we have

$$
\alpha+\beta=-5
$$

and

$$
\alpha \beta=6
$$

Now

$$
\begin{aligned}
p(x) & =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-(-5) x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

Thus (a) is correct option.
6. If one zero of the polynomial $\left(3 x^{2}+8 x+k\right)$ is the
reciprocal of the other，then value of k is
（a） 3
（b）-3
（c）$\frac{1}{3}$
（d）$-\frac{1}{3}$

［Board 2020 OD Basic］
Ans：
Let the zeroes be α and $\frac{1}{\alpha}$ ．
Product of zeroes，$\quad \alpha \cdot \frac{1}{\alpha}=\frac{\text { constant }}{\text { coefficient of } x^{2}}$

$$
1=\frac{k}{3} \Rightarrow k=3
$$

Thus（a）is correct option．
7．The zeroes of the polynomial $x^{2}-3 x-m(m+3)$ are
（a）$m, m+3$
（b）$-m, m+3$
（c）$m,-(m+3)$
（d）$-m,-(m+3)$

Ans ：
［Board 2020 OD Standard］
We have

$$
p(x)=x^{2}-3 x-m(m+3)
$$

Substituting $x=-m$ in $p(x)$ we have

$$
\begin{aligned}
p(-m) & =(-m)^{2}-3(-m)-m(m+3) \\
& =m^{2}+3 m-m^{2}-3 m=0
\end{aligned}
$$

Thus $\quad x=-m$ is a zero of given polynomial．
Now substituting $x=m+3$ in given polynomial we have

$$
\begin{aligned}
p(x) & =(m+3)^{2}-3(m+3)-m(m+3) \\
& =(m+3)[m+3-3-m] \\
& =(m+3)[0]=0
\end{aligned}
$$

Thus $x=m+3$ is also a zero of given polynomial．
Hence，$-m$ and $m+3$ are the zeroes of given polynomial．
Thus（b）is correct option．
8．The value of x ，for which the polynomials $x^{2}-1$ and $x^{2}-2 x+1$ vanish simultaneously，is
（a） 2
（b）-2
（c）-1
（d） 1

Ans ：
Both expression $(x-1)(x+1)$ and $(x-1)(x-1)$ have 1 as zero．This both vanish if $x=1$ ．
Thus（d）is correct option．
9．If α and β are zeroes and the quadratic polynomial $f(x)=x^{2}-x-4$ ，then the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha$
（a）$\frac{15}{4}$
（b）$\frac{-15}{4}$

（c） 4
（d） 15

Ans ：
We have

$$
f(x)=x^{2}-x-4
$$

$$
\begin{aligned}
& \alpha+\beta=-\frac{-1}{1}=1 \text { and } \alpha \beta=\frac{-4}{1}-4 \\
& \frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{\alpha+\beta}{\alpha \beta}-\alpha \beta \\
&=-\frac{1}{4}+4=\frac{15}{4}
\end{aligned}
$$

Thus（a）is correct option．

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www．cbse．online

10．The value of the polynomial $x^{8}-x^{5}+x^{2}-x+1$ is
（a）positive for all the real numbers
（b）negative for all the real numbers
（c） 0
（d）depends on value of x
Ans ：
VIDEO
Click Here
We have

$$
f(x)=x^{8}-x^{5}+x^{2}-x+1
$$

$f(x)$ is always positive for all $x>1$
For $x=1$ or $0, \mathrm{f}(\mathrm{x})=1>0$
For $x<0$ each term of $f(x)$ is positive，thus $f(x)>0$ ．Hence，$f(x)$ is positive for all real x ．
Thus（a）is correct option．
11．Lowest value of $x^{2}+4 x+2$ is
（a） 0
（b）-2
（c） 2
（d） 4

Ans ：

$$
\begin{aligned}
x^{2}+4 x+2 & =\left(x^{2}+4 x+4\right)-2 \\
& =(x+2)^{2}-2
\end{aligned}
$$

Here $(x+2)^{2}$ is always positive and its lowest value is zero．Thus lowest value of $(x+2)^{2}-2$ is -2 when $x+2=0$ ．
Thus（b）is correct option．
12．If the sum of the zeroes of the polynomial $f(x)=2 x^{3}-3 k x^{2}+4 x-5$ is 6 ，then the value of k is
（a） 2
（b）-2
（c） 4
（d）-4

回拣遂
回里定定

Ans :

Sum of the zeroes, $6=\frac{3 k}{2}$

$$
k=\frac{12}{3}=4
$$

Thus (c) is correct option.
13. If the square of difference of the zeroes of the quadratic polynomial $x^{2}+p x+45$ is equal to 144 , then the value of p is
(a) ± 9
(b) ± 12
(c) ± 15
(d) ± 18

Ans :
We have

$$
f(x)=x^{2}+p x+45
$$

Then,

$$
\alpha+\beta=\frac{-p}{1}=-p
$$

and

$$
\alpha \beta=\frac{45}{1}=45
$$

According to given condition, we have

$$
\begin{aligned}
(\alpha-\beta)^{2} & =144 \\
(\alpha+\beta)^{2}-4 \alpha \beta & =144 \\
(-p)^{2}-4(45) & =144 \\
p^{2} & =144+180=324 \Rightarrow p= \pm 18
\end{aligned}
$$

14. If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is -3 , then the value of k is
(a) $\frac{4}{3}$
(b) $\frac{-4}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$

If a is zero of quadratic polynomial $f(x)$, then

$$
f(a)=0
$$

So,

$$
\begin{aligned}
f(-3) & =(k-1)(-3)^{2}+(-3) k+1 \\
0 & =(k-1)(9)-3 k+1 \\
0 & =9 k-9-3 k+1 \\
0 & =6 k-8 \\
k & =\frac{8}{6}=\frac{4}{3}
\end{aligned}
$$

Thus (a) is correct option.
15. A quadratic polynomial, whose zeroes are -3 and 4 , is
(a) $x^{2}-x+12$
(b) $x^{2}+x+12$
(c) $\frac{x^{2}}{2}-\frac{x}{2}-6$
(d) $2 x^{2}+2 x-24$

Ans :
We have $\alpha=-3$ and $\beta=4$.
Sum of zeros $\quad \alpha+\beta=-3+4=1$
b186
Product of zeros, $\quad \alpha \cdot \beta=-3 \times 4=-12$
So, the quadratic polynomial is

$$
\begin{aligned}
x^{2}-(\alpha+\beta) x+\alpha \beta & =x^{2}-1 \times x+(-12) \\
& =x^{2}-x-12 \\
& =\frac{x^{2}}{2}-\frac{x}{2}-6
\end{aligned}
$$

Thus (c) is correct option.
16. If the zeroes of the quadratic polynomial $x^{2}+(a+1) x+b$ are 2 and -3 , then
(a) $a=-7, b=-1$
(b) $a=5, b=-1$
(c) $a=2, b=-6$
(d) $a=0, b=-6$

Ans :
If a is zero of the polynomial, then $f(a)=0$.
Here, 2 and -3 are zeroes of the polynomial $x^{2}+(a+1) x+b$
So,

$$
f(2)=(2)^{2}+(a+1)(-3)+b=0
$$

$$
\begin{align*}
4+2 a+2+b & =0 \\
6+2 a+b & =0 \\
2 a+b & =-6 \tag{1}
\end{align*}
$$

Again, $\quad f(-3)=(-3)^{2}+(a+1) 2+b=0$

$$
\begin{align*}
9-3(a+1)+b & =0 \\
9-3 a-3+b & =0 \\
6-3 a+b & =0 \\
-3 a+b & =-6 \\
3 a-b & =6 \tag{2}
\end{align*}
$$

Adding equations (1) and (2), we get

$$
5 a=0 \Rightarrow a=0
$$

Substituting value of a in equation (1), we get

$$
b=-6
$$

Hence, $a=0$ and $b=-6$.
Thus (d) is correct option.
17. The zeroes of the quadratic polynomial $x^{2}+99 x+127$ are
(a) both positive
(b) both negative
(c) one positive and one negative
(d) both equal

Ans :
Let $\quad f(x)=x^{2}+99 x+127$
Comparing the given polynomial with $a x^{2}+b x+c$, we get $a=1, b=99$ and $c=127$.

Sum of zeroes

$$
\alpha+\beta=\frac{-b}{a}=-99
$$

Product of zeroes

$$
\alpha \beta=\frac{c}{a}=127
$$

Now, product is positive and the sum is negative, so both of the numbers must be negative.

Alternative Method :

Let

$$
f(x)=x^{2}+99 x+127
$$

Comparing the given polynomial with $a x^{2}+b x+c$, we get $a=1, b=99$ and $c=127$.
Now by discriminant rule,

$$
\begin{aligned}
D & =\sqrt{b^{2}-4 a c} \\
& =\sqrt{(99)^{2}-4 \times 1 \times 127} \\
& =\sqrt{9801-508}=\sqrt{9293} \\
& =96.4
\end{aligned}
$$

So, the zeroes of given polynomial,

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-99 \pm \sqrt{96.4}}{2}
\end{aligned}
$$

Now, as
$99>96.4$
So, both zeroes are negative.
Thus (b) is correct option.
18. The zeroes of the quadratic polynomial $x^{2}+k x+k$ where $k \neq 0$,
(a) cannot both be positive
(b) cannot both be negative
(c) are always unequal
(d) are always equal

Ans :
Let

$$
f(x)=x^{2}+k x+k, k \neq 0
$$

Comparing the given polynomial with $a x^{2}+b x+c$, we
get $a=1, b=k$ and $c=k$.
Again, let if α, β be the zeroes of given polynomial then,

$$
\begin{aligned}
\alpha+\beta & =-k \\
\alpha \beta & =k
\end{aligned}
$$

Case 1: If k is negative, then $\alpha \beta$ is negative. It means α and β are of opposite sign.
Case 2: If k is positive, then $\alpha+\beta$ must be negative and $\alpha \beta$ must be positive and α and β both negative. Hence, α and β cannot both positive.
Thus (a) is correct option.
No Need to Buy any Question Bank or Sample Chapter From
Market. Download Free PDF of all Study Material from
www.cbse.online
19. If the zeroes of the quadratic polynomial $a x^{2}+b x+c$, where $c \neq 0$, are equal, then
(a) c and a have opposite signs
(b) c and b have opposite signs
(c) c and a have same sign
(d) c and b have the same sign

Ans :
Let

$$
f(x)=a x^{2}+b x+c
$$

Let α and β are zeroes of this polynomial
Then, $\quad \alpha+\beta=-\frac{b}{a}$
and

$$
\alpha \beta=\frac{c}{a}
$$

Since $\alpha=\beta$, then α and β must be of same sign i.e. either both are positive or both are negative. In both case

$$
\begin{aligned}
\alpha \beta & >0 \\
\frac{c}{a} & >0
\end{aligned}
$$

Both c and a are of same sign.
Thus (c) is correct option.
20. If one of the zeroes of a quadratic polynomial of the form $x^{2}+a x+b$ is the negative of the other, then it
(a) has no linear term and the constant term is negative.
(b) has no linear term and the constant term is positive.
(c) can have a linear term but the constant term is negative.
(d) can have a linear term but the constant term is
positive.
Ans :
Let $\quad f(x)=x^{2}+a x+b$
and let the zeroes of $f(x)$ are α and β,
As one of zeroes is negative of other,
sum of zeroes

$$
\begin{equation*}
\alpha+\beta=\alpha+(-\alpha)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \beta=\alpha \cdot(-\alpha)=-\alpha^{2} \tag{2}
\end{equation*}
$$

Hence, the given quadratic polynomial has no linear term and the constant term is negative.
Thus (a) is correct option.
21. Which of the following is not the graph of a quadratic polynomial?
(a)

(b)

(c)

(d)

Ans:
As the graph of option (d) cuts x-axis at three points. So, it does not represent the graph of quadratic polynomial.
Thus (d) is correct option.
22. Assertion : $(2-\sqrt{3})$ is one zero of the
 quadratic polynomial then other zero will be $(2+\sqrt{3})$.
Reason : Irrational zeros (roots) always occurs in pairs.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

As irrational roots/zeros always occurs in pairs therefore, when one zero is $(2-\sqrt{3})$ then other will be $2+\sqrt{3}$. So, both A and R are correct and R explains A.
Thus (a) is correct option.

23. Assertion : If one zero of poly-nominal $p(x)=\left(k^{2}+4\right) x^{2}+13 x+4 k$ is reciprocal of other, then $k=2$.
Reason : If $(x-\alpha)$ is a factor of $p(x)$, then $p(\alpha)=0$ i.e. α is a zero of $p(x)$.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
Let $\alpha, \frac{1}{\alpha}$ be the zeroes of $p(x)$, then

$$
\begin{aligned}
\alpha \cdot \frac{1}{\alpha} & =\frac{4 k}{k^{2}+4} \\
1 & =\frac{4 k}{k^{2}+4} \\
k^{2}-4 k+4 & =0 \\
(k-2)^{2} & =0 \Rightarrow k=2
\end{aligned}
$$

Assertion is true Since, Reason is not correct for Assertion.
Thus (b) is correct option.
24. Assertion : $p(x)=14 x^{3}-2 x^{2}+8 x^{4}+7 x-8$ is a polynomial of degree 3 .
Reason : The highest power of x in the polynomial $p(x)$ is the degree of the polynomial.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
The highest power of x in the polynomial $p(x)=14 x^{3}-2 x^{2}+8 x^{4}+7 x-8$ is 4 . Degree is 4 . So, A is incorrect but R is correct.
Thus (d) is correct option.

25. Assertion : $x^{3}+x$ has only one real zero.

Reason : A polynomial of nth degree must have n real zeroes.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

A polynomial of nth degree at most can have n real zeroes. Thus reason is not true.

Again, $\quad x^{3}+x=x\left(x^{2}+1\right)$
which has only one real zero because $x^{2}+1 \neq 0$ for all $x \in R$.
Assertion (A) is true but reason (R) is false.
Thus (c) is correct option.
26. Assertion : If both zeros of the quadratic polynomial $x^{2}-2 k x+2$ are equal in magnitude but opposite in sign then value of k is $1 / 2$.
Reason : Sum of zeros of a quadratic polynomial $a x^{2}+b x+c$ is $\frac{-b}{a}$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
As the polynomial is $x^{2}-2 k x+2$ and its zeros are equal but opposition sign, sum of zeroes must be zero.

$$
\begin{aligned}
& \text { sum of zeros }=0 \\
& \qquad \frac{-(-2 k)}{1}=0 \Rightarrow k=0
\end{aligned}
$$

Assertion (A) is false but reason (R) is true.
Thus (d) is correct option.

Fill in the Blank Questions

27. A polynomial is of degree one.
Ans :

Linear

28. A cubic polynomial is of degree. \qquad
Ans:

Three
b199
29. Degree of remainder is always than degree of divisor.
Ans:
Smaller/less

30. Polynomials of degrees 1,2 and 3 are called \qquad
\qquad and \qquad polynomials respectively.

Ans :

linear, quadratic, cubic

31. \qquad is not equal to zero when the divisor is not a factor of dividend.
Ans :
Remainder

32. The zeroes of a polynomial $p(x)$ are precisely the $x-$ coordinates of the points, where the graph of $y=p(x)$ intersects the \qquad axis.
Ans :
x
b203
33. The algebraic expression in which the variable has non-negative integral exponents only is called
Ans:
Polynomial

34. A quadratic polynomial can have at most

2 zeroes and a cubic polynomial can have at most
\qquad zeroes.

Ans:

3
35. A \qquad is a polynomial of degree 0 .
Ans:
Constant
. The highest power of a variable in a polynomial is called its \qquad
Ans:
Degree

37. A polynomial of degree n has at the most
.......... zeroes.
Ans :
n
b208
38. The graph of $y=p(x)$, where $p(x)$ is a polynomial in variable x, is as follows.

The number of zeroes of $p(x)$ is \qquad
Ans :
[Board 2020 SQP Standard]
The graph of the given polynomial $p(x)$ crosses the x-axis at 5 points. So, number of zeroes of $p(x)$ is 5 .
39. If one root of the equation $(k-1) x^{2}-10 x+3=0$ is the reciprocal of the other then the value of k is \qquad Ans :
[Board 2020 SQP Standard]
We have $\quad(k-1) x^{2}-10 x+3=0$
Let one root be α, then another root will be $\frac{1}{\alpha}$
Now

$$
\begin{aligned}
\alpha \cdot \frac{1}{\alpha} & =\frac{c}{a}=\frac{3}{(k-1)} \\
1 & =\frac{3}{(k-1)} \\
k-1 & =3 \Rightarrow k=4
\end{aligned}
$$

Very Short Answer Questions

40. If α and β are the roots of $a x^{2}-b x+c=0(a \neq 0)$, then calculate $\alpha+\beta$.
Ans :
[Board Term-1 2014]
We know that

$$
\text { Sum of the roots }=-\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}}
$$

Thus

$$
\alpha+\beta=-\left(\frac{-b}{a}\right)=\frac{b}{a}
$$

41. Calculate the zeroes of the polynomial $p(x)=4 x^{2}-12 x+9$.
Ans :
[Board Term-1 2010]

$$
\begin{aligned}
p(x) & =4 x^{2}-12 x+9 \\
& =4 x^{2}-6 x-6 x+9 \\
& =2 x(2 x-3)-3(2 x-3)
\end{aligned}
$$

$$
=(2 x-3)(2 x-3)
$$

Substituting $p(x)=0$, and solving we get $x=\frac{3}{2}, \frac{3}{2}$ $x=\frac{3}{2}, \frac{3}{2}$
Hence, zeroes of the polynomial are $\frac{3}{2}, \frac{3}{2}$.
42. In given figure, the graph of a polynomial $p(x)$ is shown. Calculate the number of zeroes of $p(x)$.

Ans :

[Board Term-1 2013]
The graph intersects x -axis at one point $x=1$. Thus the number of zeroes of $p(x)$ is 1 .
43. If sum of the zeroes of the quadratic polynomial $3 x^{2}-k x+6$ is 3 , then find the value of k.
Ans:
[Board 2009]
We have

$$
p(x)=3 x^{2}-k x-6
$$

Sum of the zeroes $=3=-\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}} \quad$ 回

Thus

$$
3=-\frac{(-k)}{3} \Rightarrow k=9
$$

44. If -1 is a zero of the polynomial $f(x)=x^{2}-7 x-8$, then calculate the other zero.
Ans :
We have

$$
f(x)=x^{2}-7 x-8
$$

Let other zero be k, then we have
Sum of zeroes, $\quad-1+k=-\left(\frac{-7}{1}\right)=7$
or

$$
k=8
$$

TWO MARKS QUESTIONS

45. If zeroes of the polynomial $x^{2}+4 x+2 a$ are a and $\frac{2}{a}$, then find the value of a.
Ans:
[Board Term-1 2016]
Product of (zeroes) roots,

$$
\frac{c}{a}=\frac{2 a}{1}=\alpha \times \frac{2}{\alpha}=2
$$

or,

$$
2 a=2
$$

Thus

$$
a=1
$$

46. Find all the zeroes of $f(x)=x^{2}-2 x$.

Ans :
[Board Term-1 2013]
We have

$$
\begin{aligned}
f(x) & =x^{2}-2 x \\
& =x(x-2)
\end{aligned}
$$

$$
=x(x-2)
$$

b107
Substituting $f(x)=0$, and solving we get $x=0,2$ Hence, zeroes are 0 and 2 .
47. Find the zeroes of the quadratic polynomial $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$.
Ans:
[Board Term-1 2013]
We have

$$
\begin{aligned}
p(x) & =\sqrt{3} x^{2}-8 x+4 \sqrt{3} \\
& =\sqrt{3} x^{2}-6 x-2 x+4 \sqrt{3} \\
& =\sqrt{3} x(x-2 \sqrt{3})-2(x-2 \sqrt{3}) \\
& =(\sqrt{3} x-2)(x-2 \sqrt{3})
\end{aligned}
$$

Substituting $p(x)=0$, we have

$$
(\sqrt{3} x-2)(x-2 \sqrt{3}) p(x)=0
$$

Solving we get $x=\frac{2}{\sqrt{3}}, 2 \sqrt{3}$
Hence, zeroes are $\frac{2}{\sqrt{3}}$ and $2 \sqrt{3}$.
48. Find a quadratic polynomial, the sum and product of whose zeroes are 6 and 9 respectively. Hence find the zeroes.
Ans :
[Board Term-1 2016]
Sum of zeroes,

$$
\begin{array}{r}
\alpha+\beta=6 \\
\alpha \beta=9
\end{array}
$$

Product of zeroes

Now

$$
\begin{aligned}
p(x) & =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-6 x+9
\end{aligned}
$$

Thus
Thus quadratic polynomial is $x^{2}-6 x+9$.
Now

$$
p(x)=x^{2}-6 x+9
$$

$$
=(x-3)(x-3)
$$

Substituting $p(x)=0$, we get $x=3,3$
Hence zeroes are 3,3
49. Find the quadratic polynomial whose sum and product of the zeroes are $\frac{21}{8}$ and $\frac{5}{16}$ respectively.
Ans :
[Board Term-1 2012, Set-35]

Sum of zeroes,

$$
\begin{array}{r}
\alpha+\beta=\frac{21}{8} \\
\alpha \beta=\frac{5}{16}
\end{array}
$$

Product of zeroes

$$
\begin{aligned}
p(x) & x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-\frac{21}{8} x+\frac{5}{16} \\
p(x) & =\frac{1}{16}\left(16 x^{2}-42 x+5\right)
\end{aligned}
$$

or
50. Form a quadratic polynomial $p(x)$ with 3 and $-\frac{2}{5}$ as sum and product of its zeroes, respectively.
Ans :
[Board Term-1 2012]
Sum of zeroes, $\alpha+\beta=3$
Product of zeroes $\alpha \beta=-\frac{2}{5}$
Now

$$
\begin{aligned}
p(x) & x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-3 x-\frac{2}{5} \\
& =\frac{1}{5}\left(5 x^{2}-15 x-2\right)
\end{aligned}
$$

The required quadratic polynomial is $\frac{1}{5}\left(5 x^{2}-15 x-2\right)$

Don't Take Printout of This PDF. Buy Hard Book at Price Less then price of Printouts.

CLICK TO BUY HARD BOOK

51. If m and n are the zeroes of the polynomial $3 x^{2}+11 x-4$, find the value of $\frac{m}{n}+\frac{n}{m}$.
Ans :
[Board Term-1 2012]
We have $\quad \frac{m}{n}+\frac{n}{m}=\frac{m^{2}+n^{2}}{m n}=\frac{(m+n)^{2}-2 m n}{m n}$ (1)

Sum of zeroes

$$
m+n=-\frac{11}{3}
$$

Product of zeroes $\quad m n=\frac{-4}{3}$
Substituting in (1) we have

$$
\begin{aligned}
\frac{m}{n}+\frac{n}{m} & =\frac{(m+n)^{2}-2 m n}{m n} \\
& =\frac{\left(-\frac{11}{3}\right)^{2}-\frac{-4}{3} \times 2}{\frac{-4}{3}} \\
& =\frac{121+4 \times 3 \times 2}{-4 \times 3}
\end{aligned}
$$

or $\quad \frac{m}{n}+\frac{n}{m}=\frac{-145}{12}$
52. If p and q are the zeroes of polynomial $f(x)=2 x^{2}-7 x+3$, find the value of $p^{2}+q^{2}$.
Ans:
[Board Term-1 2012]
We have

$$
f(x)=2 x^{2}-7 x+3
$$

Sum of zeroes

$$
p+q=-\frac{b}{a}=-\left(\frac{-7}{2}\right)=\frac{7}{2}
$$

Product of zeroes

$$
p q=\frac{c}{a}=\frac{3}{2}
$$

Since,

$$
(p+q)^{2}=p^{2}+q^{2}+2 p q
$$

so,

$$
\begin{aligned}
p^{2}+q^{2} & =(p+q)^{2}-2 p q \\
& =\left(\frac{7}{2}\right)^{2}-3=\frac{49}{4}-\frac{3}{1}=\frac{37}{4}
\end{aligned}
$$

Hence $p^{2}+q^{2}=\frac{37}{4}$.
53. Find the condition that zeroes of polynomial $p(x)=a x^{2}+b x+c$ are reciprocal of each other.
Ans :
[Board Term-1 2012]
We have

$$
p(x)=a x^{2}+b x+c
$$

Let α and $\frac{1}{\alpha}$ be the zeroes of $p(x)$, then

Product of zeroes,

$$
\frac{c}{a}=\alpha \times \frac{1}{\alpha}=1 \text { or } \frac{c}{a}=1
$$

So, required condition is, $c=a$
54. Find the value of k if -1 is a zero of the polynomial $p(x)=k x^{2}-4 x+k$.
Ans:
[Board Term-1 2012]
We have

$$
p(x)=k x^{2}-4 x+k
$$

Since, -1 is a zero of the polynomial, then

$$
p(-1)=0
$$

$$
\begin{aligned}
k(-1)^{2}-4(-1)+k & =0 \\
k+4+k & =0 \\
2 k+4 & =0 \\
2 k & =-4 \\
k & =-2
\end{aligned}
$$

Hence,
55. If α and β are the zeroes of a polynomial $x^{2}-4 \sqrt{3} x+3$, then find the value of $\alpha+\beta-\alpha \beta$.
Ans :
[Board Term-1 2015]
We have $\quad p(x)=x^{2}-4 \sqrt{3} x+3$
If α and β are the zeroes of $x^{2}-4 \sqrt{3} x+3$, then
Sum of zeroes, $\quad \alpha+\beta=-\frac{b}{a}=-\frac{(-4 \sqrt{3})}{1}$
or,

$$
\alpha+\beta=4 \sqrt{3}
$$

Product of zeroes

$$
\alpha \beta=\frac{c}{a}=\frac{3}{1}
$$

or,
$\alpha \beta=3$

Now

$$
\alpha+\beta-\alpha \beta=4 \sqrt{3}-3
$$

56. Find the values of a and b, if they are the zeroes of polynomial $x^{2}+a x+b$.
Ans :
[Board Term-1 2013]
We have

$$
p(x)=x^{2}+a x+b
$$

Since a and b, are the zeroes of polynomial, we get,
Product of zeroes,

$$
a b=b \Rightarrow a=1
$$

Sum of zeroes,

$$
a+b=-a \Rightarrow b=-2 a=-2
$$

57. If α and β are the zeroes of the polynomial $f(x)=x^{2}-6 x+k$, find the value of k, such that $\alpha^{2}+\beta^{2}=40$.
Ans :
[Board Term-1 2015]
We have

$$
f(x)=x^{2}-6 x+k
$$

Sum of zeroes,

$$
\alpha+\beta=-\frac{b}{a}=\frac{-(-6)}{1}=6
$$

Product of zeroes,

$$
\alpha \beta=\frac{c}{a}=\frac{k}{1}=k
$$

Now

$$
\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=40
$$

$$
(6)^{2}-2 k=40
$$

$$
36-2 k=40
$$

$$
-2 k=4
$$

Thus

$$
k=-2
$$

58. If one of the zeroes of the quadratic polynomial $f(x)=14 x^{2}-42 k^{2} x-9$ is negative of the other, find the value of ' k '.
Ans :
[Board Term-1 2012]
We have

$$
f(x)=14 x^{2}-42 k^{2} x-9
$$

Let one zero be α, then other zero will be $-\alpha$.
Sum of zeroes $\alpha+(-\alpha)=0$.
Thus sum of zero will be 0 .

$$
\begin{aligned}
& \text { Sum of zeroes } \quad \begin{aligned}
0 & =-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}} \\
0 & =-\frac{42 k^{2}}{14}=-3 k^{2}
\end{aligned}
\end{aligned}
$$

Thus $k=0$.
59. If one zero of the polynomial $2 x^{2}+3 x+\lambda$ is $\frac{1}{2}$, find the value of λ and the other zero.
Ans:
[Board Term-1 2012]
Let, the zero of $2 x^{2}+3 x+\lambda$ be $\frac{1}{2}$ and β.
Product of zeroes $\frac{c}{a}, \quad \frac{1}{2} \beta=\frac{\lambda}{2}$
or,

$$
\beta=\lambda
$$

and sum of zeroes $-\frac{b}{a}, \frac{1}{2}+\beta=-\frac{3}{2}$
or

$$
\beta=-\frac{3}{2}-\frac{1}{2}=-2
$$

Hence

$$
\lambda=\beta=-2
$$

Thus other zero is -2 .
60. If α and β are zeroes of the polynomial $f(x)=x^{2}-x-k$, such that $\alpha-\beta=9$, find k.
Ans :
[Board Term-1 2013, Set FFC]
We have

$$
f(x)=x^{2}-x-k
$$

Since α and β are the zeroes of the polynomial, then Sum of zeroes, $\alpha+\beta=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$

$$
\begin{aligned}
& =-\left(\frac{-1}{1}\right)=1 \\
\alpha+\beta & =1
\end{aligned}
$$

b122

Given

$$
\begin{equation*}
\alpha-\beta=9 \tag{2}
\end{equation*}
$$

Solving (1) and (2) we get $\alpha=5$ and $\beta=-4$

$$
\begin{aligned}
& \alpha \beta=\frac{\text { Constan term }}{\text { Coefficient of } x^{2}} \\
& \alpha \beta=-k
\end{aligned}
$$

or
Substituting $\alpha=5$ and $\beta=-4$ we have

$$
\begin{aligned}
(5)(-4) & =-k \\
k & =20
\end{aligned}
$$

Thus
61. If the zeroes of the polynomial $x^{2}+p x+q$ are double in value to the zeroes of $2 x^{2}-5 x-3$, find the value of p and q.
Ans :
[Board Term-1 2012, Set-39]
We have

$$
f(x)=2 x^{2}-5 x-3
$$

Let the zeroes of polynomial be α and β, then
Sum of zeroes $\quad \alpha+\beta=\frac{5}{2}$

Product of zeroes

$$
\alpha \beta=-\frac{3}{2}
$$

b123

According to the question, zeroes of $x^{2}+p x+q$ are 2α and 2β.

Sum of zeros,

$$
\begin{aligned}
2 \alpha+2 \beta & =\frac{-p}{1} \\
2(\alpha+\beta) & =-p
\end{aligned}
$$

Substituting $\alpha+\beta=\frac{5}{2}$ we have

$$
2 \times \frac{5}{2}=-p
$$

or

$$
p=-5
$$

Product of zeroes,

$$
2 \alpha 2 \beta=\frac{q}{1}
$$

$$
4 \alpha \beta=q
$$

Substituting $\alpha \beta=-\frac{3}{2}$ we have

$$
\begin{array}{r}
4 \times \frac{-3}{2}=q \\
-6=q
\end{array}
$$

Thus $p=-5$ and $q=-6$.
62. If α and β are zeroes of $x^{2}-(k-6) x+2(2 k-1)$, find the value of k if $\alpha+\beta=\frac{1}{2} \alpha \beta$.
Ans :
[KVS Practice Test 2017]
We have

$$
p(x)=x^{2}-(k-6) x+2(2 k-1)
$$

Since α, β are the zeroes of polynomial $p(x)$, we get

$$
\begin{aligned}
\alpha+\beta & =-[-(k-6)]=k-6 \\
\alpha \beta & =2(2 k-1)
\end{aligned}
$$

Now

$$
\alpha+\beta=\frac{1}{2} \alpha \beta
$$

Thus

$$
k+6=\frac{2(2 k-1)}{2}
$$

or,

$$
\begin{aligned}
k-6 & =2 k-1 \\
k & =-5
\end{aligned}
$$

Hence the value of k is -5 .
Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online

THREE MARKS QUESTIONS

63. Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial $f(x)=a x^{2}+b x+c, a \neq 0, c \neq 0$.
Ans:
[Board 2020 Delhi Standard]
Let α and β be zeros of the given polynomial $a x^{2}+b x+c$.

$$
\alpha+\beta=-\frac{b}{a} \text { and } \alpha \beta=\frac{c}{a}
$$

Let $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ be the zeros of new polynomial then we have

Sum of zeros, $\quad s=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}$

$$
=\frac{-\frac{b}{a}}{\frac{c}{a}}=\frac{-b}{c}
$$

Product of zeros, $\quad p=\frac{1}{\alpha} \cdot \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{a}{c}$
Required polynomial,

$$
\begin{aligned}
g(x) & =x^{2}-s x+p \\
g(x) & =x^{2}+\frac{b}{c} x+\frac{a}{c} \\
c g(x) & =c x^{2}+b x+a \\
g^{\prime}(x) & =c x^{2}+b x+a
\end{aligned}
$$

64. Verify whether 2,3 and $\frac{1}{2}$ are the zeroes of the polynomial $p(x)=2 x^{3}-11 x^{2}+17 x-6$.
Ans:
[Board Term-1 2013, LK-59]

If 2,3 and $\frac{1}{2}$ are the zeroes of the polynomial $p(x)$, then these must satisfy $p(x)=0$
(1) 2 ,

$$
\begin{aligned}
p(x) & =2 x^{2}-11 x^{2}+17 x-6 \\
p(2) & =2(2)^{3}-11(2)^{2}+17(2)-6 \\
& =16-44+34-6 \\
& =50-50 \\
p(2) & =0
\end{aligned}
$$

or

$$
p(2)=0
$$

(2) 3 ,

$$
\begin{aligned}
p(3) & =2(3)^{3}-11(3)^{2}+17(3)-6 \\
& =54-99+51-6 \\
& =105-105
\end{aligned}
$$

or

$$
p(3)=0
$$

(3) $\frac{1}{2}$

$$
\begin{aligned}
p\left(\frac{1}{2}\right) & =2\left(\frac{1}{2}\right)^{3}-11\left(\frac{1}{2}\right)^{2}+17\left(\frac{1}{2}\right)-6 \\
& =\frac{1}{4}-\frac{11}{4}+\frac{17}{2}-6
\end{aligned}
$$

or

$$
p\left(\frac{1}{2}\right)=0
$$

Hence, 2,3 , and $\frac{1}{2}$ are the zeroes of $p(x)$.
65. If the sum and product of the zeroes of the polynomial $a x^{2}-5 x+c$ are equal to 10 each, find the value of ' a ' and ' c '.
Ans :
[Board Term-1 2011, Set-25]
We have

$$
f(x)=a x^{2}-5 x+c
$$

Let the zeroes of $f(x)$ be α and β, then,
Sum of zeroes

$$
\alpha+\beta=-\frac{-5}{a}=\frac{5}{a}
$$

Product of zeroes

$$
\alpha \beta=\frac{c}{a}
$$

According to question, the sum and product of the zeroes of the polynomial $f(x)$ are equal to 10 each.

Thus

$$
\begin{equation*}
\frac{5}{a}=10 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{c}{a}=10 \tag{2}
\end{equation*}
$$

Dividing (2) by eq. (1) we have

$$
\frac{c}{5}=1 \Rightarrow c=5
$$

Substituting $c=5$ in (2) we get $a=\frac{1}{2}$
Hence $a=\frac{1}{2}$ and $c=5$.
66. If one the zero of a polynomial $3 x^{2}-8 x+2 k+1$ is
seven times the other, find the value of k.
Ans :
[Board Term-1 2011, Set-40]
We have

$$
f(x)=3 x^{2}-8 x+2 k+1
$$

Let α and β be the zeroes of the polynomial, then

$$
\beta=7 \alpha
$$

Sum of zeroes,

$$
\alpha+\beta=-\left(-\frac{8}{3}\right)
$$

$$
\alpha+7 \alpha=8 \alpha=\frac{8}{3}
$$

So $\quad \alpha=\frac{1}{3}$
Product of zeroes, $\quad \alpha \times 7 \alpha=\frac{2 k+1}{3}$

$$
\begin{aligned}
7 \alpha^{2} & =\frac{2 k+1}{3} \\
7\left(\frac{1}{3}\right)^{2} & =\frac{2 k+1}{3} \\
7 \times \frac{1}{9} & =\frac{2 k+1}{1} \\
\frac{7}{3}-1 & =2 k \\
\frac{4}{3} & =2 k \Rightarrow k=\frac{2}{3}
\end{aligned}
$$

67. Quadratic polynomial $2 x^{2}-3 x+1$ has zeroes as α and β. Now form a quadratic polynomial whose zeroes are 3α and 3β.

Ans :

[Board Term-2 2015]
We have $\quad f(x)=2 x^{2}-3 x+1$
If α and β are the zeroes of $2 x^{2}-3 x+1$, then
Sum of zeroes

$$
\alpha+\beta=\frac{-b}{a}=\frac{3}{2}
$$

Product of zeroes

$$
\alpha \beta=\frac{c}{a}=\frac{1}{2}
$$

New quadratic polynomial whose zeroes are 3α and 3β is,

$$
\begin{aligned}
p(x) & =x^{2}-(3 \alpha+3 \beta) x+3 \alpha \times 3 \beta \\
& =x^{2}-3(\alpha+\beta) x+9 \alpha \beta \\
& =x^{2}-3\left(\frac{3}{2}\right) x+9\left(\frac{1}{2}\right) \\
& =x^{2}-\frac{9}{2} x+\frac{9}{2} \\
& =\frac{1}{2}\left(2 x^{2}-9 x+9\right)
\end{aligned}
$$

Hence, required quadratic polynomial is $\frac{1}{2}\left(2 x^{2}-9 x+9\right)$
68. If α and β are the zeroes of the polynomial $6 y^{2}-7 y+2$, find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
Ans :
[Board Term-1 2011]
We have

$$
p(y)=6 y^{2}-7 y+2
$$

Sum of zeroes

$$
\alpha+\beta=-\left(-\frac{7}{6}\right)=\frac{7}{6}
$$

Product of zeroes

$$
\alpha \beta=\frac{2}{6}=\frac{1}{3}
$$

Sum of zeroes of new polynomial $g(y)$

$$
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{7 / 6}{2 / 6}=\frac{7}{2}
$$

and product of zeroes of new polynomial $g(y)$,

$$
\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{1 / 3}=3
$$

The required polynomial is

$$
\begin{aligned}
g(x) & =y^{2}-\frac{7}{2} y+3 \\
& =\frac{1}{2}\left[2 y^{2}-7 y+6\right]
\end{aligned}
$$

69. Show that $\frac{1}{2}$ and $\frac{-3}{2}$ are the zeroes of the polynomial $4 x^{2}+4 x-3$ and verify relationship between zeroes and coefficients of the polynomial.
Ans :
[Board Term-1 2011]
We have $\quad p(x)=4 x^{2}+4 x-3$
If $\frac{1}{2}$ and $\frac{-3}{2}$ are the zeroes of the polynomial $p(x)$, then these must satisfy $p(x)=0$

$$
\begin{aligned}
p\left(\frac{1}{2}\right) & =4\left(\frac{1}{4}\right)+4\left(\frac{1}{2}\right)-3 \\
& =1+2-3=0
\end{aligned}
$$

and

$$
\begin{aligned}
p\left(-\frac{3}{2}\right) & =4\left(\frac{9}{2}\right)+4\left(-\frac{3}{2}\right)-3 \\
& =9-6-3=0
\end{aligned}
$$

Thus $\frac{1}{2},-\frac{3}{2}$ are zeroes of polynomial $4 x^{2}+4 x-3$.

$$
\begin{aligned}
\text { Sum of zeroes } & =\frac{1}{2}-\frac{3}{2}=-1=\frac{-4}{4} \\
& =-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Product of zeroes } & =\left(\frac{1}{2}\right)\left(-\frac{3}{2}\right)=\frac{-3}{4} \\
& =\frac{\text { Constan term }}{\text { Coefficient of } x^{2}}
\end{aligned}
$$

Verified

SUPPORT OUR MISSION

Click Here to Know About Mission

70. A teacher asked 10 of his students to write a polynomial in one variable on a paper and then to handover the paper. The following were the answers given by the students :
$2 x+3, \quad 3 x^{2}+7 x+2, \quad 4 x^{3}+3 x^{2}+2, \quad x^{3}+\sqrt{3 x}+7$, $7 x+\sqrt{7}, \quad 5 x^{3}-7 x+2, \quad 2 x^{2}+3-\frac{5}{x}, \quad 5 x-\frac{1}{2}$, $a x^{3}+b x^{2}+c x+d, x+\frac{1}{x}$.

Answer the following question :
(i) How many of the above ten, are not polynomials?
(ii) How many of the above ten, are quadratic polynomials?
Ans :
[Board 2020 OD Standard]
(i) $x^{3}+\sqrt{3 x}+7,2 x^{2}+3-\frac{5}{x}$ and $x+\frac{1}{x}$ are not polynomials.
(ii) $3 x^{2}+7 x+2$ is only one quadratic polynomial.
71. Find the zeroes of the quadratic polynomial $x^{2}-2 \sqrt{2} x$ and verify the relationship between the zeroes and the coefficients.
Ans :
[Board Term-1 2015]
We have

$$
\begin{aligned}
p(x) x^{2}-2 \sqrt{2} x & =0 \\
x(x-2 \sqrt{2}) & =0
\end{aligned}
$$

Thus zeroes are 0 and $2 \sqrt{2}$.
Sum of zeroes

$$
\begin{aligned}
2 \sqrt{2} & =-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}} \\
0 & =\frac{\text { Constan term }}{\text { Coefficient of } x^{2}}
\end{aligned}
$$

and product of zeroes

Hence verified
72. Find the zeroes of the quadratic polynomial $5 x^{2}+8 x-4$ and verify the relationship between the zeroes and the coefficients of the polynomial.
Ans:
[Board Term-1 2013, Set LK-59]

We have

$$
p(x)=5 x^{2}+8 x-4=0
$$

$$
\begin{aligned}
& =5 x^{2}+10 x-2 x-4=0 \\
& =5 x(x+2)-2(x+2)=0 \\
& =(x+2)(5 x-2)
\end{aligned}
$$

Substituting $p(x)=0$ we get zeroes as -2 and $\frac{2}{5}$.
Verification :

$$
\text { Sum of zeroes }=-2+\frac{2}{5}=\frac{-8}{5}
$$

Now from polynomial we have
Sum of zeroes $\quad-\frac{b}{a}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=\frac{-8}{5}$
Product of zeroes $\frac{c}{a}=\frac{\text { Constan term }}{\text { Coefficient of } x^{2}}=-\frac{4}{5}$
Hence Verified.
73. If α and β are the zeroes of a quadratic polynomial such that $\alpha+\beta=24$ and $\alpha-\beta=8$. Find the quadratic polynomial having α and β as its zeroes.
Ans :
[Board Term-1 2011, Set-44]
We have

$$
\begin{align*}
& \alpha+\beta=24 \tag{1}\\
& \alpha-\beta=8 \tag{2}
\end{align*}
$$

Adding equations (1) and (2) we have

$$
2 \alpha=32 \Rightarrow \alpha=16
$$

Subtracting (1) from (2) we have

$$
2 \beta=16 \Rightarrow \beta=8
$$

Hence, the quadratic polynomial

$$
\begin{aligned}
p(x) & =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-(16+8) x+(16)(8) \\
& =x^{2}-24 x+128
\end{aligned}
$$

74. If α, β and γ are zeroes of the polynomial $6 x^{3}+3 x^{2}-5 x+1$, then find the value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$.
Ans :
[KVS practice Test 2017, Board 2010]
We have

$$
p(x)=6 x^{3}+3 x^{2}-5 x+1
$$

Since α, β and γ are zeroes polynomial $p(x)$, we have

$$
\begin{aligned}
\alpha+\beta+\gamma & =-\frac{b}{c}=-\frac{3}{6}=-\frac{1}{2} \\
\alpha \beta+\beta \gamma+\gamma \alpha & =\frac{c}{a}=-\frac{5}{6}
\end{aligned}
$$

and

$$
\alpha \beta \gamma=-\frac{d}{a}=-\frac{1}{6}
$$

Now

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma} \\
& =\frac{-5 / 6}{-1 / 6}=\frac{-5}{6} \times \frac{6}{-1}=5
\end{aligned}
$$

Hence $\alpha^{-1}+\beta^{-1}+\gamma^{-1}=5$.
75. When $p(x)=x^{2}+7 x+9$ is divisible by $g(x)$, we get $(x+2)$ and -1 as the quotient and remainder respectively, find $g(x)$.
Ans:
[Board Term-1 2011]
We have

$$
\begin{aligned}
p(x) & =x^{2}+7 x+9 \\
q(x) & =x+2 \\
r(x) & =-1
\end{aligned}
$$

Now

$$
p(x)=g(x) q(x)+r(x)
$$

$$
x^{2}+7 x+9=g(x)(x+2)-1
$$

or, $\quad g(x)=\frac{x^{2}+7 x+10}{x+2}$

$$
=\frac{(x+2)(x+5)}{(x+2)}=x+5
$$

Thus $g(x)=x+5$
76. Find the value for k for which $x^{4}+10 x^{3}+25 x^{2}+15 x+k$ is exactly divisible by $x+7$.
Ans :
[Board Term 2010]
We have

$$
f(x)=x^{4}+10 x^{3}+25 x^{2}+15 x+k
$$

If $x+7$ is a factor then -7 is a zero of $f(x)$ and $x=-7$ satisfy $f(x)=0$.
Thus substituting $x=-7$ in $f(x)$ and equating to zero we have,

$$
\begin{aligned}
(-7)^{4}+10(-7)^{3}+25(-7)^{2}+15(-7) & +k=0 \\
2401-3430+1225-105+k & =0 \\
3626-3535+k & =0 \\
91+k & =0 \\
k & =-91
\end{aligned}
$$

$$
\begin{array}{r}
x^{2}+4 x+3 x+12=0 \\
x(x+4)+3(x+4)=0 \\
(x+4)(x+3)=0 \\
x=-4,-3
\end{array}
$$

Since $f(x)=x^{4}+7 x^{3}+7 x^{2}+p x+q$ is exactly divisible by $x^{2}+7 x+12$, then $x=-4$ and $x=-3$ must be its zeroes and these must satisfy $f(x)=0$
So putting $x=-4$ and $x=-3$ in $f(x)$ and equating to zero we get

$$
\begin{align*}
& f(-4):(-4)^{4}+7(-4)^{3}+7(-4)^{2}+p(-4)+q=0 \\
& 256-448+112-4 p+q=0 \\
&-4 p+q-80=0 \\
& 4 p-q=-80 \quad \ldots \tag{1}
\end{align*}
$$

$f(-3):(-3)^{4}+7(-3)^{3}+7(-3)^{2}+p(-3)+q=0$
$81-189+63-3 p+q \quad=0$

$$
\begin{align*}
-3 p+q-45 & =0 \\
3 p-q & =-45 \tag{2}
\end{align*}
$$

Subtracting equation (2) from (1) we have

$$
p=-35
$$

Substituting the value of p in equation (1) we have
or

$$
\begin{aligned}
4(-35)-q & =-80 \\
-140-q & =-80 \\
-q & =140-80 \\
-q & =60 \\
q & =-60
\end{aligned}
$$

Hence, $p=-35$ and $q=-60$.
80. If α and β are the zeroes of the polynomial $p(x)=2 x^{2}+5 x+k \quad$ satisfying the relation, $\alpha^{2}+\beta^{2}+\alpha \beta=\frac{21}{4}$, then find the value of k.
Ans:
[Board Term-1 2012]
We have

$$
p(x)=2 x^{2}+5 x+k
$$

Sum of zeroes,

$$
\alpha+\beta=-\frac{b}{a}=-\left(\frac{5}{2}\right)
$$

Product of zeroes

$$
\alpha \beta=\frac{c}{a}=\frac{k}{2}
$$

According to the question,

$$
\begin{array}{r}
\alpha^{2}+\beta^{2}+2 \alpha \beta-\alpha \beta=\frac{21}{4} \\
(\alpha+b)^{2}-\alpha \beta=\frac{21}{4}
\end{array}
$$

Substituting values we have

$$
\begin{aligned}
\left(\frac{-5}{2}\right)^{2}-\frac{k}{2} & =\frac{21}{4} \\
\frac{k}{2} & =\frac{25}{4}-\frac{21}{4} \\
\frac{k}{2} & =\frac{4}{4}=1
\end{aligned}
$$

Hence, $k=2$
81. If α and β are the zeroes of polynomial $p(x)=3 x^{2}+2 x+1$, find the polynomial whose zeroes are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$.
Ans :
[Board Term-1 2010, 2012]
We have

$$
p(x)=3 x^{2}+2 x+1
$$

Since α and β are the zeroes of polynomial $3 x^{2}+2 x+1$, we have
and

$$
\begin{gathered}
\alpha+\beta=-\frac{2}{3} \\
\alpha \beta=\frac{1}{3}
\end{gathered}
$$

Let α_{1} and β_{1} be zeros of new polynomial $q(x)$.
Then for $q(x)$, sum of the zeroes,

$$
\begin{aligned}
\alpha_{1}+\beta_{1} & =\frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta} \\
& =\frac{(1-\alpha+\beta-\alpha \beta)+(1+\alpha-\beta-\alpha \beta)}{(1+\alpha)(1+\beta)} \\
& =\frac{2-2 \alpha \beta}{1+\alpha+\beta+\alpha \beta}=\frac{2-\frac{2}{3}}{1-\frac{2}{3}+\frac{1}{3}} \\
& =\frac{\frac{4}{3}}{\frac{2}{3}}=2
\end{aligned}
$$

For $q(x)$, product of the zeroes,

$$
\begin{aligned}
\alpha_{1} \beta_{1} & =\left[\frac{1-\alpha}{1+\alpha}\right]\left[\frac{1-\beta}{1+\beta}\right] \\
& =\frac{(1-\alpha)(1-\beta)}{(1+\alpha)(1+\beta)} \\
& =\frac{1-\alpha-\beta+\alpha \beta}{1+\alpha+\beta+\alpha \beta}
\end{aligned}
$$

$$
\alpha^{2}+\beta^{2}+\alpha \beta=\frac{21}{4}
$$

$$
\begin{aligned}
& =\frac{1-(\alpha+\beta)+\alpha \beta}{1+(\alpha+\beta)+\alpha \beta} \\
& =\frac{1+\frac{2}{3}+\frac{1}{3}}{1-\frac{2}{3}+\frac{1}{3}}=\frac{\frac{6}{3}}{\frac{2}{3}}=3
\end{aligned}
$$

Hence, Required polynomial

$$
\begin{aligned}
q(x) & =x^{2}-\left(\alpha_{1}+\beta_{1}\right) 2 x+\alpha_{1} \beta_{1} \\
& =x^{2}-2 x+3
\end{aligned}
$$

82. If α and β are the zeroes of the polynomial $x^{2}+4 x+3$, find the polynomial whose zeroes are $1+\frac{\beta}{\alpha}$ and $1+\frac{\alpha}{\beta}$.
Ans:
[Board Term-1 2013]
We have

$$
p(x)=x^{2}+4 x+3
$$

Since α and β are the zeroes of the quadratic polynomial $x^{2}+4 x+3$,
So,

$$
\alpha+\beta=-4
$$

and

$$
\alpha \beta=3
$$

Let α_{1} and β_{1} be zeros of new polynomial $q(x)$.
Then for $q(x)$, sum of the zeroes,

$$
\begin{aligned}
\alpha_{1}+\beta_{1} & =1+\frac{\beta}{\alpha}+1+\frac{\alpha}{\beta} \\
& =\frac{\alpha \beta+\beta^{2}+\alpha \beta+\alpha^{2}}{\alpha \beta} \\
& =\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta} \\
& =\frac{(\alpha+\beta)^{2}}{\alpha \beta}=\frac{(-4)}{3}=\frac{16}{3}
\end{aligned}
$$

For $q(x)$, product of the zeroes,

$$
\begin{aligned}
\alpha_{1} \beta_{1} & =\left(1+\frac{\beta}{\alpha}\right)\left(1+\frac{\alpha}{\beta}\right) \\
& =\left(\frac{\alpha+\beta}{\alpha}\right)\left(\frac{\beta+\alpha}{\beta}\right) \\
& =\frac{(\alpha+\beta)^{2}}{\alpha \beta} \\
& =\frac{(-4)^{2}}{3}=\frac{16}{3}
\end{aligned}
$$

Hence, required polynomial

$$
\begin{aligned}
q(x) & =x^{2}-\left(\alpha_{1}+\beta_{1}\right) x+\alpha_{1} \beta_{1} \\
& =x^{2}-\left(\frac{16}{3}\right) x+\frac{16}{3} \\
& =\left(x^{2}-\frac{16}{3} x+\frac{16}{3}\right)
\end{aligned}
$$

$$
=\frac{1}{3}\left(3 x^{2}-16 x+16\right)
$$

83. If α and β are zeroes of the polynomial $p(x)=6 x^{2}-5 x+k$ such that $\alpha-\beta=\frac{1}{6}$, Find the value of k.
Ans:
[Board 2007]
We have

$$
p(x)=6 x^{2}-5 x+k
$$

Since α and β are zeroes of

$$
\begin{array}{rlrl}
& p(x) & =6 x^{2}-5 x+k, \\
& \text { Sum of zeroes, } & \alpha+\beta & =-\left(\frac{-5}{6}\right)=\frac{5}{6} \\
\text { Product of zeroes } & \alpha \beta & =\frac{k}{6} \\
\text { Given } & \alpha-\beta & =\frac{1}{6}
\end{array}
$$

Solving (1) and (3) we get $\alpha=\frac{1}{2}$ and $\beta=\frac{1}{3}$ and substituting the values of (2) we have

$$
\alpha \beta=\frac{k}{6}=\frac{1}{2} \times \frac{1}{3}
$$

Hence, $k=1$.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

84. If β and $\frac{1}{\beta}$ are zeroes of the polynomial $\left(a^{2}+a\right) x^{2}+61 x+6 a$. Find the value of β and α.
Ans:
We have

$$
p(x)=\left(a^{2}+a\right) x^{2}+61 x+6
$$

Since β and $\frac{1}{\beta}$ are the zeroes of polynomial, $p(x)$
Sum of zeroes, $\quad \beta+\frac{1}{\beta}=-\frac{61}{a^{2}+a}$
or, $\quad \frac{\beta^{2}+1}{\beta}=\frac{-61}{a^{2}+a}$
Product of zeroes

$$
\beta \frac{1}{\beta}=\frac{6 a}{a^{2}+a}
$$

or,

$$
\begin{aligned}
1 & =\frac{6}{a+1} \\
a+1 & =6 \\
a & =5
\end{aligned}
$$

Substituting this value of a in (1) we get

$$
\frac{\beta^{2}+1}{\beta}=\frac{-61}{5^{2}+5}=-\frac{61}{30}
$$

$$
30 \beta^{2}+30=-61 \beta
$$

$$
30 \beta^{2}+61 \beta+30=0
$$

Now $\quad \beta \frac{-61 \pm \sqrt{(-61)^{2}-4 \times 30 \times 30}}{2 \times 30}$

$$
\begin{aligned}
& =\frac{-61 \pm \sqrt{3721-3600}}{60} \\
& \frac{-61 \mp 11}{60}
\end{aligned}
$$

Thus $\beta=\frac{-5}{6}$ or $\frac{-6}{5}$
Hence, $\alpha=5, \beta=\frac{-5}{6}, \frac{-6}{5}$
85. If α and β are the zeroes the polynomial $2 x^{2}-4 x+5$, find the values of
(i) $\alpha^{2}+\beta^{2}$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iii) $(\alpha-\beta)^{2}$
(iv) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
(v) $\alpha^{2}+\beta^{2}$

Ans :
[Board 2007]
We have $\quad p(x)=2 x^{2}-4 x+5$
If α and β are then zeroes of $p(x)=2 x^{2}-4 x+5$, then

$$
\alpha+\beta=-\frac{b}{a}=\frac{-(-4)}{2}=2
$$

and

$$
\alpha \beta=\frac{c}{a}=\frac{5}{2}
$$

(i) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

$$
\begin{aligned}
& =2^{2}-2 \times \frac{5}{2} \\
& =4-5=-1
\end{aligned}
$$

(ii) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{2}{\frac{5}{2}}=\frac{4}{5}$
(iii) $(\alpha-\beta)^{2}=(\alpha-\beta)^{2}-4 \alpha \beta$

$$
=2^{2}-\frac{4 \times 5}{2}
$$

$$
4-10=-6
$$

(iv) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}=\frac{-1}{\left(\frac{5}{2}\right)^{2}}=\frac{-4}{25}$
(v) $\left(\alpha^{3}+\beta^{3}\right)=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
$=2^{3}-3 \times \frac{5}{2} \times 2=8-15=-7$

Beware of Fake (Paid) Books Marketing Videos on

 Youtube and Fake Book Reviews on AmazonClick Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.

CHAPTER 3

PAIR OFLINEAREQUATIONINTWOVARIABLES

ONE MARK QUESTIONS

Multiple Choice Questions

1. The value of k for which the system of linear equations $x+2 y=3,5 x+k y+7=0$ is inconsistent is
(a) $-\frac{14}{3}$
(b) $\frac{2}{5}$
(c) 5
(d) 10

Ans :
[Board 2020 OD Standard]
We have

$$
x+2 y-3=0
$$

and

$$
5 x+k y+7=0
$$

If system is inconsistent, then

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
$$

From first two orders, we have

$$
\frac{1}{5}=\frac{2}{k} \Rightarrow k=10
$$

Thus (d) is correct option.
2. The value of k for which the system of equations $x+y-4=0$ and $2 x+k y=3$, has no solution, is
(a) -2
(b) $\neq 2$
(c) 3
(d) 2

Ans :
[Board 2020 Delhi Standard]
We have

$$
x+y-4=0
$$

and

$$
2 x+k y-3=0
$$

Here, $\quad \frac{a_{1}}{a_{1}}=\frac{1}{2}, \frac{b_{1}}{b_{2}}=\frac{1}{k}$ and $\frac{c_{1}}{c_{2}}=\frac{-4}{-3}=\frac{4}{3}$
Since system has no solution, we have

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
\frac{1}{2} & =\frac{1}{k} \neq \frac{4}{3} \\
k & =2 \text { and } k \neq \frac{3}{4}
\end{aligned}
$$

Thus (d) is correct option.
3. For which value (s) of p, will the lines represented by the following pair of linear equations be parallel

$$
\begin{array}{r}
3 x-y-5=0 \\
6 x-2 y-p=0
\end{array}
$$

(a) all real values except 10
(b) 10
(c) $5 / 2$
(d) $1 / 2$

Ans :
We have, $3 x-y-5=0$
and $\quad 6 x-2 y-p=0$
Here, $\quad a_{1}=3, b_{1}=-1, c_{1}=-5$
and $\quad a_{2}=6, b_{2}=-2, c_{2}=-p$
Since given lines are parallel,

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
\frac{-1}{-2} & \neq \frac{-5}{-p} \\
p & \neq 5 \times 2 \Rightarrow p \neq 10
\end{aligned}
$$

For all sample papers visit www.cbse.online

4. The 2 digit number which becomes $\frac{5}{6}$ th of itself when its digits are reversed. The difference in the digits of the number being 1 , then the two digits number is
(a) 45
(b) 54
(c) 36
(d) None of these

Ans :
If the two digits are x and y, then the number is $10 x+y$.
Now $\quad \frac{5}{6}(10 x+y)=10 y+x$

Solving, we get $44 x+55 y$

$$
\frac{x}{y}=\frac{5}{4}
$$

Also $x-y=1$. Solving them, we get $x=5$ and $y=4$. Therefore, number is 54 .

Thus (b) is correct option.
5. In a number of two digits, unit's digit is twice the tens digit. If 36 be added to the number, the digits are reversed. The number is
(a) 36
(b) 63
(c) 48
(d) 84

Ans :
Let x be units digit and y be tens digit, then number will be $10 y+x$

Then,

$$
\begin{equation*}
x=2 y \tag{1}
\end{equation*}
$$

If 36 be added to the number, the digits are reversed, i.e number will be $10 x+y$.

$$
\begin{align*}
10 y+x+36 & =10 x+y \\
9 x-9 y & =36 \\
x-y & =4 \tag{2}
\end{align*}
$$

Solving (1) and (2) we have $x=8$ and $y=4$.
Thus number is 48 .
Thus (c) is correct option.

For all sample papers visit www.cbse.online

6. If $3 x+4 y: x+2 y=9: 4$, then $3 x+5 y: 3 x-y$ is equal to
(a) $4: 1$
(b) $1: 4$
(c) $7: 1$
(d) $1: 7$

Ans :

$$
\frac{3 x+4 y}{x+2 y}=\frac{9}{4}
$$

Hence, $\quad 12 x+16 y=9 x+18 y$
or

$$
\begin{aligned}
3 x & =2 y \\
x & =\frac{2}{3} y
\end{aligned}
$$

Substituting $x=\frac{2}{3} y$ in the required expression we have

$$
\frac{3 x \frac{2}{3} y+5 y}{3 x \frac{2}{3} y-y}=\frac{7 y}{y}=\frac{7}{1}=7: 1
$$

Thus (c) is correct option.
7. A fraction becomes 4 when 1 is added to both the numerator and denominator and it becomes 7 when 1 is subtracted from both the numerator and denominator. The numerator of the given frac
(a) 2
(b) 3
(c) 5
(d) 15

Ans :
Let the fraction be $\frac{x}{y}$,

$$
\begin{equation*}
\frac{x+1}{y+1}=4 \Rightarrow x=4 y+3 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x-1}{y-1}=7 \Rightarrow x=7 y-6 \tag{2}
\end{equation*}
$$

Solving (1) and (2), we have $x=15, y=3$,
Thus (d) is correct option.
8. x and y are 2 different digits. If the sum of the two digit numbers formed by using both the digits is a perfect square, then value of $x+y$ is
(a) 10
(b) 11
(c) 12
(d) 13

Ans :
The numbers that can be formed are $x y$ and $y x$. Hence, $(10 x+y)+(10 y+x)=11(x+y)$. If this is a perfect square than $x+y=11$.
9. The pair of equations $3^{x+y}=81,81^{x-y}=3$ has
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) $x=2 \frac{1}{8}, y=1 \frac{7}{8}$

Ans :
Given,

$$
\begin{align*}
3^{x+y} & =81 \\
3^{x+y} & =3^{4} \\
x+y & =4 \tag{1}\\
81^{x-y} & =3 \\
3^{4(x-y)} & =3^{1} \\
4(x-y) & =1 \\
x-y & =\frac{1}{4} \tag{2}
\end{align*}
$$

and

Adding equation (1) and (2), we get

$$
\begin{gathered}
2 x=4+\frac{1}{4}=\frac{17}{4} \\
x=\frac{17}{8}=2 \frac{1}{8}
\end{gathered}
$$

From equation (1), we get

$$
y=\frac{15}{8}=1 \frac{7}{8}
$$

Thus (d) is correct option.
10. The pair of linear equations $2 k x+5 y=7,6 x-5 y=11$
has a unique solution, if
(a) $k \neq-3$
(b) $k \neq \frac{2}{3}$
(c) $k \neq 5$
(d) $k \neq \frac{2}{9}$

Ans :
Given the pair of linear equations are

$$
2 k x+5 y-7=0
$$

and $\quad 6 x-5 y-11=0$
On comparing with

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
\text { and } \quad & a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

we get,

$$
a_{1}=2 k, b_{1}=5, c_{1}=-7
$$

and

$$
a_{2}=6, b_{2}=-5, c_{2}=-11
$$

For unique solution,

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & \neq \frac{b_{1}}{b_{2}} \\
\frac{2 k}{6} & \neq \frac{5}{-5} \\
\frac{k}{3} & =\neq-1 \\
k & \neq-3
\end{aligned}
$$

Thus (a) is correct option.

For all sample papers visit www.cbse.online

11. The pair of equations $x+2 y+5=0$ and $-3 x-6 y+1=0$ has
(a) a unique solution
(b) exactly two solutions
(c) infinitely many solutions
(d) no solution

Ans :
Given, equations are

$$
x+2 y+5=0
$$

and

$$
-3 x-6 y+1=0
$$

Here, $\quad a_{1}=1, b_{1}=2, c_{1}=5$
and $\quad a_{2}=-3, b_{2}=-6, c_{2}=1$
Now

$$
\frac{a_{1}}{a_{2}}=-\frac{1}{3}, \frac{b_{1}}{b_{2}}=-\frac{2}{6}=-\frac{1}{3}, \frac{c_{1}}{c_{2}}=\frac{5}{1}
$$

Now, we observe that

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
$$

Hence, the pair of equations has no solution.
Thus (d) is correct option.
12. If a pair of linear equations is consistent, then the lines will be
(a) parallel
(b) always coincident
(c) intersecting or coincident
(d) always intersecting

Ans :
Condition for a consistent pair of linear equations

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

[intersecting lines having unique solution]
and $\quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad$ [coincident or dependent]
Thus (c) is correct option.
13. The pair of equations $y=0$ and $y=-7$ has
(a) one solution
(b) two solutions
(c) infinitely many solutions
(d) no solution

Ans :
The given pair of equations are

$$
y=0 \quad y=-7
$$

The pair of both equations are parallel to x-axis and we know that parallel lines never intersects. So, there is no solution of these lines.
Thus (d) is correct option.
14. The pair of equations $x=a$ and $y=b$ graphically represents lines which are
(a) parallel
(b) intersecting at (b, a)
(c) coincident
(d) intersecting at (a, b)

Ans:

The pair of equations

$$
x=a
$$

and

$$
y=b
$$

Graphically represents lines which are intersecting at (a, b).
Thus (d) is correct option.

For all sample papers visit www.cbse.online

15. For what value of k, do the equations $3 x-y+8=0$ and $6 x-k y=-16$ represent coincident lines ?
(a) $\frac{1}{2}$
(b) $-\frac{1}{2}$
(c) 2
(d) -2

Ans :
Given, equations,

$$
3 x-y+8=0
$$

and

$$
6 x-k y+16=0
$$

Condition for coincident lines is

$$
\begin{equation*}
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \tag{1}
\end{equation*}
$$

Here,

$$
a_{1}=3, b_{1}=-1, c_{1}=8
$$

and

$$
a_{2}=6, b_{2}=-k, c_{2}=16
$$

From equation (1),

$$
\begin{array}{ll}
\frac{3}{6}=\frac{-1}{-k}=\frac{8}{16} & \\
\frac{1}{k}=\frac{1}{2} \quad & {\left[\text { since } \frac{3}{6}=\frac{8}{16}=\frac{1}{2}\right]}
\end{array}
$$

$$
k=2
$$

Thus (c) is correct option.
16. If the lines given by $3 x+2 k y=2$ and $2 x+5 y+1=0$ are parallel, then the value of k is
(a) $-\frac{5}{4}$
(b) $\frac{2}{5}$
(c) $\frac{15}{4}$
(d) $\frac{3}{2}$

Ans :
We have

$$
\begin{array}{r}
3 x+2 k y-2=0 \\
2 x+5 y+1=0
\end{array}
$$

Condition for parallel lines is

$$
\begin{equation*}
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \tag{i}
\end{equation*}
$$

Here,

$$
\begin{aligned}
& a_{1}=3, b_{1}=2 k, c_{1}=-2 \\
& a_{2}=2, b_{2}=5, c_{2}=1
\end{aligned}
$$

and
From equation (i), we have

$$
\frac{3}{2}=\frac{2 k}{5} \neq \frac{-2}{1}
$$

Considering, $\quad \frac{3}{2}=\frac{2 k}{5} \quad\left[\frac{3}{2} \neq \frac{-2}{1}\right.$ in any case $]$

$$
k=\frac{15}{4}
$$

Thus (c) is correct option.
17. The value of c for which the pair of equations $c x-y=2$ and $6 x-2 y=3$ will have is
(a) 3
(b) -3
(c) -12
(d) no value

Ans :
The given lines are, $\quad c x-y=2$
and

$$
6 x-2 y=3
$$

Condition for infinitely many solutions,

$$
\begin{equation*}
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \tag{i}
\end{equation*}
$$

Here, $\quad a_{1}=c, b_{1}=-1, c_{1}=-2$
and $\quad a_{2}=6, b_{2}=-2, c_{2}=-3$
From equation (i), $\frac{c}{6}=\frac{-1}{-2}=\frac{-2}{-3}$
Here,

$$
\frac{c}{6}=\frac{1}{2}
$$

and

$$
\frac{c}{6}=\frac{2}{3}
$$

$$
c=3
$$

and $\quad c=4$
Since, c has different values.
Hence, for no value of c the pair of equations will have infinitely many solutions.
Thus (d) is correct option.
18. One equation of a pair of dependent linear equations $-5 x+7 y=2$ The second equation can be
(a) $10 x+14 y+4=0$
(b) $-10 x-14 y+4=0$
(c) $-10 x+14 y+4=0$
(d) $10 x-14 y=-4$

Ans:
For dependent linear equation,

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

Checking for option (a):

$$
\begin{aligned}
\frac{-5}{10} & \neq \frac{7}{14} \\
\frac{a_{1}}{a_{2}} & \neq \frac{b_{1}}{b_{2}} \text { So, option (a) is rejected. }
\end{aligned}
$$

Checking for option (b):

$$
\frac{-5}{-10} \neq \frac{7}{-14}
$$

So, option (b) is also rejected.
Checking for option (c):

$$
\frac{-5}{-10}=\frac{7}{14} \neq \frac{-2}{4}
$$

So, option (b) is also rejected
Checking for option (d):

$$
\frac{-5}{10}=\frac{7}{-14}=\frac{-2}{4}
$$

Thus (d) is correct option.
19. If $x=a$ and $y=b$ is the solution of the equations $x-y=2$ and $x+y=4$, then the values of a and b are, respectively
(a) 3 and 5
(b) 5 and 3
(c) 3 and 1
(d) -1 and -3

Ans :
Since, $x=a$ and $y=b$ is the solution of the equations $x-y=2$ and $x+y=4$, then these values will satisfy that equation

$$
\begin{equation*}
a-b=2 \tag{1}
\end{equation*}
$$

and

$$
a+b=4
$$

Adding equations (1) and (2), we get

$$
2 a=6
$$

$$
a=3
$$

Substituting $a=3$ in equation (2), we have

$$
3+b=4 \Rightarrow b=1
$$

Thus $a=3$ and $b=1$.
Thus (c) is correct option.
Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

20. Aruna has only ₹ 1 and $₹ 2$ coins with her. If the total number of coins that she has is 50 and the amount of money with her is ₹ 75 , then the number of $₹ 1$ and $₹ 2$ coins are, respectively
(a) 35 and 15
(b) 35 and 20
(c) 15 and 35
(d) 25 and 25

Ans :

Let number of $₹ 1$ coins $=x$
and number of ₹ 2 coins $=y$
Now, by given conditions,

$$
\begin{equation*}
x+y=50 \tag{1}
\end{equation*}
$$

Also, $\quad x \times 1+y \times 2=75$

$$
\begin{equation*}
x+2 y=75 \tag{2}
\end{equation*}
$$

Subtracting equation (1) form equation (2), we get

$$
\begin{aligned}
(x+2 y)-(x+y) & =75-50 \\
y & =25
\end{aligned}
$$

From equation (i), $x=75-2 x(25)$
Then,

$$
x=25
$$

Thus (d) is correct option.
21. The father's age is six times his son's age. Four years hence, the age of the father will be four times his son's age. The present ages (in year) of the son and the father are, respectively.
(a) 4 and 24
(b) 5 and 30
(c) 6 and 36
(d) 3 and 24

Ans :
Let the present age of father $=x$ years
and the present age of son $=y$ years
Four years hence, it has relation by given condition

$$
\begin{align*}
& (x+4)=4(y+4) \\
& x-4 y=12 \tag{1}
\end{align*}
$$

As the father's age is six times his son's age, so we have

$$
\begin{equation*}
x=6 y \tag{2}
\end{equation*}
$$

Putting the value of x from equation (2) in equation (1), we get

$$
\begin{aligned}
6 x-4 y & =12 \\
2 y & =12 \\
y & =6
\end{aligned}
$$

From equation (1), $x=6 \times 6$
Then,

$$
x=36
$$

Hence, present age of father is 36 year and age of son is 6 year.
Thus (c) is correct option.

For all sample papers visit www.cbse.online

22. Assertion : Pair of linear equations : $9 x+3 y+12=0$, $8 x+6 y+24=0$ have infinitely many solutions.
Reason : Pair of linear equations $a_{1} x+b_{1} y+c_{1}$ $=0$ and $a_{2} x+b_{2} y+c_{2}=0$ have infinitely many solutions, if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

From the given equations, we have

$$
\begin{aligned}
& \frac{9}{18}=\frac{3}{6}=\frac{12}{24} \\
& \frac{1}{2}=\frac{1}{2}=\frac{1}{2} \text { i.e., } \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
\end{aligned}
$$

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). Thus (a) is correct option.
23. Assertion : $x+y-4=0$ and $2 x+k y-3=0$ has no solution if $k=2$.

Reason : $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are
consistent if $\frac{a_{1}}{a_{2}} \neq \frac{k_{1}}{k_{2}}$.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
For assertion, given equation has no solution if

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{k} \neq \frac{-4}{-3} \text { i.e. } \frac{4}{3} \\
& k=2\left[\frac{1}{2} \neq \frac{4}{3} \text { holds }\right]
\end{aligned}
$$

Assertion is true.
Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). Thus (b) is correct option.

Fill in the Blank Questions

24. If the lines intersect at a point, then that point gives the unique solution of the two equations. In this case, the pair of equations is \qquad
Ans :
consistent
c206
25. An equation whose degree is one is known as a equation.
Ans :
linear

26. If the lines are parallel, then the pair of equations has no solution. In this case, the pair of equations is Ans :
inconsistent
27. A pair of linear equations has \qquad solution(s) if it is represented by intersecting lines graphically.
Ans:
unique

28. Every solution of a linear equation in two variables is a point on the \qquad representing it.
Ans :
line

29. If a pair of linear equations has infinitely many solutions, then its graph is represented by a pair of
\qquad lines.
Ans :
coincident
c211
30. A pair of linear equations is \qquad if it has no solution.
Ans :
inconsistent

31. A pair of \qquad lines represent the pair of linear equations having no solution.
Ans :
parallel

32. If a pair of linear equations has solution, either a unique or infinitely many, then it is said to be \qquad

Ans :

consistent

33. If the equations $k x-2 y=3$ and $3 x+y=5$ represent two intersecting lines at unique point, then the value of k is \qquad .
Ans :
For unique solution

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

Here, $a_{1}=k, b_{1}=-2, a_{2}=3$ and $b_{2}=1$
Now

$$
\frac{k}{3} \neq-\frac{2}{1}
$$

or, $\quad k \neq-6$

Very Short Answer Questions

34. Find whether the pair of linear equations $y=0$ and $y=-5$ has no solution, unique solution or infinitely many solutions.
Ans :
The given variable y has different values. Therefore the pair of equations $y=0$ and $y=-5$ has no solution.
35. If $a m=b l$, then find whether the pair of linear equations $\quad a x+b y=c \quad$ and $\quad l x+m y=n \quad$ has no solution, unique solution or infinitely many solutions. Ans :

Since, $a m=b l$, we have

$$
\frac{a}{1}=\frac{b}{m} \neq \frac{c}{n}
$$

Thus, $a x+b y=c$ and $l x+m y=n$ has no solution.
36. If $a d \neq b c$, then find whether the pair of linear equations $a x+b y=p$ and $c x+d y=q$ has no solution, unique solution or infinitely many solutions.
Ans :

Since

$$
a d \neq b c \text { or } \frac{a}{c} \neq \frac{b}{d}
$$

Hence, the pair of given linear equations has unique solution.
37. Two lines are given to be parallel. The equation of one of the lines is $4 x+3 y=14$, then find the equation of the second line.

Ans :
The equation of one line is $4 x+3 y=14$. We know that if two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are parallel, then

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
& \frac{4}{a_{2}}=\frac{3}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow \frac{a_{2}}{b_{2}}=\frac{4}{3}=\frac{12}{9}
\end{aligned}
$$

or
Hence, one of the possible, second parallel line is $12 x+9 y=5$.

SUPPORT OUR MISSION

Click Here to Know About Mission

TWO MARKS QUESTIONS

38. Find the value(s) of k so that the pair of equations $x+2 y=5$ and $3 x+k y+15=0$ has a unique solution. Ans :
[Board 2019 OD]
We have

$$
\begin{equation*}
x+2 y-5=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
3 x+k y+15=0 \tag{2}
\end{equation*}
$$

Comparing equation (1) with $a_{1} x+b_{1} y+c_{1}=0$, and equation (2) with $a_{2} x+b_{2} y+c_{2}=0$, we get

$$
a_{1}=1, a_{2}=3, b_{1}=2, b_{2}=k, c_{1}=-5 \text { and } c_{2}=15
$$

Since, given equations have unique solution, So,

$$
\begin{array}{ll}
& \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \\
\text { i.e. } \quad \frac{1}{3} \neq \frac{2}{k}
\end{array}
$$

$$
k \neq 6
$$

Hence, for all values of k except 6 , the given pair of equations have unique solution.
39. If $2 x+y=23$ and $4 x-y=19$, find the value of $(5 y-2 x)$ and $\left(\frac{y}{x}-2\right)$.
Ans :
[Board 2020 OD Standard]
We have

$$
\begin{align*}
& 2 x+y=23 \tag{1}\\
& 4 x-y=19 \tag{2}
\end{align*}
$$

Adding equation (1) and (2), we have

$$
6 x=42 \Rightarrow x=7
$$

Substituting the value of x in equation (1), we get

$$
\begin{aligned}
14+y & =23 \\
y & =23-14=9 \\
\text { Hence, } \quad 5 y-2 x & =5 \times 9-2 \times 7 \\
& =45-14=31
\end{aligned}
$$

and

$$
\frac{y}{x}-2=\frac{9}{7}-2=\frac{9-14}{7}=\frac{-5}{7}
$$

40. Find whether the lines represented by $2 x+y=3$ and $4 x+2 y=6$ are parallel, coincident or intersecting.
Ans :
[Board Term-1 2016, MV98HN3]
Ans :
Here $a_{1}=2, b_{1}=1, c_{1}=-3$ and $a_{1}=4, b_{2}=2, c_{2}=-6$
If

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

then the lines are parallel.

$$
\text { Clearly } \quad \frac{2}{4}=\frac{1}{2}=\frac{3}{6}
$$

Hence lines are coincident.
41. Find whether the following pair of linear equation is consistent or inconsistent:
$3 x+2 y=8, \quad 6 x-4 y=9$

Ans :

[Board Term-1 2016]
We have

$$
\frac{3}{6} \neq \frac{2}{-4}
$$

$$
\text { i.e., } \quad \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

Hence, the pair of linear equation is consistent.
42. Is the system of linear equations $2 x+3 y-9=0$ and $4 x+6 y-18=0$ consistent? Justify your answer.
Ans :
[Board Term-1 2012]
For the equation $2 x+3 y-9=0$ we have

$$
a_{2}=2, b_{1}=3 \text { and } c_{1}=-9
$$

and for the equation, $4 x+6 y-18=0$ we have

$$
a_{2}=4, b_{2}=6 \text { and } c_{2}=-18
$$

Here $\quad \frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2}$

$$
\frac{b_{1}}{b_{2}}=\frac{3}{6}=\frac{1}{2}
$$

and $\quad \frac{c_{1}}{c_{2}}=\frac{-9}{-18}=\frac{1}{2}$
Thus $\quad \frac{c_{1}}{c_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence, system is consistent and dependent.
43. Given the linear equation $3 x+4 y=9$. Write another linear equation in these two variables such that the geometrical representation of the pair so formed is:
(1) intersecting lines
(2) coincident lines.

Ans :
[Board Term-1 2016, Set-O4YP6G7]
(1) For intersecting lines $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$

So, one of the possible equation $3 x-5 y=10$
c108
(2) For coincident lines $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

So, one of the possible equation $6 x+8 y=18$
44. For what value of p does the pair of linear equations given below has unique solution?
$4 x+p y+8=0$ and $2 x+2 y+2=0$.
Ans :
[Board Term-1 2012]
We have

$$
\begin{aligned}
& 4 x+p y+8=0 \\
& 2 x+2 y+2=0
\end{aligned}
$$

The condition of unique solution, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
Hence, $\quad \frac{4}{2} \neq \frac{p}{2}$ or $\frac{2}{1} \neq \frac{p}{2}$
Thus $p \neq 4$. The value of p is other than 4 it may be $1,2,3,-4$.....etc.
45. For what value of k, the pair of linear equations $k x-4 y=3,6 x-12 y=9$ has an infinite number of solutions ?
Ans :
[Board Term-1 2012]

We have

$$
k x-4 y-3=0
$$

and

$$
6 x-12 y-9=0
$$

where,

$$
\begin{aligned}
& a_{1}=k, b_{1}=4, c_{1}=-3 \\
& a_{2}=6, b_{2}=-12, c_{2}-9
\end{aligned}
$$

Condition for infinite solutions:

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{k}{6} & =\frac{-4}{-12}=\frac{3}{9}
\end{aligned}
$$

Hence,

$$
k=2
$$

46. For what value of $k, \quad 2 x+3 y=4 \quad$ and $(k+2) x+6 y=3 k+2$ will have infinitely many solutions ?
Ans :
[Board Term-1 2012]
We have

$$
2 x+3 y-4=0
$$

and $(k+2) x+6 y-(3 k+2)=0$
Here $a_{1}=2, b_{1}=3, c_{1}=-4$
and $a_{2}=k+2, b_{2}=6, c_{3}=-(3 k+2)$
For infinitely many solutions

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

or, $\quad \frac{2}{k+2}=\frac{3}{6}=\frac{4}{3 k+2}$

From $\frac{2}{k+2}=\frac{3}{6}$ we have
$3(k+2)=2 \times 6 \Rightarrow(k+2)=4 \Rightarrow k=2$
From $\frac{3}{6}=\frac{4}{3 k+2}$ we have
$3(3 k+2)=4 \times 6 \Rightarrow(3 k+2)=8 \Rightarrow k=2$
Thus $k=2$
47. For what value of k, the system of equations $k x+3 y=1,12 x+k y=2$ has no solution.

Ans :

[Board Term-1 2011, NCERT]
The given equations can be written as
$k x+3 y-1=0$ and $12 x+k y-2=0$
Here,

$$
a_{1}=k, b_{1}=3, c_{1}=-1
$$

and

$$
a_{2}=12, b_{2}=k, c_{2}=-2
$$

The equation for no solution if

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
& \frac{k}{12}=\frac{3}{k} \neq \frac{-1}{-2}
\end{aligned}
$$

or,
From $\frac{k}{12}=\frac{3}{k}$ we have $k^{2}=36 \Rightarrow k \pm 6$
From $\frac{3}{k} \neq \frac{-1}{-2}$ we have $k \neq 6$
Thus $k=-6$

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

48. Solve the following pair of linear equations by cross multiplication method:

$$
\begin{aligned}
& x+2 y=2 \\
& x-3 y=7
\end{aligned}
$$

Ans :
[Board Term-1 2016]
We have $x+2 y-2=0$

$$
x-3 y-7=0
$$

Using the formula

$$
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
$$

we have

$$
\frac{x}{-14-6}=\frac{y}{-2+7}=\frac{1}{-3-2}
$$

$$
\frac{x}{-20}=\frac{y}{5}=\frac{-1}{5}
$$

$$
\frac{x}{-20}=\frac{-1}{5} \Rightarrow x=4
$$

$$
\frac{y}{5}=\frac{-1}{5} \Rightarrow y=-1
$$

49. Solve the following pair of linear equations by substitution method:

$$
\begin{array}{r}
3 x+2 y-7=0 \\
4 x+y-6=0
\end{array}
$$

Ans :
[Board Term-1 2015]
We have

$$
\begin{array}{r}
3 x+2 y-7=0 \\
4 x+y-6=0 \tag{2}
\end{array}
$$

From equation (2), $\quad y=6-4 x$
Putting this value of y in equation (1) we have

$$
\begin{aligned}
3 x+2(6-4 x)-7 & =0 \\
3 x+12-8 x-7 & =0 \\
5-5 x & =0 \\
5 x & =5 \\
x & =1
\end{aligned}
$$

Thus
Substituting this value of x in (2), we obtain,

$$
y=6-4 \times 1=2
$$

Hence, values of x and y are 1 and 2 respectively.

For all sample papers visit www.cbse.online

50. In the figure given below, $A B C D$ is a rectangle. Find the values of x and y.
Ans :
[Board Term-1 2012, Set-30]

From given figure we have

$$
\begin{equation*}
x+y=22 \tag{1}
\end{equation*}
$$

and

$$
x-y=16
$$

Adding (1) and (2), we have

$$
\begin{aligned}
2 x & =38 \\
x & =19
\end{aligned}
$$

Substituting the value of x in equation (1), we get

$$
\begin{aligned}
19+y & =22 \\
y & =22-19=3 \\
x & =19 \text { and } y=3 .
\end{aligned}
$$

Hence,
51. Solve : $99 x+101 y=499, \quad 101 x+99 y=501$

Ans :
[Board Term-1 2012, Set-55]

$$
\text { We have } \quad \begin{align*}
99 x+101 y & =499 \\
101 x+99 y & =501
\end{aligned} ~ \qquad \begin{aligned}
99 \tag{1}
\end{align*}
$$

Adding equation (1) and (2), we have

$$
\begin{align*}
200 x+200 y & =1000 \\
x+y & =5 \tag{3}
\end{align*}
$$

Subtracting equation (2) from equation (1), we get

$$
\begin{align*}
-2 x+2 y & =-2 \\
x-y & =1 \tag{4}
\end{align*}
$$

Adding equations (3) and (4), we have

$$
2 x=6 \Rightarrow x=3
$$

Substituting the value of x in equation (3), we get

$$
3+y=5 \Rightarrow y=2
$$

52. Solve the following system of linear equations by substitution method:

$$
\begin{aligned}
& 2 x-y=2 \\
& x+3 y=15
\end{aligned}
$$

Ans :
[Board Term-1 2012]
We have

$$
\begin{align*}
& 2 x-y=2 \tag{1}\\
& x+3 y=15 \tag{2}
\end{align*}
$$

From equation (1), we get $y=2 x-2$
Substituting the value of y in equation (2),
or,

$$
\begin{aligned}
x+6 x-6 & =15 \\
7 x & =21 \Rightarrow x=3
\end{aligned}
$$

Substituting this value of x in (3), we get
From equation (1), we have

$$
y=2 \times 3-2=4
$$

$$
x=3 \text { and } y=4
$$

53. Find the value(s) of k for which the pair of Linear equations $k x+y=d^{2}$ and $x+k y=1$ have infinitely many solutions.
Ans :
[Board Term-1 2017]
We have $\quad k x+y=k^{2}$
and

$$
\begin{aligned}
x+k y & =1 \\
\frac{a_{1}}{a_{2}} & =\frac{k}{1}, \frac{b_{1}}{b_{2}}=\frac{1}{k}, \frac{c_{1}}{c_{2}}=\frac{k^{2}}{1}
\end{aligned}
$$

For infinitely many solution

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{k}{1} & =\frac{1}{k}=\frac{k^{2}}{1}=k^{2}=1 \\
k & = \pm 1
\end{aligned}
$$

For all sample papers visit www.cbse.online

THREE MARKS QUESTIONS

54. Solve the following system of equations.

$$
\frac{21}{x}+\frac{47}{y}=110, \frac{47}{x}+\frac{21}{y}=162, x, y \neq 0
$$

Ans :
We have

$$
\begin{aligned}
& \frac{21}{x}+\frac{47}{y}=110 \\
& \frac{47}{x}+\frac{21}{y}=162
\end{aligned}
$$

Let $\frac{1}{x}=u$ and $\frac{1}{y}=v$. then given equation become

$$
\begin{align*}
& 21 u+47 v=110 \tag{1}\\
& 47 u+21 v=162 \tag{2}
\end{align*}
$$

Adding equation (1) and (2) we get

$$
\begin{align*}
68 u+68 v & =272 \\
u+v & =4 \tag{3}
\end{align*}
$$

Subtracting equation (1) from (2) we get

$$
\begin{align*}
26 u-26 v & =52 \\
u-v & =2 \tag{4}
\end{align*}
$$

Adding equation (3) and (4), we get

$$
2 u=6 \Rightarrow u=3
$$

Substituting $u=3$ in equation (3), we get $v=1$.

Thus $x=\frac{1}{w}=\frac{1}{3}$ and $y=\frac{1}{v}=\frac{1}{1}=1$
55. A fraction becomes $\frac{1}{3}$ when 2 is subtracted from the numerator and it becomes $\frac{1}{2}$ when 1 is subtracted from the denominator- Find the fraction.
Ans :
[Board 2019 Delhi]
Let the fraction be $\frac{x}{y}$. According to the first condition,

$$
\begin{align*}
\frac{x-2}{y} & =\frac{1}{3} \\
3 x-6 & =y \\
y & =3 x-6 \tag{1}
\end{align*}
$$

According to the second condition,

$$
\begin{align*}
\frac{x}{y-1} & =\frac{1}{2} \\
2 x & =y-1 \\
y & =2 x+1 \tag{2}
\end{align*}
$$

From equation (1) and (2), we have

$$
3 x-6=2 x+1 \Rightarrow x=7
$$

Substitute value of x in equation (1), we get

$$
\begin{aligned}
y & =3(7)-6 \\
& =21-6=15
\end{aligned}
$$

Hence, fraction is $\frac{7}{15}$.
56. In the figure, $A B C D E$ is a pentagon with $B E \| C D$ and $B C \| D E . B C$ is perpendicular to $C D . A B=5 \mathrm{~cm}$, $A E=5 \mathrm{~cm}, B E=7 \mathrm{~cm}, B C=x-y$ and $C D=x+y$. If the perimeter of $A B C D E$ is 27 cm . Find the value of x and y, given $x, y \neq 0$.

Ans:
[Board 2020 SQP Standard]
We have redrawn the given figure as shown below.

We have

$$
\begin{align*}
C D & =B E \\
x+y & =7 \tag{1}
\end{align*}
$$

Also, perimeter of $A B C D E$ is 27 cm , thus

$$
\begin{gather*}
A B+B C+C D+D E+A E=27 \\
5+(x-y)+(x+y)+(x-y)+5=27 \\
3 x-y=17 \tag{2}
\end{gather*}
$$

Adding equation (1) and (2) we have

$$
4 x=24 \Rightarrow x=6
$$

Substituting $x=6$ in equation (1) we obtain

$$
y=7-x=7-6=1
$$

Thus $x=6$ and $y=1$.
57. Half the perimeter of a rectangular garden, whose length is 4 m more then its width, is 36 m . Find the dimensions of garden.
Ans:
[Board Term-1 2013]
Let the length of the garden be $x \mathrm{~m}$ and its width be $y \mathrm{~m}$.
Perimeter of rectangular garden

$$
p=2(x+y)
$$

Since half perimeter is given as 36 m ,

$$
\begin{equation*}
(x+y)=36 \tag{1}
\end{equation*}
$$

Also, $\quad x=y+4$
or $\quad x-y=4$
For $\quad x+y=36$

$$
y=36-x
$$

x	20	24
y	16	12

For $\quad x-y=4$
or,

$$
y=x-4
$$

x	10	16	20
y	6	12	16

Plotting the above points and drawing lines joining them, we get the following graph. we get two lines intersecting each other at $(20,16)$

Hence, length is 20 m and width is 16 m .
58. Given the linear equation $2 x+3 y-8=0$, write another linear equation in two variables such that the geometrical representation of the pair so formed is :
(a) intersecting lines
(b) parallel lines
(c) coincident lines.

Ans :
[Board Term-1 2014, Set-B]
Given, linear equation is $2 x+3 y-8=0$
(a) For intersecting lines, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$

To get its parallel line one of the possible equation may be taken as

$$
\begin{equation*}
5 x+2 y-9=0 \tag{2}
\end{equation*}
$$

(b) For parallel lines, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

One of the possible line parallel to equation
(1) may be taken as

$$
6 x+9 y+7=0
$$

c114
(c) For coincident lines, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

To get its coincident line, one of the possible equation may be taken as

$$
4 x+6 y-16=0
$$

59. Solve the pair of equations graphically :
$4 x-y=4$ and $3 x+2 y=14$
Ans:
[Board Term-1 2014
We have

$$
4 x-y=4
$$

or,
$y=4 x-4$
c115

x	0	1	2
y	-4	0	4

and

$$
3 x+2 y=14
$$

or,

$$
y=\frac{14-3 x}{2}
$$

x	0	2	4
y	7	4	1

Plotting the above points and drawing lines joining them, we get the following graph. We get two obtained lines intersect each other at $(2,4)$.

Hence, $x=2$ and $y=4$.
60. Determine the values of m and n so that the following system of linear equation have infinite number of solutions:

$$
\begin{array}{r}
(2 m-1) x+3 y-5=0 \\
3 x+(n-1) y-2=0
\end{array}
$$

Ans :
[Board Term-1 2013, VKH6FFC; 2011, Set-66
We have $(2 m-1) x+3 y-5=0$
Here $a_{1}=2 m-1, b_{1}=3, c_{1}=-5$

$$
\begin{equation*}
3 x+(n-1) y-2=0 \tag{2}
\end{equation*}
$$

Here $a_{2}=3, b_{2}=(n-1), c_{2}=-2$
For a pair of linear equations to have infinite number of solutions,

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{2 m-1}{3} & =\frac{3}{n-1}=\frac{5}{2}
\end{aligned}
$$

or $\quad 2(2 m-1)=15$ and $5(n-1)=6$
Hence,

$$
m=\frac{17}{4}, n=\frac{11}{5}
$$

61. Find the values of α and β for which the following pair of linear equations has infinite number of solutions : $2 x+3 y=7 ; 2 \alpha x+(\alpha+\beta) y=28$.
Ans :
[Board Term-1 2011]
We have $2 x+3 y=7$ and $2 \alpha x+(\alpha+\beta) y=28$.
For a pair of linear equations to be consistent and having infinite number of solutions,

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{2}{2 \alpha} & =\frac{3}{\alpha+\beta}=\frac{7}{28} \\
\frac{2}{2 \alpha} & =\frac{7}{28} \\
2 \alpha \times 7 & =28 \times 2 \Rightarrow \alpha=4 \\
\frac{3}{\alpha+\beta} & =\frac{7}{28} \\
7(\alpha+\beta) & =28 \times 3 \\
\alpha+\beta & =12 \\
\beta & =12-\alpha=12-4=8
\end{aligned}
$$

Hence $\alpha=4$, and $\beta=8$
62. Represent the following pair of linear equations graphically and hence comment on the condition of consistency of this pair.

$$
x-5 y=6 \text { and } 2 x-10 y=12
$$

Ans :
[Board Term-1 2011]
We have $\quad x-5 y=6$ or $x=5 y+6$

x	6	1	-4
y	0	-1	-2

and $\quad 2 x-10 y=12$ or $x=5 y+6$

x	6	1	-4
y	0	-1	-2

Plotting the above points and drawing lines joining them, we get the following graph.

Since the lines are coincident, so the system of linear equations is consistent with infinite many solutions.
63. For what value of p will the following system of equations have no solution?

$$
(2 p-1) x+(p-1) y=2 p+1 ; y+3 x-1=0
$$

Ans:
[Board Term-1 2011, Set-28]
We have $\quad(2 p-1) x+(p-1) y-(2 p+1)=0$
Here $a_{1}=2 p-1, b_{1}=p-1$ and $c_{1}=-(2 p+1)$
Also

$$
3 x+y-1=0
$$

Here $a_{2}=3, b_{2}=1$ and $c_{2}=-1$
The condition for no solution is

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
\frac{2 p-1}{3} & =\frac{p-1}{1} \neq \frac{2 p+1}{1}
\end{aligned}
$$

From $\frac{2 p-1}{3}=\frac{p-1}{1}$ we have

$$
\begin{aligned}
3 p-3 & =2 p-1 \\
3 p-2 p & =3-1 \\
p & =2
\end{aligned}
$$

From $\frac{p-1}{1} \neq \frac{2 p+1}{1}$ we have

$$
\begin{aligned}
p-1 & \neq 2 p+1 \text { or } 2 p-p \neq-1-1 \\
p & \neq-2
\end{aligned}
$$

From $\frac{2 p-1}{3} \neq \frac{2 p+1}{1}$ we have

$$
\begin{aligned}
2 p-1 & \neq 6 p+3 \\
4 p & \neq-4
\end{aligned}
$$

$$
p \neq-1
$$

Hence, system has no solution when $p=2$
64. Find the value of k for which the following pair of equations has no solution :
$x+2 y=3,(k-1) x+(k+1) y=(k+2)$.
Ans :
[Board Term-1 2011, Set-52]
For $x+2 y=3$ or $x+2 y-3=0$,

$$
a_{1}=1, b_{1}=2, c_{1}=-3
$$

For $(k-1) x+(k+1) y=(k+2)$
or $(k-1) x+(k+1) y-(k-2)=0$

$$
a_{2}=(k-1), b_{2}=(k+1), c_{2}=-(k+2)
$$

For no solution, $\quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

$$
\frac{1}{k-1}=\frac{2}{k+1} \neq \frac{3}{k+2}
$$

From $\frac{1}{k-1}=\frac{2}{k+1}$ we have

$$
\begin{aligned}
k+1 & =2 k-2 \\
3 & =k
\end{aligned}
$$

Thus $k=3$.
65. Sum of the ages of a father and the son is 40 years. If father's age is three times that of his son, then find their respective ages.
Ans :
[Board Term-1 2015]
Let age of father and son be x and y respectively.

$$
\begin{align*}
x+y & =40 \tag{1}\\
x & =3 y \tag{2}
\end{align*}
$$

Solving equations (1) and (2), we get
$x=30$ and $y=10$
c139
Ages are 30 years and 10 years.
66. Solve using cross multiplication method:

$$
\begin{array}{r}
5 x+4 y-4=0 \\
x-12 y-20=0
\end{array}
$$

Ans :
[Board Term-1 2015]
We have

$$
\begin{array}{r}
5 x+4 y-4=0 \\
x-12 y-20=0 \tag{2}
\end{array}
$$

By cross-multiplication method,

$$
\frac{x}{b_{2} c_{1}-b_{1} c_{2}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{b_{1} b_{2}-a_{2} b_{1}}
$$

$$
\begin{aligned}
\frac{x}{-80-48} & =\frac{y}{-4+100}=\frac{1}{-60-4} \\
\frac{x}{-128} & =\frac{y}{96}=\frac{1}{64} \\
\frac{x}{-128} & =\frac{1}{-64} \Rightarrow x=2 \\
\frac{y}{96} & =\frac{1}{-64} \Rightarrow y=\frac{-3}{2}
\end{aligned}
$$

and
Hence, $x=2$ and $y=\frac{-3}{2}$

Don't Take Printout of This PDF. Buy Hard Book at Price Less then price of Printouts.

CLICK TO BUY HARD BOOK

67. The Present age of the father is twice the sum of the ages of his 2 children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.
Ans :
[Board Term-1 2012, Set-39]
Let the sum of the ages of the 2 children be x and the age of the father be y years.

Now

$$
\begin{align*}
y & =2 x \\
2 x-y & =0 \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
20+y & =x+40 \\
x-y & =-20 \tag{2}
\end{align*}
$$

Subtracting (2) from (1), we get

$$
\begin{array}{ll}
x & =20 \\
\text { From }(1), & y=2 x=2 \times 20=40
\end{array}
$$

Hence, the age of the father is 40 years.
68. A part of monthly hostel charge is fixed and the remaining depends on the number of days one has taken food in the mess. When Swati takes food for 20 days, she has to pay Rs. 3,000 as hostel charges whereas Mansi who takes food for 25 days Rs. 3,500 as hostel charges. Find the fixed charges and the cost of food per day.

Ans :

[Board Term-1 2016, 2015]
Let fixed charge be x and per day food cost be y

$$
\begin{align*}
& x+20 y=3000 \tag{1}\\
& x+25 y=3500 \tag{2}
\end{align*}
$$

Subtracting (1) from (2) we have

$$
5 y=500 \Rightarrow y=100
$$

Substituting this value of y in (1), we get

$$
\begin{aligned}
x+20(100) & =3000 \\
x & =1000
\end{aligned}
$$

Thus $x=1000$ and $y=100$
Fixed charge and cost of food per day are Rs. 1,000 and Rs. 100.
69. Solve for x and y :

$$
\begin{gathered}
\frac{x}{2}+\frac{2 y}{3}=-1 \\
x-\frac{y}{3}=3
\end{gathered}
$$

Ans :
[Board Term-1 2015, NCERT]
We have $\quad \frac{x}{2}+\frac{2 y}{3}=-1$

$$
\begin{equation*}
3 x+4 y=-6 \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{x}{1}-\frac{y}{3}=3 \\
& 3 x-y=9 \tag{2}
\end{align*}
$$

Subtracting equation (2) from equation (1), we have

$$
5 y=-15 \Rightarrow y=-1
$$

Substituting $y=-3$ in eq (1), we get

$$
\begin{aligned}
3 x+4(-3) & =-6 \\
3 x-12 & =-6 \\
3 x & =12-6 \Rightarrow x=2
\end{aligned}
$$

Hence $x=2$ and $y=-3$.
70. Solve the following pair of linear equations by the substitution and cross - multiplication method :

$$
\begin{aligned}
& 8 x+5 y=9 \\
& 3 x+2 y=4
\end{aligned}
$$

Ans:
[Board Term-1 2015, SYFH4D]
We have

$$
8 x+5 y=9
$$

or,

$$
\begin{equation*}
8 x+5 y-9=0 \tag{1}
\end{equation*}
$$

or, $\quad 3 x+2 y-4=0$
Comparing equation (1) and (2) with $a x+b y+c=0$,

$$
a_{1}=8, b_{1}=5, c_{1}=-9
$$

and

$$
a_{2}=3, b_{2}=2, c_{2}=-4
$$

By cross-multiplication method,

$$
\begin{align*}
\frac{x}{b_{2} c_{1}-b_{1} c_{2}} & =\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-b_{2} b_{1}} \tag{4}\\
\frac{x}{\{(5)(-4)-(2)(-9)\}} & =\frac{y}{\{(-9)(3)-(-4)(8)\}} \\
& =\frac{1}{\{8 \times 2-3 \times 5\}} \\
\text { or, } \quad \frac{x}{-2} & =\frac{1}{1} \text { and } \frac{y}{5}=\frac{1}{1} \\
x & =-2 \text { and } y=5
\end{align*}
$$

$$
\begin{equation*}
2 a+7 b=\frac{1}{4} \tag{3}
\end{equation*}
$$

and $\quad 4 a+4 b=\frac{1}{3}$
Multiplying equation (3) by 2 and subtract equation (4) from it

$$
\begin{array}{r}
10 b=\frac{1}{6} \\
b=\frac{1}{60}=\frac{1}{y}
\end{array}
$$

Thus

$$
y=60 \text { days. }
$$

Substituting $b=\frac{1}{60}$ in equation (3), we have

$$
\begin{aligned}
2 a+\frac{7}{60} & =\frac{1}{4} \\
2 a & =\frac{1}{4}-\frac{7}{60} \\
a & =\frac{1}{15} \\
\frac{1}{15} & =\frac{1}{x}
\end{aligned}
$$

Now

Thus $x=15$ days.
72. In an election contested between A and B, A obtained votes equal to twice the no. of persons on the electoral roll who did not cast their votes and this later number was equal to twice his majority over B. If there were 1,8000 persons on the electoral roll. How many votes for B.
Ans :
[Board Term-1 2012, Set-56]
Let x and y be the no. of votes for A and B respectively.
The no. of persons who did not vote is $18000-x-y$.
We have

$$
\begin{align*}
x & =2(18000-x-y) \\
3 x+2 y & =36000 \tag{1}
\end{align*}
$$

and $(18000-x-y)=2(x-y)$
or

$$
\begin{equation*}
3 x-y=18000 \tag{2}
\end{equation*}
$$

Subtracting equation (2) from equation (1),

$$
\begin{aligned}
3 y & =18000 \\
y & =6000
\end{aligned}
$$

c179

Hence vote for B is 6000 .
73. In the figure below $A B C D E$ is a pentagon with $B E \| C D$ and $B C \| D E . B C$ is perpendicular to $D C$.

If the perimeter of $A B C D E$ is 21 cm , find the values of x and y.

Ans:

[Board Term-1 2011]
Since $B C \| D E$ and $B E \| C D$ with $B C \perp D C, B C D E$ is a rectangle.

$$
\begin{align*}
B E & =C D \\
x+y & =5 \tag{1}
\end{align*}
$$

and

$$
D E=B E=x-y
$$

Since perimeter of $A B C D E$ is 21 ,

$$
\begin{aligned}
A B+B C+C D+D E+E A & =21 \\
3+x-y+x+y+x-y+3 & =21 \\
6+3 x-y & =21 \\
3 x-y & =15
\end{aligned}
$$

Adding equations (1) and (2), we get

$$
\begin{align*}
4 x & =20 \tag{2}\\
x & =5
\end{align*}
$$

Substituting the value of x in (1), we get

$$
y=0
$$

Thus $x=5$ and $y=0$.
74. Solve for x and y :

$$
\frac{x+1}{2}+\frac{y-1}{3}=9 ; \frac{x-1}{3}+\frac{y+1}{2}=8 .
$$

Ans:
[Board Term-1 2011, Set-52]
We have

$$
\begin{aligned}
\frac{x+1}{2}+\frac{y-1}{3} & =9 \\
3(x+1)+2(y-1) & =54 \\
3 x+3+2 y-2 & =54
\end{aligned}
$$

$$
\begin{equation*}
3 x+2 y=53 \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{x-1}{3}+\frac{y+1}{2} & =8 \\
2(x-1)+3(y+1) & =48 \\
2 x-2+3 y+3 & =48 \\
2 x+3 y & =47 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 3 we have

$$
\begin{equation*}
9 x+6 y=159 \tag{3}
\end{equation*}
$$

Multiplying equation (2) by 2 we have

$$
\begin{equation*}
4 x+6 y=94 \tag{4}
\end{equation*}
$$

Subtracting equation (4) from (3) we have

$$
\begin{aligned}
5 x & =65 \\
x & =13
\end{aligned}
$$

or
Substitute the value of x in equation (2),

$$
\begin{aligned}
2(13)+3 y & =47 \\
3 y & =47-26=21 \\
y & =\frac{21}{3}=7
\end{aligned}
$$

Hence, $x=13$ and $y=7$
75. Solve for x and y :

$$
\begin{aligned}
& \frac{6}{x-1}-\frac{3}{y-2}=1 \\
& \frac{5}{x-1}-\frac{1}{y-2}=2, \text { where } x \neq 1, y \neq 2
\end{aligned}
$$

Ans:
[Board Term-1 2011]
We have

$$
\begin{align*}
& \frac{6}{x-1}-\frac{3}{y-2}=1 \tag{1}\\
& \frac{5}{x-1}-\frac{1}{y-2}=2 \tag{2}
\end{align*}
$$

Let $\frac{1}{x-1}=p$ and $\frac{1}{y-2}=q$. then given equations become
and

$$
\begin{equation*}
6 p-3 q=1 \tag{3}
\end{equation*}
$$

Multiplying equation (4) by 3 and adding in equation (3), we have

$$
\begin{aligned}
21 p & =7 \\
p & =\frac{7}{21}=\frac{1}{3}
\end{aligned}
$$

Substituting this value of p in equation (3), we have

$$
\begin{aligned}
& 6\left(\frac{1}{3}\right)-3 q=1 \\
& \quad 2-3 q=1 \Rightarrow q=\frac{1}{3}
\end{aligned}
$$

Now, $\quad \frac{1}{x-1}=p=\frac{1}{3}$
or, $\quad x-1=3 \Rightarrow x=4$
and $\quad \frac{1}{y-2}=q=\frac{1}{3}$
or,

$$
y-2=3 \Rightarrow y=5
$$

Hence $x=4$ and, $y=5$.

For all sample papers visit www.cbse.online

76. Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If the difference of the digits is 3 , determine the number.
Ans :
[Board Term-1 2017]
Let the ten's and unit digit by y and x respectively,
So the number is $10 y+x$
The number when digits are reversed becomes $10 x+y$
Thus $\quad 7(10 y+x)=4(10 x+y)$

$$
70 y+7 x=40 x+4 y
$$

$$
70 y-4 y=40 x-7 x
$$

$$
\begin{equation*}
2 y=x \tag{1}
\end{equation*}
$$

or $\quad x-y=3$
From (1) and (2) we get

$$
y=3 \text { and } x=6
$$

Hence the number is 36 .
77. Solve the following pair of equations for x and y :

$$
\frac{a^{2}}{x}-\frac{b^{2}}{y}=0, \frac{a^{2} b}{x}+\frac{b^{2} a}{y}=a+b, \quad x \neq 0 ; y \neq 0 .
$$

Ans:
[Board Term-1 2011]

We have

$$
\begin{gathered}
\frac{a^{2}}{x}-\frac{b^{2}}{y}=0 \\
\frac{a^{2} b}{x}+\frac{b^{2} a}{y}=a+b=a+b
\end{gathered}
$$

Substituting $p=\frac{1}{x}$ and $q=\frac{1}{y}$ in the given equations,

$$
\begin{equation*}
a^{2} p-b^{2} q=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a^{2} b p+b^{2} a q=a+b \tag{2}
\end{equation*}
$$

Multiplying equation (1), by a

$$
\begin{equation*}
a^{3} p-b^{2} a q=0 \tag{3}
\end{equation*}
$$

Adding equation (2) and equation (3),

$$
\begin{aligned}
\left(a^{3}+a^{2} b\right) p & =a+b \\
\text { or, } \quad p & =\frac{(a+b)}{a^{2}(a+b)}=\frac{1}{a^{2}}
\end{aligned}
$$

Substituting the value of p in equation (1),

$$
a^{2}\left(\frac{1}{a^{2}}\right)-b^{2} q=0 \Rightarrow q=\frac{1}{b^{2}}
$$

Now,

$$
p=\frac{1}{x}=\frac{1}{a^{2}} \Rightarrow x=a^{2}
$$

and

$$
q=\frac{1}{y}=\frac{1}{b^{2}} \Rightarrow y=b^{2}
$$

Hence, $x=a^{2}$ and $y=b^{2}$
78. Solve for x and y :

$$
\begin{aligned}
& a x+b y=\frac{a+b}{2} \\
& 3 x+5 y=4
\end{aligned}
$$

Ans :
[Board Term-1 2011, Set-44]
We have $\quad a x+b y=\frac{a+b}{2}$
or $\quad 2 a x+2 b y=a+b$
and $\quad 3 x+5 y=4$
Multiplying equation (1) by 5 we have

$$
\begin{equation*}
10 a x+10 b y=5 a+5 b \tag{3}
\end{equation*}
$$

Multiplying equation (2) by $2 b$, we have

$$
\begin{equation*}
6 b x+10 b y=8 b \tag{4}
\end{equation*}
$$

Subtracting (4) from (3) we have

$$
\begin{aligned}
(10 a-6 b) x & =5 a-3 b \\
x & =\frac{5 a-3 b}{10 a-6 b}=\frac{1}{2}
\end{aligned}
$$

or
Substitute $x=\frac{1}{2}$ in equation (2), we get

$$
\begin{aligned}
3 \times \frac{1}{2}+5 y & =4 \\
5 y & =4-\frac{3}{2}=\frac{5}{2} \\
y & =\frac{5}{2 \times 5}=\frac{1}{2}
\end{aligned}
$$

Hence $x=\frac{1}{2}$ and $y=\frac{1}{2}$.
79. Solve the following pair of equations for x and y :
$4 x+\frac{6}{y}=15,6 x-\frac{8}{y}=14$
and also find the value of p such that $y=p x-2$.
Ans:
[Board Term-1 2011, Set-60]
We have

$$
\begin{align*}
& 4 x+\frac{6}{y}=15 \tag{1}\\
& 6 x-\frac{8}{y}=14 \tag{2}
\end{align*}
$$

Let $\frac{1}{y}=z$, the given equations become

$$
\begin{align*}
& 4 x+6 z=15 \tag{3}\\
& 6 x-8 z=14 \tag{4}
\end{align*}
$$

Multiply equation (3) by 4 we have

$$
\begin{equation*}
16 x+24 z=60 \tag{5}
\end{equation*}
$$

Multiply equation (4) by 3 we have

$$
\begin{equation*}
18 x-24 z=24 \tag{6}
\end{equation*}
$$

Adding equation (5) and (6) we have

$$
\begin{aligned}
34 x & =102 \\
x & =\frac{102}{34}=3
\end{aligned}
$$

Substitute the value of x in equation (3),

$$
\begin{aligned}
4(3)+6 z & =15 \\
6 z & =15-12=3 \\
z & =\frac{3}{6}=\frac{1}{2} \\
z & =\frac{1}{y}=\frac{1}{2} \Rightarrow y=2
\end{aligned}
$$

Now
Hence $x=3$ and $y=2$.
Again

$$
\begin{aligned}
y & =p x-2 \\
2 & =p(3)-2 \\
3 p & =4
\end{aligned}
$$

Thus

$$
p=\frac{4}{3}
$$

80. A chemist has one solution which is 50% acid and a second which is 25% acid. How much of each should be mixed to make 10 litre of 40% acid solution.
Ans :
[Board Term-1 2015, JRTSY]
Let 50% acids in the solution be x and 25% of other solution be y.
Total volume in the mixture

$$
\begin{equation*}
x+y=10 \tag{1}
\end{equation*}
$$

and $\quad \frac{50}{100} x+\frac{25}{100} y=\frac{40}{100} \times 10$

$$
\begin{equation*}
2 x+y=16 \tag{2}
\end{equation*}
$$

Subtracting equation (1) from (2) we have

$$
x=6
$$

Substituting this value of x in equation (1) we get

$$
\begin{aligned}
6+y & =10 \\
y & =4
\end{aligned}
$$

Hence, $x=6$ and $y=4$.
81. Find whether the following pair of linear equations has a unique solutions. If yes, find the solution :

$$
7 x-4 y=49,5 x-6 y=57
$$

Ans :
[Board Term-1 2011]
We have $\quad 7 x-4 y=49$

$$
\begin{equation*}
5 x-6 y=57 \tag{1}
\end{equation*}
$$

Comparing with the equation $a_{1} x+b_{1} y=c_{1}$,

$$
\begin{aligned}
& a_{1}=7, b_{1}=-4, c_{1}=49 \\
& a_{2}=5, b_{2}=-6, c_{2}=57
\end{aligned}
$$

Since, $\quad \frac{a_{1}}{a_{2}}=\frac{7}{5}$ and $\frac{b_{1}}{b_{2}}=\frac{4}{6}$

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

So, system has a unique solution.
Multiply equation (1) by 5 we get

$$
\begin{equation*}
35 x-20 y=245 \tag{3}
\end{equation*}
$$

Multiply equation (2) by 7 we get

$$
\begin{equation*}
35 x-42 y=399 \tag{4}
\end{equation*}
$$

Subtracting (4) by (3) we have

$$
\begin{aligned}
22 y & =-154 \\
y & =-7
\end{aligned}
$$

Putting the value of y in equation (2),

$$
\begin{aligned}
5 x-6(-7) & =57 \\
5 x & =57-42=15 \\
x & =3
\end{aligned}
$$

Hence $x=3$ and $y=-7$

FOUR MARKS QUESTIONS

82. Determine graphically the coordinates of the vertices of triangle, the equations of whose sides are given by $2 y-x=8,5 y-x=14$ and $y-2 x=1$.
Ans :
[Board 2020 Delhi Standard]
We have

$$
2 y-x=8
$$

L_{1} :

$$
x=2 y-8
$$

y	0	4	5
$x=2 y-8$	-8	0	2

$$
\begin{aligned}
5 y-x & =14 \\
x & =5 y-14
\end{aligned}
$$

$L_{2}:$

y	3	4	2
$x=5 y-14$	1	6	-4

and $\quad y-2 x=1$
$L_{3}:$
$y=1+2 x$

x	0	1	2
$y=1+2 x$	1	3	5

Plotting the above points and drawing lines joining them, we get the graphical representation:

Hence, the coordinates of the vertices of a triangle $A B C$ are $A(1,3), B(2,5)$ and $C(-4,2)$.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

83. A man can row a boat downstream 20 km in 2 hours and upstream 4 km in 2 hours. Find his speed of rowing in still water. Also find the speed of the stream. Ans :
[Board 2020 Delhi Standard]
Let x be the speed of the boat in still water and y be the speed of the stream.
Relative Speed of boat in upstream will be $(x-y)$ and relative speed of boat in downstream will be $(x+y)$.
According to question, we have

$$
\begin{align*}
& \frac{20}{x+y}=2 \\
& x+y=10 \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{4}{x-y}=2 \\
& x-y=2 \tag{2}
\end{align*}
$$

Adding equation (1) and (2), we have

$$
2 x=12 \Rightarrow x=6 \mathrm{~km} / \mathrm{hr}
$$

Substituting the value of x is equation (1) we have,

$$
6+y=10 \Rightarrow y=10-6=4 \mathrm{~km} / \mathrm{hr}
$$

Thus speed of a boat in still water is $6 \mathrm{~km} / \mathrm{hr}$ and speed of the stream $4 \mathrm{~km} / \mathrm{hr}$.
84. It can take 12 hours to fill a swimming pool using two pipes. If the pipe of larger diameter is used for four hours and the pipe of smaller diameter for 9 hours, only half of the pool can be filled. How long would it take for each pipe to fill the pool separately?
Ans:
[Board 2020 OD Standard]
Let x be time taken to fill the pool by the larger diameter pipe and y be the time taken to fill the pool by the smaller diameter pipe.
According to question,

$$
\begin{equation*}
\frac{1}{x}+\frac{1}{y}=\frac{1}{12} \tag{1}
\end{equation*}
$$

and $\quad \frac{4}{x}+\frac{9}{y}=\frac{1}{2}$
Multiplying equation (1) by 9 and subtracting from equation (2), we get

$$
\begin{aligned}
\frac{5}{x} & =\frac{9}{12}-\frac{1}{2}=\frac{1}{4} \\
x & =20
\end{aligned}
$$

Substituting the value of x in equation (1), we have

$$
\begin{aligned}
\frac{1}{20}+\frac{1}{y} & =\frac{1}{12} \\
\frac{1}{y} & =\frac{1}{12}-\frac{1}{20}=\frac{5-3}{60} \\
\frac{1}{y} & =\frac{2}{60}=\frac{1}{30} \Rightarrow y=30
\end{aligned}
$$

Hence, time taken to fill the pool by the larger and smaller diameter pipe are 20 hrs and 30 hrs respectively.

For all sample papers visit www.cbse.online

85. For what value of k, which the following pair of linear equations have infinitely many solutions:
$2 x+3 y=7$ and $(k+1) x+(2 k-1) y=4 k+1$
Ans:
[Board 2019 Delhi Standard]
We have

$$
2 x+3 y=7
$$

and $\quad(k+1) x+(2 k-1) y=4 k+1$
Here $\quad \frac{a_{1}}{a_{2}}=\frac{2}{k+1}, \frac{b_{1}}{b_{2}}=\frac{3}{(2 k-1)}$
and $\quad \frac{c_{1}}{c_{2}}=\frac{-7}{-(4 k+1)}=\frac{7}{(4 k+1)}$
For infinite many solutions

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

For $\frac{a_{1}}{a_{2}}=\frac{c_{1}}{c_{2}}$ we have

$$
\begin{aligned}
\frac{2}{k+1} & =\frac{7}{4 k+1} \\
2(4 k+1) & =7(k+1) \\
8 k+2 & =7 k+7 \\
k & =5
\end{aligned}
$$

Hence, the value of k is 5 , for which the given equation have infinitely many solutions.
86. Find c if the system of equations $c x+3 y+(3-c)=0 ; 12 x+c y-c=0$ has infinitely many solutions?
Ans:
[Board 2019 Delhi]
We have

$$
\begin{array}{r}
c x+3 y+(3-c)=0 \\
12 x+c y-c=0
\end{array}
$$

Here,

$$
\frac{a_{1}}{a_{2}}=\frac{c}{12}, \frac{b_{1}}{b_{2}}=\frac{3}{c}, \frac{c_{1}}{c_{2}}=\frac{3-c}{-c}
$$

For infinite many solutions,

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

For $\frac{a_{1}}{a_{2}}=\frac{c_{1}}{c_{2}}$ we have,

$$
\begin{aligned}
\frac{c}{12} & =\frac{3-c}{-c} \\
-c^{2} & =36-12 c \\
-c^{2}+12 c-36 & =0 \\
c^{2}-12 c+36 & =0 \\
c^{2}-6 c-6 c+36 & =0 \\
c(c-6)-6(c-6) & =0 \\
(c-6)(c-6) & =0 \Rightarrow c=6
\end{aligned}
$$

and for $\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$,

$$
\begin{aligned}
\frac{3}{c} & =\frac{3-c}{-c} \\
-3 c & =3 c-c^{2} \\
c^{2}-6 c & =0 \\
c(c-6) & =0 \Rightarrow c=6 \text { or } c \neq 0
\end{aligned}
$$

Hence, the value of c is 6 , for which the given equations have infinitely many solutions.

For all sample papers visit www.cbse.online

87. A father's age is three times the sum of the ages of his two children. After 5 years his age will be two times the sum of their ages. Find the present age of the father.
Ans:
[Board 2019 Delhi]
Let x be the age of father and y be the sum of the ages of his children.
After 5 years,

$$
\text { Father's age }=(x+5) \text { years }
$$

Sum of ages of his children $=(y+10)$ years
According to the given condition,

$$
\begin{equation*}
x=3 y \tag{1}
\end{equation*}
$$

and

$$
x+5=2(y+10)
$$

or,

$$
\begin{equation*}
x-2 y=15 \tag{2}
\end{equation*}
$$

Solving equation (1) and (2), we have

$$
3 y-2 y=15 \Rightarrow y=15
$$

Substituting value of y in equation (1), we get

$$
x=3 \times 15=45
$$

Hence, father's present age is 45 ,
88. Two water taps together can fill a tank in $1 \frac{7}{8}$ hours. The tap with longer diameter takes 2 hours less than the tap with smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately.
Ans :
[Board 2019 Delhi]
Let t be the time taken by the smaller diameter top.
Time for larger tap diameter will be $t-2$.
Total time taken $\quad=1 \frac{7}{8}=\frac{15}{8} h$.
Portion filled in one hour by smaller diameter tap will $\frac{1}{t}$ and by lager diameter tap will be $\frac{1}{t-2}$

According to the problem,

$$
\begin{aligned}
\frac{1}{t}+\frac{1}{t-2} & =\frac{8}{15} \\
\frac{t-2+t}{t(t-2)} & =\frac{8}{15} \\
15(2 t-2) & =8 t(t-2) \\
30 t-30 & =8 t^{2}-16 t \\
8 t^{2}-46 t+30 & =0 \\
4 t^{2}-23 t+15 & =0 \\
4 t^{2}-20 t-3 t+30 & =0 \\
(4 t-3)(t-5) & =0 \Rightarrow t=\frac{3}{4} \text { or } t=5 \\
t-2 & =\frac{3}{4}-2=\frac{-5}{4}
\end{aligned}
$$

If $t=\frac{3}{4}$ then
Since, time cannot be negative, we neglect $t=\frac{3}{4}$
Therefore,

$$
t=5
$$

and

$$
t-2=5-2=3
$$

Hence, time taken by larger tap is 3 hours and time taken by smaller is 5 hours
89. A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water.
Ans:
[Board 2019 Delhi]
Let x be the speed of boat in still water and y be the speed of stream.
Relative speed of boat in downstream will be $x+y$
and relative speed of boat in upstream will be $x-y$. Time taken to go 30 km upstream,

$$
t_{1}=\frac{30}{x-y}
$$

Time taken to go 44 km downstream,

$$
t_{2}=\frac{40}{x+y}
$$

According to the first condition we have

$$
\begin{equation*}
\frac{30}{x-y}+\frac{44}{x+y}=10 \tag{1}
\end{equation*}
$$

Similarly according to the second condition we have

$$
\begin{equation*}
\frac{40}{x-y}+\frac{55}{x+y}=13 \tag{2}
\end{equation*}
$$

Let $\frac{1}{x-y}=u$ and $\frac{1}{x+y}=v$, then we have

$$
\begin{align*}
& 30 u+44 v=10 \tag{3}\\
& 40 u+55 v=13 \tag{4}
\end{align*}
$$

Multiplying equation (3) by 4 and equation (4) by 3 and then subtracting we have

$$
11 v=1 \Rightarrow v=\frac{1}{11}
$$

Multiplying equation (3) by 5 and equation (4) by 4 and then subtracting we have

$$
\begin{align*}
-10 u & =-2 \tag{4}\\
u & =\frac{1}{5} \\
u & =\frac{1}{x-y}=\frac{1}{5} \\
x-y & =5 \tag{5}
\end{align*}
$$

Now
and

$$
v=\frac{1}{x+y}=\frac{1}{11}
$$

$$
\begin{equation*}
x+y=11 \tag{6}
\end{equation*}
$$

Adding equation (5) and (6), we get

$$
2 x=16 \Rightarrow x=8
$$

Substitute value of x in equation (5), we get

$$
8-y=5 \Rightarrow y=3
$$

Hence speed of boat in still water is $8 \mathrm{~km} /$ hour and and speed of stream is $3 \mathrm{~km} /$ hour.
90. Sumit is 3 times as old as his son. Five years later he shall be two and a half times as old as his son. How old is Sumit at present?
Ans :
[Board 2019 OD]
Let x be Sumit's present age and y be his son's
present age.
According to given condition,

$$
\begin{equation*}
x=3 y \tag{1}
\end{equation*}
$$

After five years,

$$
\text { Sumit's age }=x+5
$$

and His son's age $=y+5$
Now, again according to given condition,

$$
\begin{aligned}
x+5 & =2 \frac{1}{2}(y+5) \\
x+5 & =\frac{5}{2}(y+5) \\
2(x+5) & =5(y+5) \\
2 x+10 & =5 y+25 \\
2 x & =5 y+15 \\
2(3 y) & =5 y+15 \\
6 y & =5 y+15 \\
y & =15
\end{aligned}
$$

[from eq (1)]

Again, from eq (1)

$$
x=3 y=3 \times 15=45
$$

Hence, Sumit's present age is 45 years.
91. For what value of k, will the following pair of equations have infinitely many solutions:
$2 x+3 y=7$ and $(k+2) x-3(1-k) y=5 k+1$
Ans:
[Board 2019 OD]
We have

$$
\begin{equation*}
2 x+3 y=7 \tag{1}
\end{equation*}
$$

and $\quad(k+2) x-3(1-k) y=5 k+1$
Comparing equation (1) with $a_{1} x+b_{1} y=c_{1} \quad$ and equation (2) by $a_{2} x+b_{2} y=c_{2}$ we have

$$
a_{1}=2, b_{1}=3, c_{1}=7
$$

and

$$
a_{2}=(k+2), b_{2}=-3(1-k), c_{1}=5 k+1
$$

Here,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{2}{k+2} \\
& \frac{b_{1}}{b_{2}}=\frac{3}{-3(1-k)}, \frac{c_{1}}{c_{2}}=\frac{7}{5 k+1}
\end{aligned}
$$

For a pair of linear equations to have infinitely many solutions,

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

So,

$$
\frac{2}{k+2}=\frac{3}{-3(1-k)}=\frac{7}{5 k+1}
$$

$$
\begin{aligned}
\frac{2}{k+2} & =\frac{3}{-3(1-k)} \\
2(1-k) & =-(k+2) \\
2-2 k & =-k-2 \Rightarrow k=4
\end{aligned}
$$

Hence, for $k=4$, the pair of linear equations has infinitely many solutions.
92. The total cost of a certain length of a piece of cloth is ₹ 200 . If the piece was 5 m longer and each metre of cloth costs ₹ 2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original rate per metre?
Ans :
[Board 2019 OD]
Let x be the length of the cloth and y be the cost of cloth per meter.
Now

$$
\begin{align*}
x \times y & =200 \\
y & =\frac{200}{x} \tag{1}
\end{align*}
$$

According to given conditions,

1. If the piece were 5 m longer
2. Each meter of cloth costed ₹ 2 less

i.e.,

$$
\begin{aligned}
(x+5)(y-2) & =200 \\
x y-2 x+5 y-10 & =200 \\
x y-2 x+5 y & =210 \\
x\left(\frac{200}{x}\right)-2 x+5\left(\frac{200}{x}\right) & =210 \\
200-2 x+\frac{1000}{x} & =210 \\
\frac{1000}{x}-2 x & =10 \\
1000-2 x^{2} & =10 x \\
x^{2}+25 x-20 x-500 & =0 \\
x(x+25)-20(x+25) & =0 \\
(x+25)(x-20) & =0 \\
x & =-25,20
\end{aligned}
$$

Neglecting $x=-25$ we get $x=20$.
Now from equation (1), we have

$$
y=\frac{200}{x}=\frac{200}{20}=10
$$

Hence, length of the piece of cloths is 20 m and rate per meter is ₹ 10 .
93. In Figure, $A B C D$ is a rectangle. Find the values of
x and y.

Ans :
[Board 2018]
Since $A B C D$ is a rectangle, we have

Now

$$
\begin{align*}
A B & =C D \text { and } B C=A D \\
x+y & =30 \tag{1}\\
x-y & =14 \tag{2}
\end{align*}
$$

Adding equation (1) and (3) we obtain,

$$
2 x=44 \Rightarrow x=\frac{44}{2}=22
$$

For all sample papers visit www.cbse.online

Substituting value of x in equation (1) we have

$$
\begin{aligned}
22+y & =30 \\
y & =30-22=8 \\
x & =22 \mathrm{~cm} \text { and } y=8 \mathrm{~cm}
\end{aligned}
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality
We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.
94. For Uttarakhand flood victims two sections A and B of class contributed Rs. 1,500. If the contribution of X-A was Rs. 100 less than that of X-B, find graphically the amounts contributed by both the sections.
Ans :
[Board Term-1 2016]
Let amount contributed by two sections X-A and X-B be Rs. x and Rs. y.

$$
\begin{align*}
& x+y=1,500 \tag{1}\\
& y-x=100 \tag{2}
\end{align*}
$$

From (1) $y=1500-x$

x	0	700	1,500
y	1,500	800	0

From (2) $y=100+x$

x	0	700
y	100	800

Plotting the above points and drawing lines joining them, we get the following graph.

Clearly, the two lines intersect at point $(700,800)$
Hence X-A contributes 700 Rs and X-B contributes 800 Rs.
95. Determine graphically whether the following pair of linear equations :

$$
\begin{aligned}
3 x-y & =7 \\
2 x+5 y+1 & =0 \text { has }:
\end{aligned}
$$

a. unique solution
b. infinitely many solutions or
c. no solution.

Ans :
[Board Term-1 2015]
We have

$$
\begin{array}{r}
3 x-y=7 \\
3 x-y-7=0 \tag{1}
\end{array}
$$

Here $a_{1}=3, b_{1}=1, c_{1}=-7$

$$
\begin{equation*}
2 x+5 y+1=0 \tag{2}
\end{equation*}
$$

Here $a_{2}=2, b_{2}=5, c_{2}=1$
Now

$$
\frac{a_{1}}{a_{2}}=\frac{3}{2}, \frac{b_{1}}{b_{2}}=\frac{-1}{5}
$$

Since $\frac{3}{2} \neq \frac{-1}{5}$, thus $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
Hence, given pair of linear equations has a unique solution.
Now line (1) $y=3 x-7$

x	0	2	3
y	-7	-1	2

and line (2)

$$
2 x+5 y+1=0
$$

or, $\quad y=\frac{-1-2 x}{5}$

x	2	-3
y	-1	1

Plotting the above points and drawing lines joining them, we get the following graph.

Clearly, the two lines intersect at point $(2,-1)$.
Hence $x=2$ and $y=-1$
96. Draw the graphs of the pair of linear equations:
$x+2 y=5$ and $2 x-3 y=-4$
Also find the points where the lines meet the x-axis.
Ans :
[Board Term-1 2015]
We have

$$
x+2 y=5
$$

$$
y=\frac{5-x}{2}
$$

x	1	3	5
y	2	1	0

and

$$
2 x-3 y=-4
$$

or, $\quad y=\frac{2 x+4}{3}$

x	1	4	-2

y	2	4	0

Plotting the above points and drawing lines joining them, we get the following graph.

Clearly two lines meet x -axis at $(5,0)$ and $(-2,0)$ respectively.
97. Solve graphically the pair of linear equations:
$3 x-4 y+3=0$ and $3 x+4 y-21=0$
Find the co-ordinates of the vertices of the triangular region formed by these lines and x-axis. Also, calculate the area of this triangle.
Ans :
[Board Term-1 2015]
We have

$$
3 x-4 y+3=0
$$

or,

$$
y=\frac{3 x+3}{4}
$$

x	3	7	-1
y	3	6	0

and $\quad 3 x+4 y-21=0$
or, $\quad y=\frac{21-3 x}{4}$

x	3	7	11
y	3	0	-2

Plotting the above points and drawing lines joining them, we get the following graph.

Clearly, the two lines intersect at point $(3,3)$.
(a) These lines intersect each other at point $(3,3)$.

Hence $x=3$ and $y=3$
(b) The vertices of triangular region are $(3,3),(-1,0)$ and $(7,0)$.
(c) Area of $\Delta=\frac{1}{2} \times 8 \times 3=12$

Hence, Area of obtained Δ is 12 sq unit.
98. Aftab tells his daughter, ' 7 years ago, I was seven times as old as you were then. Also, 3 years from now, I shall be three times as old as you will be.' Represent this situation algebraically and graphically.
Ans:
[Board Term-1 2015, NCERT]
Let the present age of Aftab be x years and the age of daughter be y years.

7 years ago father's(Aftab) age $=(x-7)$ years
7 years ago daughter's age $=(y-7)$ years
According to the question,

$$
\begin{align*}
(x-7) & =7(y-7) \\
(x-7 y) & =-42 \tag{1}
\end{align*}
$$

After 3 years father's(Aftab) age $=(x+3)$ years
After 3 years daughter's age $=(y+3)$ years
According to the condition,
or,

$$
x+3=3(y+3)
$$

$$
\begin{equation*}
x-3 y=6 \tag{2}
\end{equation*}
$$

From equation(1) $\quad x-7 y=-42$

x	0	7	14

$y=\frac{x+42}{7}$	6	7	8

From equation (2) $x-3 y=6$

x	6	12	18
$y=\frac{x-6}{3}$	0	2	4

Plotting the above points and drawing lines joining them, we get the following graph.

Two lines obtained intersect each other at $(42,12)$
Hence, father's age $=42$ years
and daughter's age $=12$ years
99. The cost of 2 kg of apples and 1 kg of grapes on a day was found to be Rs. 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs. 300. Represent the situations algebraically and geometrically.
Ans :
[Board Term-1 2013, Set DDE-E, NCERT]
Let the cost of 1 kg of apples be Rs. x and cost of 1 kg of grapes be Rs. y.
The given conditions can be represented given by the following equations :

$$
\begin{align*}
2 x+y & =160 \tag{1}\\
4 x+2 y & =300 \tag{2}
\end{align*}
$$

From equation (1) $\quad y=160-2 x$

x	50	45
y	60	70

From equation (2) $y=150-2 x$

x	50	40
y	50	70

Plotting these points on graph, we get two parallel line as shown below.

100. Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Determine the co-ordinates of the vertices of the triangle formed by these lines and the X -axis and shade the triangular region.
Ans :
[Board Term-1 2013 NCERT]
We have $\quad x-y+1=0$

x	0	4	2
$y=x+1$	1	5	3

and $\quad 3 x+2 y-12=0$

x	0	2	4
$y=\frac{12-3 x}{2}$	6	3	0

Plotting the above points and drawing lines joining them, we get the following graph.

Clearly, the two lines intersect at point $D(2,3)$.
Hence, $x=2$ and $y=3$ is the solution of the given pair of equations. The line $C D$ intersects the x-axis at the point $E(4,0)$ and the line $A B$ intersects the x-axis at the points $F(-1,0)$. Hence, the coordinates of the vertices of the triangle are $D(2,3)$, $E(4,0)$ and $F(-1,0)$.
101. Solve the following pair of linear equations graphically: $2 x+3 y=12$ and $x-y=1$
Find the area of the region bounded by the two lines representing the above equations and y-axis.
Ans : [Board Term-1 2012, Set-58]
We have $\quad 2 x+3 y=12 \Rightarrow y=\frac{12-2 x}{3}$

x	0	6	3
y	4	0	2

We have $\quad x-y=1 \Rightarrow y=x-1$

x	0	1	3
y	1	0	2

Plotting the above points and drawing lines joining them, we get the following graph.

Clearly, the two lines intersect at point $p(3,2)$.
Hence, $x=3$ and $y=2$
Area of shaded triangle region,

$$
\text { Area of } \begin{aligned}
\triangle P A B & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times A B \times P M \\
& =\frac{1}{2} \times 5 \times 3 \\
& =7.5 \text { square unit. }
\end{aligned}
$$

102. Solve the following pair of linear equations graphically: $x+3 y=12,2 x-3 y=12$
Also shade the region bounded by the line $2 x-3 y=2$ and both the co-ordinate axes.
Ans :
[Board Term-1 2013 FFC, 2012, Set-35, 48]

We have

$$
\begin{equation*}
x+3 y=6 \Rightarrow y=\frac{6-x}{3} \tag{1}
\end{equation*}
$$

x	3	6	0
y	1	0	2

and $\quad 2 x-3 y=12 \Rightarrow y=\frac{2 x-12}{3}$

x	0	6	3
y	-4	0	-2

Plotting the above points and drawing lines joining them, we get the following graph.

The two lines intersect each other at point $B(6,0)$. Hence, $x=6$ and $y=0$
Again $\triangle O A B$ is the region bounded by the line $2 x-3 y=12$ and both the co-ordinate axes.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

103.Solve the following pair of linear equations graphically: $x-y=1,2 x+y=8$
Also find the co-ordinates of the points where the lines represented by the above equation intersect y-axis.
Ans :
[Board Term-1 2012, Set-56]

We have $\quad x-y=1 \Rightarrow y=x-1$

x	2	3	-1

y	1	2	-2
$2 x+y=8 \Rightarrow y=8-2 x$			
and			
x 2 4 0 y 4 0 8			

Plotting the above points and drawing lines joining them, we get the following graph.

The two lines intersect each other at point $A(3,2)$.
Thus solution of given equations is $x=3, y=2$.
Again, $x-y=1$ intersects $y-$ axis at $(0,-1)$
and $\quad 2 x+y=8 y-$ axis at $(0,8)$.
104. Draw the graph of the following equations:

$$
2 x-y=1, x+2 y=13
$$

Find the solution of the equations from the graph and shade the triangular region formed by the lines and the y-axis.
Ans :
[Board Term-1 2012 Set-52]
We have $\quad 2 x-y=1 \Rightarrow y=2 x-1$

x	0	1	3
y	-1	1	5

and

$$
x+2 y=13 \Rightarrow y=\frac{13-x}{2}
$$

x	1	3	5
y	6	5	4

Plotting the above points and drawing lines joining them, we get the following graph.

Clearly two obtained lines intersect at point $A(3,5)$.
Hence, $x=3$ and $y=5$
$A B C$ is the triangular shaded region formed by the obtained lines with the y-axis.
105. Solve the following pair of equations graphically:

$$
2 x+3 y=12, x-y-1=0
$$

Shade the region between the two lines represented by the above equations and the X-axis.
Ans :
[Board Term-1 2012, Set-48]
We have $\quad 2 x+3 y=12 \Rightarrow y=\frac{12-2 x}{3}$

x	0	6	3
y	4	0	2

also $\quad x-y=1 \Rightarrow y=x-1$

x	0	1	3
y	-1	0	2

Plotting the above points and drawing lines inining them, we get the following graph.

The two lines intersect each other at point $(3,2)$, Hence, $x=3$ and $y=2$.
$\triangle A B C$ is the region between the two lines represented by the given equations and the X-axis.
106.4 chairs and 3 tables cost Rs 2100 and 5 chairs and 2 tables cost Rs 1750 . Find the cost of none chair and one table separately.
Ans:
[Board Term-1 2015]
Let cost of 1 chair be Rs x and cost of 1 table be Rs y According to the question,

$$
\begin{align*}
& 4 x+3 y=2100 \tag{1}\\
& 5 x+2 y=1750 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 2 and equation (2) by 3,

$$
\begin{align*}
8 x+6 y & =4200 \tag{3}\\
15 x+6 y & =5250 \tag{iv}
\end{align*}
$$

Subtracting equation (3) from (4) we have

$$
\begin{aligned}
7 x & =1050 \\
x & =150
\end{aligned}
$$

Substituting the value of x in (1), $y=500$
Thus cost of chair and table is Rs 150, Rs 500 respectively.
107. Solve the following pair of equations :
$\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2$ and $\frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1$
Ans:
[Board Term-1 2015]
We have

$$
\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2
$$

$$
\frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1
$$

Substitute $\frac{1}{\sqrt{x}}=X$ and $\frac{1}{\sqrt{y}}=Y$

$$
\begin{align*}
& 2 X+3 Y=2 \tag{1}\\
& 4 X-9 Y=-1 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 3 , and adding in (2) we get

Thus

$$
10 X=5 \Rightarrow X=\frac{5}{10}=\frac{1}{2}
$$

$$
\frac{1}{\sqrt{x}}=\frac{1}{2} \Rightarrow x=4
$$

Putting the value of X in equation (1), we get

$$
2 \times \frac{1}{2}+3 y=2
$$

$$
3 Y=2-1
$$

$$
Y=\frac{1}{3}
$$

Now

$$
Y=\frac{1}{3} \Rightarrow \frac{1}{\sqrt{y}}=\frac{1}{3} \Rightarrow y=9
$$

Hence $x=4, y=9$.
108. Solve for x and y :

$$
\begin{array}{r}
2 x-y+3=0 \\
3 x-5 y+1=0
\end{array}
$$

Ans:
[Board Term-1 2015]
We have $2 x-y+3=0$

$$
\begin{equation*}
3 x-5 y+1=0 \tag{1}
\end{equation*}
$$

Multiplying equation (1) by 5 , and subtracting (2) from it we have

$$
\begin{aligned}
7 x & =-14 \\
x & =\frac{-14}{7}=-2
\end{aligned}
$$

Substituting the value of x in equation (1) we get

$$
\begin{aligned}
2 x-y+3 & =0 \\
2(-2)-y+3 & =0 \\
-4-y+3 & =0 \\
-y-1 & =0 \\
y & =-1
\end{aligned}
$$

Hence, $x=-2$ and $y=-1$.
109. Solve $x+y=5$ and $2 x-3 y=4$ by elimination method and the substitution method.
Ans :
[Board Term-1 2015]

By Elimination Method :

We have, $\quad x+y=5$
and $\quad 2 x-3 y=4$
Multiplying equation (1) by 3 and adding in (2) we have
or,

$$
\begin{gathered}
3(x+y)+(2 x-3 y)=3 \times 5+4 \\
3 x+3 y+2 x-3 y=15+4 \\
5 x=19 \Rightarrow x=\frac{19}{5}
\end{gathered}
$$

Substituting $x=\frac{19}{5}$ in equation (1),

$$
\begin{aligned}
\frac{19}{5}+y & =5 \\
y & =5-\frac{19}{5}=\frac{25-19}{5}=\frac{6}{5}
\end{aligned}
$$

Hence, $x=\frac{19}{5}$ and $y=\frac{6}{5}$

By Substituting Method :

We have, $\quad x+y=5$
and $\quad 2 x-3 y=4$
From equation (1), $y=5-x$
Substituting the value of y from equation (3) in equation (2),

$$
\begin{aligned}
2 x-3(5-x) & =4 \\
2 x-15+3 x & =4 \\
5 x & =19 \\
x & =\frac{19}{5}
\end{aligned}
$$

Substituting this value of x in equation (3), we get

$$
y=5-\frac{19}{5}=\frac{6}{5}
$$

Hence $x=\frac{19}{5}$ and $y=\frac{6}{5}$
110.Solve for x and y :

$$
\begin{aligned}
& 3 x+4 y=10 \\
& 2 x-2 y=2
\end{aligned}
$$

Ans:
[Board Term-1 2015]

By Elimination Method :

$$
\begin{array}{ll}
\text { We have, } & 3 x+4 y=10 \\
\text { and } & 2 x-2 y=2
\end{array}
$$

Multiplying equation (2) by 2 and adding in (1),

$$
\begin{array}{rlrl}
& & (3 x+4 y)+2(2 x-2 y) & =10+2 \times 2 \\
\text { or, } & 3 x+4 y+4 x-4 y & =10+4 \\
\text { or, } & 7 x & =14 \Rightarrow x=2
\end{array}
$$

c156
Hence, $x=2$ and $y=1$.

By Substitution Method :

We have
and

$$
\begin{equation*}
3 x+4 y=10 \tag{1}
\end{equation*}
$$

From equation (2)

$$
\begin{equation*}
2 x-2 y=2 \tag{2}
\end{equation*}
$$

or,

$$
2 y=2 x-2
$$

Substituting this value of y in equation (1),

$$
\begin{aligned}
3 x+4(x-1) & =10 \\
7 x & =14 \Rightarrow x=2
\end{aligned}
$$

From equation (3), $\quad y=2-1=1$
Hence, $x=2$ and $y=1$
111.Solve $3 x-5 y-4=0$ and $9 x=2 y+7$ by elimination method and the substitution method.
Ans :
[Board Term-1 2012]

By Elimination Method :

We have,

$$
\begin{align*}
3 x-5 y & =4 \tag{1}\\
9 x & =2 y+7 \tag{2}
\end{align*}
$$

and
Multiplying equation (1) by 3 and rewriting equation (2) we have

$$
\begin{align*}
9 x-15 y & =12 \tag{3}\\
9 x-2 y & =7 \tag{4}
\end{align*}
$$

Subtracting equation (4) from equation (3),

$$
\begin{aligned}
-13 y & =5 \\
y & =-\frac{5}{13}
\end{aligned}
$$

Substituting value of y in equation (1),

$$
3 x-5\left(\frac{-5}{13}\right)=4
$$

$$
3 x=4-\frac{25}{13}
$$

$$
x=\frac{27}{13 \times 3}=\frac{9}{13}
$$

Hence $x=\frac{9}{13}$ and $y=-\frac{5}{13}$

By Substituting Method :

We have

$$
\begin{align*}
3 x-5 y & =4 \tag{1}\\
9 x & =2 y+7 \tag{2}\\
y & =\frac{9 x-7}{2} \tag{3}
\end{align*}
$$

Substituting this value of y (3) in equation (1),

$$
\begin{aligned}
3 x-5 \times\left(\frac{9 x-7}{2}\right) & =4 \\
6 x-45 x+35 & =8 \\
-39 x & =-27 \\
x & =\frac{9}{13}
\end{aligned}
$$

Substituting $x=\frac{9}{13}$ in equation (3),

$$
\begin{aligned}
y & =\frac{9 \times \frac{9}{13}-7}{2}=\frac{81-91}{2 \times 13} \\
& =-\frac{10}{26}=-\frac{5}{13}
\end{aligned}
$$

Hence, $x=\frac{9}{13}$ and $y=\frac{-5}{13}$

For all sample papers visit www.cbse.online

112. A train covered a certain distance at a uniform speed. If the train would have been $10 \mathrm{~km} / \mathrm{hr}$ scheduled time. And, if the train were slower by $10 \mathrm{~km} / \mathrm{hr}$, it would have taken 3 hr more than the scheduled time. Find the distance covered by the train.
Ans:
[Board Term-1 2012, NCERT]
Let the actual speed of the train be s and actual time taken t.

$$
\begin{aligned}
\text { Distance } & =\text { Speed } \times \text { Time } \\
& =\text { st } \mathrm{km}
\end{aligned}
$$

According to the given condition, we have

$$
\begin{align*}
s t & =(s+10)(t-2) \\
s t & =s t-2 s+10 t-20 \\
2 s-10 t+20 & =0 \\
s-5 t & =-10 \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
s t & =(s-10)(t+3) \\
s t & =s t+3 s-10 t-30 \\
3 s-10 t & =30 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 3 and subtracting equation (2) from equation (1),

$$
\begin{aligned}
3 \times(s-5 t)-(3 s-10 t) & =-3 \times 10-30 \\
-5 t & =-60 \Rightarrow t=12
\end{aligned}
$$

Substituting value of t equation (1),

$$
\begin{aligned}
s-5 \times 12 & =-10 \\
s & =-10+60=50
\end{aligned}
$$

Hence, the distance covered by the train

$$
=50 \times 12=600 \mathrm{~km}
$$

113.The ratio of incomes of two persons is $11: 7$ and the ratio of their expenditures is 9:5. If each of them manages to save Rs 400 per month, find their monthly incomes.
Ans:
[Board Term-1 2012]
Let the incomes of two persons be $11 x$ and $7 x$.
Also the expenditures of two persons be $9 y$ and $5 y$.

$$
\begin{equation*}
11 x-9 y=400 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
7 x-5 y=400 \tag{2}
\end{equation*}
$$

Multiplying equation (1) by 5 and equation (2) by 9 we have
and

$$
\begin{align*}
& 55 x-45 y=2000 \tag{3}\\
& 63 x-45 y=3600 \tag{4}
\end{align*}
$$

Subtracting, above equation we have

$$
-8 x=-1600
$$

or,

$$
x=\frac{-1,600}{-8}=200
$$

Hence Their monthly incomes are $11 \times 200=$ Rs 2200 and $7 \times 200=$ Rs 1400 .
114. A and B are two points 150 km apart on a highway. Two cars start A and B at the same time. If they move in the same direction they meet in 15 hours. But if they move in the opposite direction, they meet in 1 hours. Find their speeds.
Ans:
[Board Term-1 2012]
Let the speed of the car I from A be x and speed of the car II from B be y.

Same Direction :

Distance covered by car I
$=150+($ distance covered by car II $)$

$$
\begin{align*}
15 x & =150+15 y \\
15 x-15 y & =150 \\
x-y & =10 \tag{1}
\end{align*}
$$

Opposite Direction :

Distance covered by car I + distance covered by car II

$$
\begin{align*}
& =150 \mathrm{~km} \\
x+y & =150 \tag{2}
\end{align*}
$$

Adding equation (1) and (2), we have $x=80$.
Substituting $x=80$ in equation (1), we have $y=70$. Speed of the car I from $A=80 \mathrm{~km} / \mathrm{hr}$ and speed of the car II from $B=70 \mathrm{~km} / \mathrm{hr}$.

For all sample papers visit www.cbse.online

115.If 2 is subtracted from the numerator and 1 is added to the denominator, a fraction becomes $\frac{1}{2}$, but when 4 is added to the numerator and 3 is subtracted from the denominator, it becomes $\frac{3}{2}$. Find the fraction.
Ans :
[Board Term-1 2012]
Let the fraction be $\frac{x}{y}$ then we have

$$
\begin{align*}
& \frac{x-2}{y+1}=\frac{1}{2} \\
& 2 x-4=y+1 \\
& 2 x-y=5 \tag{1}
\end{align*}
$$

Also, $\quad \frac{x+4}{y-3}=\frac{3}{2}$

$$
\begin{align*}
2 x+8 & =3 y-9] \\
2 x-3 y & =-17 \tag{2}
\end{align*}
$$

Subtracting equation (2) from equation (1),

$$
2 y=22 \Rightarrow y=11
$$

Substituting this value of y in equation (1) we have,

$$
\begin{array}{r}
2 x-11=5 \\
x=8
\end{array}
$$

Hence, \quad Fraction $=\frac{8}{11}$
116.If a bag containing red and white balls, half the number of white balls is equal to one-third the number of red balls. Thrice the total number of balls exceeds seven times the number of white balls by 6 . How many balls
of each colour does the bag contain ?
Ans :
[Board Term-1 2012]
Let the number of red balls be x and white balls be y. According to the question,

$$
\begin{equation*}
\frac{y}{2}=\frac{1}{3} x \text { or } 2 x-3 y=0 \tag{1}
\end{equation*}
$$

and $\quad 3(x+y)-7 y=6$
or $\quad 3 x-4 y=6$
Multiplying equation (1) by 3 and equation (2) by we have

$$
\begin{align*}
& 6 x-9 y=0 \tag{3}\\
& 6 x-8 y=12 \tag{4}
\end{align*}
$$

Subtracting equation (3) from (4) we have

$$
y=12
$$

Substituting $y=12$ in equation (1),

$$
\begin{aligned}
2 x-36 & =0 \\
x & =18
\end{aligned}
$$

Hence, number of red balls $=18$
and number of white balls $=12$
117. A two digit number is obtained by either multiplying the sum of digits by 8 and then subtracting 5 or by multiplying the difference of digits by 16 and adding 3 . Find the number.
Ans :
[Board Term-1 2012]
Let the digits of number be x and y, then number will $10 x+y$.
According to the question, we have

$$
\begin{align*}
8(x+y)-5 & =10 x+y \\
2 x-7 y+5 & =0 \tag{1}
\end{align*}
$$

also $\quad 16(x-y)+3=10 x+y$
$6 x-17 y+3=0$
Comparing the equation with $a x+b y+c=0$ we get

$$
\begin{aligned}
& a_{1}=2, b_{1}=-1, c_{1}=5 \\
& a_{2}=6, b_{2}=-17, c_{2}=3
\end{aligned}
$$

Now $\quad \frac{x}{b_{2} c_{1}-b_{1} c_{2}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{c_{1} b_{2}-a_{2} b_{1}}$

$$
\begin{aligned}
\frac{x}{(-7)(3)-(-17)(5)} & =\frac{y}{(5)(6)-(2)(3)} \\
& =\frac{1}{(2)(-17)-(6)(-7)}
\end{aligned}
$$

$$
\begin{aligned}
\frac{x}{-21+85} & =\frac{y}{30-6}=\frac{1}{-34+42} \\
\frac{x}{64} & =\frac{y}{24}=\frac{1}{8} \\
\frac{x}{8} & =\frac{y}{3}=1
\end{aligned}
$$

Hence,

$$
x=8, y=3
$$

So required number $=10 \times 8+3=83$.
118. The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units and the breadth is increased by 3 units. The area is increased by 67 square units if length is increased by 3 units and breadth is increased by 2 units. find the perimeter of the rectangle.

Ans:
[Board Term-1 2012, Set-48]
Let length of given rectangle be x and breadth be y, then area of rectangle will be $x y$.
According to the first condition we have

$$
\begin{align*}
& \\
\text { or, } \quad(x-5)(y+3) & =x y-9 \tag{1}\\
3 x-5 y & =6
\end{align*}
$$

According to the second condition, we have

$$
(x+3)(y+2)=x y-67
$$

$$
\begin{equation*}
\text { or, } \quad 2 x+5 y=61 \tag{2}
\end{equation*}
$$

Multiplying equation (1) by 3 and equation (2) by 5 and then adding,

$$
\begin{aligned}
9 x-15 y & =18 \\
10 x+15 y & =305 \\
x & =\frac{323}{19}=17
\end{aligned}
$$

Substituting this value of x in equation (1),

$$
\begin{aligned}
3(17)-5 y & =6 \\
5 y & =51-6 \\
y & =9
\end{aligned}
$$

Hence, perimeter $=2(x+y)=2(17+9)=52$ units.
119. Solve for x and $y: 2(3 x-y)=5 x y, 2(x+3 y)=5 x y$.

Ans :
[Board Term-1 2012, Set-25]
We have

$$
\begin{align*}
& 2(3 x-y)=5 x y \tag{1}\\
& 2(x+3 y)=5 x y \tag{2}
\end{align*}
$$

Divide equation (1) and (2) by $x y$,

$$
\begin{equation*}
\frac{6}{y}-\frac{2}{x}=5 \tag{3}
\end{equation*}
$$

and $\quad \frac{2}{y}+\frac{6}{x}=5$
Let $\frac{1}{y}=a$ and $\frac{1}{x}=b$, then equations (3) and (4) become

$$
\begin{align*}
& 6 a-2 b=5 \tag{5}\\
& 2 a+6 b=5 \tag{6}
\end{align*}
$$

Multiplying equation (5) by 3 and then adding with equation (6),

$$
\begin{aligned}
20 a & =20 \\
a & =1
\end{aligned}
$$

c165
Substituting this value of a in equation (5),

$$
b=\frac{1}{2}
$$

Now $\quad \frac{1}{y}=a=1 \Rightarrow y=1$
and $\quad \frac{1}{x}=b=\frac{1}{2} \Rightarrow x=2$
Hence, $x=2, y=1$

Don't Take Printout of This PDF. Buy Hard Book at Price Less then price of Printouts.

CLICK TO BUY HARD BOOK

120. The students of a class are made to stand in rows. If 3 students are extra in a row, there would be 1 row less. If 3 students are less in a row, there would be 2 rows more. Find the number of students in the class.
Ans :
[Board Term-1 2012, Set-68, NCERT]
Let the number of students in a row be x and the number of rows be y. Thus total will be $x y$.

Now

$$
\begin{align*}
(x+3)(y-1) & =x y \\
x y+3 y-x-3 & =x y \\
-x+3 y-3 & =0 \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
(x-3)(y+2) & =x y \\
x y-3 y+2 x-6 & =x y \\
2 x-3 y-6 & =0 \tag{2}
\end{align*}
$$

Multiply equation (1) 2 we have

$$
\begin{equation*}
-2 x+6 y-6=0 \tag{3}
\end{equation*}
$$

Adding equation (2) and (3) we have

$$
\begin{array}{r}
3 y-12=0 \\
y=4
\end{array}
$$

Substitute $y=4$ in equation (1)

$$
\begin{array}{r}
-x+12-3=0 \\
x=9
\end{array}
$$

Total students $\quad x y=9 \times 4=36$
Total students in the class is 36 .
121. The ages of two friends ani and Biju differ by 3 years. Ani's father Dharam is twice as old as ani and Biju is twice as old as his sister Cathy. The ages of Cathy and Dharam differ by 30 year. Find the ages of Ani and Biju.

Ans:

[Board Term-1 2012, Set-64]
Let the ages of Ani and Biju be x and y, respectively.
According to the given condition,

$$
\begin{equation*}
x-y= \pm 3 \tag{1}
\end{equation*}
$$

Also, age of Ani's father Dharam $=2 x$ years
And age of Biju's sister $=\frac{y}{2}$ years
According to the given condition,

$$
\begin{align*}
& 2 x-\frac{y}{2}=30 \\
& 4 x-y=60 \tag{2}
\end{align*}
$$

Case I : When $x-y=3$
Subtracting equation (3) from equation (2),

$$
\begin{aligned}
3 x & =57 \\
x & =19 \text { years }
\end{aligned}
$$

Putting $x=19$ in equation (3),

$$
\begin{align*}
19-y & =3 \\
y & =16 \text { years } \tag{4}
\end{align*}
$$

Case II : When $x-y=-3$
Subtracting equation (iv) from equation (2),

$$
\begin{aligned}
3 x & =60+3 \\
3 x & =63 \\
x & =21 \text { years }
\end{aligned}
$$

Subtracting equation (4), we get

$$
21-y=-3
$$

$$
y=24 \text { years }
$$

Hence, Ani's age $=19$ years or 21 years Biju age $=16$ years or 24 years.

For all sample papers visit www.cbse.online

122. One says, "Give me a hundred, friend! I shall then become twice as rich as you." The other replies, "If you give me ten, I shall be six times as rich as you." Tell me what is the amount of their (respective) capital.
Ans :
[Board Term-1 2012, Set-54]
Let the amount of their respective capitals be x and y.
According to the given condition,

$$
\begin{align*}
x+100 & =2(y-100) \\
x-2 y & =-300 \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
6(x-10) & =y+10 \\
6 x-y & =70 \tag{2}
\end{align*}
$$

Multiplying equation (2) by 2 we have

$$
\begin{equation*}
12 x-2 y=140 \tag{3}
\end{equation*}
$$

Subtracting (1) from equation (3) we have

$$
\begin{aligned}
11 x & =440 \\
x & =40
\end{aligned}
$$

Substituting $x=40$ in equation (1),

$$
\begin{aligned}
40-2 y & =-300 \\
\text { or, } \quad 2 y & =340 \\
y & =170
\end{aligned}
$$

Hence, the amount of their respective capitals are 40 and 170 .
123. A fraction become $\frac{9}{11}$ if 2 is added to both numerator and denominator. If 3 is added to both numerator and denominator it becomes $\frac{5}{6}$. Find the fraction.
Ans :
[Board Term-1 2012, Set-60]
Let the fraction be $\frac{x}{y}$, then according to the question,

$$
\frac{x+2}{y+2}=\frac{9}{11}
$$

$$
11 x+22=9 y+18
$$

or, $\quad 11 x-9 y+4=0$
and

$$
\begin{equation*}
\frac{x+3}{y+3}=\frac{5}{6} \tag{1}
\end{equation*}
$$

or, $\quad 6 x-5 y+3=0$
Comparing with $a x+b y+c=0$
we get

$$
\begin{aligned}
& a_{1}=11, b_{1}=9, c_{1}=4, \\
& a_{2}=6, b_{2}=-5, \text { and } c_{2}=3
\end{aligned}
$$

Now, $\quad \frac{x}{b_{2} c_{1}-b_{1} c_{2}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-b_{2} b_{1}}$

$$
\begin{aligned}
\frac{x}{(-9)(3)-(-5)(4)} & =\frac{y}{(4)(6)-(11)(3)} \\
& =\frac{1}{(11)(-5)-(9)(-9)}
\end{aligned}
$$

or,

$$
\begin{aligned}
\frac{x}{-27+20} & =\frac{y}{24-33}=\frac{1}{-55+54} \\
\frac{x}{-7} & =\frac{y}{-9}=\frac{1}{-1}
\end{aligned}
$$

Hence, $x=7, y=9$
Thus fraction is $\frac{7}{9}$.
124. A motor boat can travel 30 km upstream and 28 km downstream in 7 hours. It can travel 21 km upstream and return in 5 hours. Find the speed of the boat in still water and the speed of the stream.
Ans :
[Board Term-1 2012]
Let the speed of the boat in still water be $x \mathrm{~km} / \mathrm{hr}$ and speed of the stream be $y \mathrm{~km} / \mathrm{hr}$.
Speed of boat up stream $=(x-y) \mathrm{km} / \mathrm{hr}$.
Speed of boat down stream $=(x+y) \mathrm{km} / \mathrm{hr}$.

$$
\frac{30}{x-y}+\frac{28}{x+y}=7
$$

and

$$
\frac{21}{x-y}+\frac{21}{x+y}=5
$$

Let $\frac{1}{x-y}$ be a and $\frac{1}{x+y}$ be b, then we have

$$
\begin{align*}
& 30 a+28 b=7 \tag{1}\\
& 21 a+21 b=5 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 3 and equation (2) by 4 we have

$$
\begin{align*}
& 90 a+84 b=21 \tag{3}\\
& 84 a+84 b=20 \tag{4}
\end{align*}
$$

Subtracting (4) from (3) we have,

$$
\begin{aligned}
6 a & =1 \\
a & =\frac{1}{6}
\end{aligned}
$$

Putting this value of a in equation (1),

$$
\begin{aligned}
30 \times \frac{1}{6}+28 b & =7 \\
28 b & =7-30 \times \frac{1}{6}=2 \\
b & =\frac{1}{14}
\end{aligned}
$$

Thus

$$
\begin{equation*}
x+y=14 \tag{5}
\end{equation*}
$$

Now,

$$
\begin{equation*}
a=\frac{1}{x-y}=\frac{1}{6} \tag{6}
\end{equation*}
$$

or, $\quad x-y=6$
and $\quad x+y=14$
Solving equation (5) and (6), we get

$$
x=10, y=4
$$

Hence, speed of the boat in still water $=10 \mathrm{~km} / \mathrm{hr}$ and speed of the stream $=4 \mathrm{~km} / \mathrm{hr}$.
125. A boat covers 32 km upstream and 36 km downstream in 7 hours. Also, it covers 40 km upstream and 48 km downstream in 9 hours. Find the speed of the boat in still water and that of the stream.

Ans :
[Board Term-1 2012, Set-48]
Let the speed of the boat be $x \mathrm{~km} / \mathrm{hr}$ and the speed of the stream be $y \mathrm{~km} / \mathrm{hr}$.
According to the question,

$$
\frac{32}{x-y}+\frac{36}{x+y}=7
$$

and

$$
\frac{40}{x-y}+\frac{48}{x+y}=9
$$

Let $\frac{1}{x-y}=A, \frac{1}{x+y}=B$, then we have
and

$$
\begin{equation*}
32 A+36 B=7 \tag{1}
\end{equation*}
$$

Multiplying equation (1) by 5 and (2) by 4 , we have

$$
\begin{equation*}
160 A+180 B=35 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
160 A+192 B=36 \tag{4}
\end{equation*}
$$

Subtracting (4) from (3) we have

$$
\begin{array}{r}
-12 B=-1 \\
B=\frac{1}{12}
\end{array}
$$

Substituting the value of B in (2) we get

$$
40 A+48\left(\frac{1}{12}\right)=9
$$

$$
\begin{array}{r}
40 A+4=9 \\
40 A=5 \\
A=\frac{1}{8}
\end{array}
$$

Thus $A=\frac{1}{8}$ and $B=\frac{1}{12}$

Hence

$$
A=\frac{1}{8}=\frac{1}{x-y}
$$

$$
\begin{equation*}
x-y=8 \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
B & =\frac{1}{12}=\frac{1}{x+y} \\
x+y & =12 \tag{6}
\end{align*}
$$

Adding equations (5) and (6) we have,

$$
\begin{aligned}
2 x & =20 \\
x & =10
\end{aligned}
$$

Substituting this value of x in equation (1),

$$
y=x-8=10-8=2
$$

Hence, the speed of the boat in still water $=10 \mathrm{~km} /$ hr and speed of the stream $=2 \mathrm{~km} / \mathrm{hr}$.
126.For what values of a and b does the following pair of linear equations have infinite number of solution ?
$2 x+3 y=7, a(x+y)-b(x-y)=3 a+b-2$
Ans :
[Board Term-1 2015]
We have

$$
2 x+3 y-7=0
$$

Here $a_{1}=2, b_{1}=3, c_{1}=-7$
and

$$
\begin{aligned}
a(x+y)-b(x-y) & =3 a+b-2 \\
a x+a y-b x+b y & =3 a+b-2 \\
(a-b) x+(a+b) y-(3 a+b-2) & =0
\end{aligned}
$$

Here $a_{2}=a-b, b_{2}=a+b, c_{2}=-(3 a+b-2)$
For infinite many solutions

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{2}{a-b} & =\frac{3}{a+b}=\frac{-7}{(3 a+b-2)}
\end{aligned}
$$

From $\frac{2}{a-b}=\frac{7}{3 a+b-2}$ we have

$$
\begin{aligned}
2(3 a+b-2) & =7(a-b) \\
6 a+2 b-4 & =7 a-7 b
\end{aligned}
$$

$$
\begin{equation*}
a-9 b=-4 \tag{1}
\end{equation*}
$$

From $\frac{3}{a+b}=\frac{7}{3 a+b-2}$ we have

$$
\begin{align*}
3(3 a+b-2) & =7(a+b) \\
9 a+3 b-6 & =7 a+7 b \\
2 a-4 b & =6 \\
a-2 b & =3 \tag{2}
\end{align*}
$$

Subtracting equation (1) from (2),

$$
\begin{aligned}
-7 b & =-7 \\
b & =1
\end{aligned}
$$

Substituting the value of b in equation (1),

$$
a=5
$$

Hence, $a=5, b=1$.

For all sample papers visit www.cbse.online

127. At a certain time in a deer, the number of heads and the number of legs of deer and human visitors were counted and it was found that there were 39 heads and 132 legs.

Find the number of deer and human visitors in the park.
Ans :
[Board Term-1 2015]
Let the no. of deer be x and no. of human be y.
According to the question,

$$
\begin{equation*}
x+y=39 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
4 x+2 y=132 \tag{2}
\end{equation*}
$$

Multiply equation (1) from by 2 ,

$$
\begin{equation*}
2 x+2 y=78 \tag{3}
\end{equation*}
$$

Subtract equation (3) from (2),

$$
\begin{aligned}
2 x & =54 \\
x & =27
\end{aligned}
$$

Substituting this value of x in equation (1)

$$
\begin{aligned}
27+y & =39 \\
y & =12
\end{aligned}
$$

So, No. of deer $=27$ and No. of human $=12$
128.Find the value of p and q for which the system of equations represent coincident lines $2 x+3 y=7$,

$$
(p+q+1) x+(p+2 q+2) y=4(p+q)+1
$$

Ans :
[Board Term-1 2012, Set-42]
We have

$$
\begin{aligned}
2 x+3 y & =7 \\
(p+q+1) x+(p+2 q+2) y & =4(p+q)+1
\end{aligned}
$$

Comparing given equation to $a b+b y+c=0$ we have $a_{1}=2, b_{1}=3, c_{1}=-7$
$a_{2}=p+q+1, b_{2}=p+2 q+2, c_{2}=-4(p+q)-1$
For coincident lines,

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{2}{p+q+1} & =\frac{3}{p+2 q+2}=\frac{7}{4(p+q)+1}
\end{aligned}
$$

From $\frac{3}{p+2 q+2}=\frac{7}{4(p+q)+1}$ we have

$$
\begin{align*}
7 p+14 q+14 & =12 p+12 q+3 \\
5 p-2 q-11 & =0 \tag{1}
\end{align*}
$$

From $\frac{2}{p+q+1}=\frac{7}{4(p+q)+1}$ we have

$$
\begin{align*}
8(p+q)+2 & =7 p+7 q+7 \\
8 p+8 q+2 & =7 p+7 q+7 \\
p+q-5 & =0 \tag{2}
\end{align*}
$$

Multiplying equation (2) by 5 we have

$$
\begin{equation*}
5 p+5 q-25=0 \tag{3}
\end{equation*}
$$

Subtracting equation (1) from (3) we get

$$
\begin{aligned}
7 q & =14 \\
q & =2
\end{aligned}
$$

Hence, $p=3$ and $q=2$.
129.The length of the sides of a triangle are $2 x+\frac{y}{2}, \frac{5 x}{3}+y+\frac{1}{2}$ and $\frac{2}{3} x+2 y+\frac{5}{2}$. If the triangle is equilateral, find its perimeter.
Ans:
[Board Term-1 2012]
For an equilateral Δ,

$$
2 x+\frac{y}{2}=\frac{5 x}{3}+y+\frac{1}{2}=\frac{1}{2} x+2 y+\frac{5}{2}
$$

Now

$$
\begin{align*}
\frac{4 x+y}{2} & =\frac{10 x+6 y+3}{6} \\
12 x+3 y & =10 x+6 y+3 \\
2 x-3 y & =3 \tag{1}
\end{align*}
$$

Again, $\quad 2 x+\frac{y}{2}=\frac{2}{3} x+2 y+\frac{5}{2}$

$$
\begin{align*}
\frac{4 x+y}{2} & =\frac{4 x+12 y+15}{6} \\
12 x+3 y & =4 x+12 y+15 \\
8 x-9 y & =15 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 3 we have

$$
\begin{equation*}
6 x-9 y=9 \tag{1}
\end{equation*}
$$

Subtracting it from (2) we get

$$
2 x=6 \Rightarrow x=3
$$

Substituting this value of x into (1), we get

$$
\begin{array}{rlrl}
2 \times 3-3 y & =3 \\
\text { or, } & \quad 3 y & =3 \Rightarrow y=1
\end{array}
$$

Now substituting these value of x and y

$$
2 x+\frac{y}{2}=2 \times 3+\frac{1}{2}=6.5
$$

The perimeter of equilateral triangle $=$ side $\times 3$

$$
=6.5 \times 3=19.5 \mathrm{~cm}
$$

Hence, the perimeter of $\Delta=19.5 \mathrm{~m}$
130.When 6 boys were admitted and 6 girls left, the percentage of boys increased from 60% to 75%. Find the original no. of boys and girls in the class.
Ans:
[Board Term-1 2015]
Let the no. of boys be x and no. of girls be y.
No. of students $=x+y$
Now $\quad \frac{x}{x+y}=\frac{60}{100}$
and $\quad \frac{x+6}{(x+6)+(y-6)}=\frac{75}{100}$
From (1), we have

$$
\begin{align*}
100 x & =60 x+60 y \\
40 x-60 y & =0 \\
2 x-3 y & =0 \\
2 x & =3 y \tag{3}
\end{align*}
$$

From (2) we have

$$
\begin{aligned}
100 x+600 & =75 x+75 y \\
25 x-75 y & =-600
\end{aligned}
$$

$$
\begin{equation*}
x-3 y=-24 \tag{4}
\end{equation*}
$$

Substituting the value of $3 y$ from (3) in to (4) we have,

$$
\begin{aligned}
x-2 x & =-24 \Rightarrow x=24 \\
3 y & =24 \times 2 \\
y & =16
\end{aligned}
$$

Hence, no. of boys is 24 and no. of girls is 16 .

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

131.A cyclist, after riding a certain distance, stopped for half an hour to repair his bicycle, after which he completes the whole journey of 30 km at half speed in 5 hours. If the breakdown had occurred 10 km farther off, he would have done the whole journey in 4 hours. Find where the breakdown occurred and his original speed.

Ans :

[Board Term-1 2013, Set-32]
Let x be the distance of the place where breakdown occurred and y be the original speed,
or

$$
\frac{x}{y}+\frac{30-x}{\frac{y}{2}}=5
$$

$$
\begin{align*}
\frac{x}{y}+\frac{60-2 x}{y} & =5 \\
x+60-2 x & =5 y \tag{1}\\
x+5 y & =60
\end{align*}
$$

and $\quad \frac{x+10}{y}+\frac{30-(x+10)}{\frac{y}{2}}=4$

$$
\begin{align*}
\frac{x+10}{y}+\frac{60-2(x+10)}{y} & =4 \\
x+10+60-2 x-20 & =4 y \\
-x+50 & =4 y \\
x+4 y & =50 \tag{2}
\end{align*}
$$

Subtract equation (2) from (1), $y=10 \mathrm{~km} / \mathrm{hr}$.
Now from (2),

$$
\begin{aligned}
x+40 & =50 \\
x & =10 \mathrm{~km}
\end{aligned}
$$

Break down occurred at 10 km and original speed was $10 \mathrm{~km} / \mathrm{hr}$.
132.The population of a village is 5000 . If in a year, the number of males were to increase by 5% and that of a female by 3% annually, the population would grow to 5202 at the end of the year. Find the number of males and females in the village.
Ans:
[Board Term-1 2012, Set-60]
Let the number of males be x and females be y
Now

$$
\begin{equation*}
x+y=5,000 \tag{1}
\end{equation*}
$$

and

$$
\begin{aligned}
x+\frac{5}{100} x+y+\frac{3 y}{100} & =5202 \\
\frac{5 x+3 y}{100}+5000 & =5202
\end{aligned}
$$

$$
\begin{align*}
& 5 x+3 y=(5202-5000) \times 100 \\
& 5 x+3 y=20200 \tag{2}
\end{align*}
$$

Multiply (1) by 3 we have

$$
\begin{equation*}
3 x+3 y=15,000 \tag{3}
\end{equation*}
$$

Subtracting (2) from (3) we have

$$
2 x=5200 \Rightarrow x=2600
$$

Substituting value of x in (1) we have

$$
\begin{array}{r}
2600-y=5000 \\
y=2400
\end{array}
$$

Thus no. of males is 2600 and no. of females is 2400 .

CHAPTER 4

QUADRATIC EQUATIONS

ONE MARK QUESTIONS

Multiple Choice Questions

1. The sum and product of the zeroes of a quadratic polynomial are 3 and -10 respectively. The quadratic polynomial is
(a) $x^{2}-3 x+10$
(b) $x^{2}+3 x-10$
(c) $x^{2}-3 x-10$
(d) $x^{2}+3 x+10$

Ans :
[Board 2020 Delhi Basic]
Sum of zeroes,

$$
\alpha+\beta=3
$$

and product of zeroes, $\quad \alpha \beta=-10$

Quadratic polynomial,

$$
\begin{aligned}
p(x) & =x^{2}-(\alpha+\beta)+\alpha \beta \\
& =x^{2}-3 x-10
\end{aligned}
$$

Thus (c) is correct option.
2. If the sum of the zeroes of the quadratic polynomial $k x^{2}+2 x+3 k$ is equal to their product, then k equals
(a) $\frac{1}{3}$
(b) $-\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$

Ans :
[Board 2020 OD Basic]
We have $\quad p(x)=k x^{2}+2 x+3 k$
Comparing it by $a x^{2}+b x+c$, we get $a=k, b=2$ and $c=3 k$.

Sum of zeroes,

$$
\alpha+\beta=-\frac{b}{a}=-\frac{2}{k}
$$

Product of zeroes,

$$
\alpha \beta=\frac{c}{a}=\frac{3 k}{k}=3
$$

According to question, we have

$$
\begin{aligned}
\alpha+\beta & =\alpha \beta \\
-\frac{2}{k} & =3 \Rightarrow k=-\frac{2}{3}
\end{aligned}
$$

Thus (d) is correct option.
3. If α and β are the zeroes of the polynomial $x^{2}+2 x+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to
(a) -2
(b) 2
(c) 0

Ans :
[Board 2020 Delhi Basic]
Since α and β are the zeros of polynomial $x^{2}+2 x+1$,
Sum of zeroes,

$$
\alpha+\beta=-\frac{2}{1}=-2
$$

and product of zeroes,

$$
\alpha \beta=\frac{1}{1}=1
$$

Now,

$$
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=-\frac{2}{1}=-2
$$

Thus (a) is correct option.
4. If α and β are the zeroes of the polynomial $2 x^{2}-13 x+6$, then $\alpha+\beta$ is equal to
(a) -3
(b) 3
(c) $\frac{13}{2}$
(d) $-\frac{13}{2}$

Ans:
[Board 2020 Delhi Basic]
We have

$$
p(x)=2 x^{2}-13 x+6
$$

Comparing it with $a x^{2}+b x+c$ we get $a=2, b$ $=-13$ and $c=6$

Sum of zeroes $\alpha+\beta=-\frac{b}{a}=-\frac{(-13)}{2}=\frac{13}{2}$
Thus (c) is correct option.
5. The roots of the quadratic equation $x^{2}-0.04=0$ are
(a) ± 0.2
(b) ± 0.02
(c) 0.4
(d) 2

Ans :
[Board 2020 OD Standard]
We have $\quad x^{2}-0.04=0$

$$
\begin{aligned}
x^{2} & =0.04 \\
x & = \pm \sqrt{0.04} \\
x & = \pm 0.2
\end{aligned}
$$

Thus (a) is correct option.
6. If $1 / 2$ is a root of the equation $x^{2}+k x-\frac{5}{4}=0$, then the
value of k is
(a) 2
(b) -2
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$

Ans :

We have

$$
x^{2}+k x-\frac{5}{4}=0
$$

Since, $1 / 2$ is a root of the given quadratic equation, it must satisfy it.

Thus

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{2}+k\left(\frac{1}{2}\right)-\frac{5}{4} & =0 \\
\frac{1}{4}+\frac{k}{2}-\frac{5}{4} & =0 \\
\frac{1+2 k-5}{4} & =0 \\
2 k-4 & =0 \Rightarrow k=2
\end{aligned}
$$

Thus (a) is correct option.
7. Each root of $x^{2}-b x+c=0$ is decreased by 2 . The resulting equation is $x^{2}-2 x+1=0$, then
(a) $b=6, c=9$
(b) $b=3, c=5$
(c) $b=2, c=-1$
(d) $b=-4, c=3$

Ans :
For $x^{2}-b x+c=0$ we have

$$
\begin{array}{r}
\alpha+\beta=b \\
\alpha \beta=c
\end{array}
$$

Now $\quad \alpha-2+\beta-2=\alpha+\beta-4=b-4$

$$
\begin{aligned}
(\alpha-2)(\beta-2) & =\alpha \beta-2(\alpha+\beta)+4 \\
& =c-2 b+4
\end{aligned}
$$

For $x^{2}-2 x+1=0$ we have
and

$$
\begin{aligned}
2 & =b-4 \Rightarrow b=6 \\
1 & =c-2 b+4 \\
& =c-2 \times 6+4 \\
& =c-8 \\
c & =1+8=9
\end{aligned}
$$

Thus (a) is correct option.
8. Value(s) of k for which the quadratic equation $2 x^{2}-k x+k=0$ has equal roots is/are
(a) 0
(b) 4
(c) 8
(d) 0,8

Ans :
We have

$$
2 x^{2}-k x+k=0
$$

Comparing with $a x^{2}+b x+c=0$ we $a=2, b=-k$ and $c=k$.
For equal roots, the discriminant must be zero.
Thus

$$
b^{2}-4 a c=0
$$

$$
\begin{aligned}
(-k)^{2}-4(2) k & =0 \\
k^{2}-8 k & =0 \\
k(k-8) & =0 \Rightarrow k=0,8
\end{aligned}
$$

Hence, the required values of k are 0 and 8 .
Thus (d) is correct option.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

9. If the equation $\left(m^{2}+n^{2}\right) x^{2}-2(m p+n q) x+p^{2}+q^{2}=0$ has equal roots, then
(a) $m p=n q$
(b) $m q=n p$
(c) $m n=p q$
(d) $m q=\sqrt{n p}$

Ans:
For equal roots, $\quad b^{2}=4 a c$

$$
\begin{aligned}
4(m p+n q)^{2} & =4\left(m^{2}+n^{2}\right)\left(p^{2}+q^{2}\right) \\
m^{2} q^{2}+n^{2} p^{2}-2 m n p q & =0 \\
(m q-n p)^{2} & =0 \\
m q-n p & =0 \\
m q & =n p
\end{aligned}
$$

Thus (b) is correct option.
10. The linear factors of the quadratic equation $x^{2}+k x+1=0$ are
(a) $k \geq 2$
(b) $k \leq 2$
(c) $k \geq-2$
(d) $2 \leq k \leq-2$

Ans :
We have, $\quad x^{2}+k x+1=0$
Comparing with $a x^{2}+b x+c=0$ we get $a=1, b=k$ and $c=1$.

For linear factors, $\quad b^{2}-4 a c \geq 0$

$$
\begin{aligned}
k^{2}-4 \times 1 \times 1 & \geq 0 \\
\left(k^{2}-2^{2}\right) & \geq 0 \\
(k-2)(k+2) & \geq 0
\end{aligned}
$$

$$
\mathrm{d} 252
$$

$$
k \geq 2 \text { and } k \leq-2
$$

Thus (d) is correct option.
11. If one root of the quadratic equation $a x^{2}+b x+c=0$ is the reciprocal of the other, then
(a) $b=c$
(b) $a=b$
(c) $a c=1$
(d) $a=c$

Ans :
If one root is α, then the other $\frac{1}{\alpha}$.
Product of roots,

$$
\begin{aligned}
\alpha \cdot \frac{1}{\alpha} & =\frac{c}{a} \\
1 & =\frac{c}{a} \Rightarrow a=c
\end{aligned}
$$

Thus (d) is correct option.
12. The quadratic equation $2 x^{2}-\sqrt{5} x+1=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans :
We have

$$
2 x^{2}-\sqrt{5 x}+1=0
$$

Comparing with $a x^{2}+b x+c=0$ we get $a=2, b=-\sqrt{5}$ and $c=1$,
Now $\quad b^{2}-4 a c=(-\sqrt{5})^{2}-4 \times(2) \times(1)$

$$
=5-8=-3<0
$$

Since, discriminant is negative, therefore quadratic equation $2 x^{2}-\sqrt{5} x+1=0$ has no real roots i.e., imaginary roots.
Thus (c) is correct option.
13. The real roots of the equation $x^{2 / 3}+x^{1 / 3}-2=0$ are
(a) 1,8
(b) $-1,-8$
(c) $-1,8$
(d) $1,-8$

Ans :
We have

$$
x^{2 / 3}+x^{1 / 3}-2=0
$$

Substituting $x^{1 / 3}=y$ we obtain,

$$
\begin{aligned}
y^{2}+y-2 & =0 \\
(y-1)(y+2) & =0 \Rightarrow y=1 \text { or } y=-2
\end{aligned}
$$

Thus

$$
x^{1 / 3}=1 \Rightarrow x=(1)^{3}=1
$$

or

$$
x^{1 / 3}=-2 \Rightarrow x=(-2)^{3}=-8
$$

Hence, the real roots of the given equations are 1 , -8.
Thus (d) is correct option.
14. $\left(x^{2}+1\right)^{2}-x^{2}=0$ has
(a) four real roots
(b) two real roots
(c) no real roots
(d) one real root

Ans :
We have

$$
\begin{aligned}
\left(x^{2}+1\right)^{2}-x^{2} & =0 \\
x^{4}+1+2 x^{2}-x^{2} & =0 \\
x^{4}+x^{2}+1 & =0 \\
\left(x^{2}\right)^{2}+x^{2}+1 & =0
\end{aligned}
$$

Let $x^{2}=y$ then we have

$$
y^{2}+y+1=0
$$

Comparing with $a y^{2}+b y+c=0$ we get $a=1, b=1$ and $c=1$
Discriminant,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(1)^{2}-4(1)(1) \\
& =1-4=-3
\end{aligned}
$$

Since, $D<0, y^{2}+y+1=0$ has no real roots.
i.e. $x^{4}+x^{2}+1=0$ or $\left(x^{2}+1\right)^{2}-x^{2}=0$ has no real roots.
Thus (c) is correct option.
15. The equation $2 x^{2}+2(p+1) x+p=0$, where p is real, always has roots that are
(a) Equal
(b) Equal in magnitude but opposite in sign
(c) Irrational
(d) Real

Ans:
We have $\quad 2 x^{2}+2(p+1) x+p=0$,
Comparing with $a x^{2}+b x+c=0$ we get $a=2$, $b=2(p+1)$ and $c=p$.
Now

$$
\begin{aligned}
b^{2}-4 a c & =[2(p+1)]^{2}-4(2 p) \\
& =4(p+1)^{2}-8 p \\
& =4 p^{2}+8 p+4-8 p \\
& =4\left(p^{2}+1\right)
\end{aligned}
$$

For any real value of $p, 4\left(p^{2}+1\right)$ will always be positive as p^{2} cannot be negative for real p. Hence, the discriminant $b^{2}-4 a c$ will always be positive.
When the discriminant is greater than 0 or is positive, then the roots of a quadratic equation are real.
Thus (d) is correct option.
16. The condition for one root of the quadratic equation
$a x^{2}+b x+c=0$ to be twice the other, is
(a) $b^{2}=4 a c$
(b) $2 b^{2}=9 a c$
(c) $c^{2}=4 a+b^{2}$
(d) $c^{2}=9 a-b^{2}$

Ans :

Sum of zeroes

$$
\begin{aligned}
\alpha+2 \alpha & =-\frac{b}{a} \\
3 \alpha & =-\frac{b}{a} \Rightarrow \alpha=-\frac{b}{3 a}
\end{aligned}
$$

Product of zeroes $\quad \alpha \times 2 \alpha=\frac{c}{a}$

$$
\begin{aligned}
2 \alpha^{2} & =\frac{c}{a} \\
2\left(-\frac{b}{3 a}\right)^{2} & =\frac{c}{a} \\
\frac{2 b^{2}}{9 a^{2}} & =\frac{c}{a} \\
2 a b^{2}-9 a^{2} c & =0 \\
a\left(2 b^{2}-9 a c\right) & =0
\end{aligned}
$$

Since, $a \neq 0$, $2 b^{2}=9 a c$
Hence, the required condition is $2 b^{2}=9 a c$.
Thus (b) is correct option.
No Need to Buy any Question Bank or Sample Chapter From Market. Download Free PDF of all Study Material from

www.cbse.online

17. If $x^{2}+y^{2}=25, x y=12$, then x is
(a) $(3,4)$
(b) $(3,-3)$
(c) $(3,4,-3,-4)$
(d) $(3,-3)$

Ans :
We have $\quad x^{2}+y^{2}=25$
and

$$
x y=12
$$

$$
\begin{aligned}
x^{2}+\left(\frac{12}{x}\right)^{2} & =25 \\
x^{4}+144-25 x^{2} & =0 \\
\left(x^{2}-16\right)\left(x^{2}-9\right) & =0
\end{aligned}
$$

Hence,

$$
x^{2}=16 \Rightarrow x= \pm 4
$$

and

$$
x^{2}=9 \Rightarrow x= \pm 3
$$

Thus (c) is correct option.
18. The quadratic equation $2 x^{2}-3 \sqrt{2} x+\frac{9}{4}=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans :
We have

$$
2 x^{2}-3 \sqrt{2} x+\frac{9}{4}=0
$$

Here $\quad a=2, b=-3 \sqrt{2}, c=\frac{9}{4}$
Discriminant

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-3 \sqrt{2})^{2}-4 \times 2 \times \frac{9}{4} \\
& =18-18=0
\end{aligned}
$$

Thus, $2 x^{2}-3 \sqrt{2} x+\frac{9}{4}=0$ has real and equal roots.
Thus (b) is correct option.
19. The quadratic equation $x^{2}+x-5=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans :
We have $x^{2}+x-5=0$
Here, $\quad a=1, b=1, c=-5$
Now,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(1)^{2}-4 \times 1 \times(-5) \\
& =21>0
\end{aligned}
$$

So $x^{2}+x-5=0$ has two distinct real roots.
Thus (a) is correct option.
20. The quadratic equation $x^{2}+3 x+2 \sqrt{2}=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans :
We have

$$
x^{2}+3 x+2 \sqrt{2}=0
$$

Here, $\quad a=1, b=3$ and $c=2 \sqrt{2}$
Now,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(3)^{2}-4(1)(2 \sqrt{2}) \\
& =9-8 \sqrt{2}<0
\end{aligned}
$$

Hence, roots of the equation are not real.
Thus (c) is correct option.
21. The quadratic equation $5 x^{2}-3 x+1=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

$$
=16+12 \sqrt{2}>0
$$

Hence, the given equation has two distinct real roots, Thus (a) is correct option.

Don't Take Printout of This PDF. Buy Hard Book at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

Ans :
We have

$$
5 x^{2}-3 x+1=0
$$

Here

$$
a=5, b=-3, c=1
$$

Now,

$$
\begin{aligned}
D & =b^{2}-4 a c=(-3)^{2}-4(5)(1) \\
& =9-20<0
\end{aligned}
$$

Hence, roots of the equation are not real.
Thus (c) is correct option.
22. The quadratic equation $x^{2}-4 x+3 \sqrt{2}=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans :
We have

$$
x^{2}-4 x+3 \sqrt{2}=0
$$

Here $\quad a=1, b=-4$ and $c=3 \sqrt{2}$
Now $\quad D=b^{2}-4 a c=(-4)^{2}-4(1)(3 \sqrt{2})$

$$
=16-12 \sqrt{2}
$$

$$
=16-12 \times(1.41)
$$

$$
=16-16.92=-0.92
$$

$$
b^{2}-4 a c<0
$$

Hence, the given equation has no real roots.
Thus (c) is correct option.
23. The quadratic equation $x^{2}+4 x-3 \sqrt{2}=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots
24. The quadratic equation $x^{2}-4 x-3 \sqrt{2}=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans :
We have $\quad x^{2}-4 x-3 \sqrt{2}=0$
Here

$$
a=1, b=-4 \text { and } c=-3 \sqrt{2}
$$

Now

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-4)^{2}-4(1)(-3 \sqrt{2}) \\
& =16+12 \sqrt{2}>0
\end{aligned}
$$

Hence, the given equation has two distinct real roots. Thus (a) is correct option.
25. The quadratic equation $3 x^{2}+4 \sqrt{3} x+4$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans :
We have $\quad 3 x^{2}+4 \sqrt{3} x+4=0$
Here, $\quad a=3, b=4 \sqrt{3}$ and $c=4$
Now $\quad D=b^{2}-4 a c=(4 \sqrt{3})^{2}-4(3)(4)$

$$
=48-48=0
$$

Hence, the equation has real and equal roots.
Thus (b) is correct option.
26. Which of the following equations has 2 as a root?
(a) $x^{2}-4 x+5=0$
(b) $x^{2}+3 x-12=0$
(c) $2 x^{2}-7 x+6=0$
(d) $3 x^{2}-6 x-2=0$

Ans :
(a) Substituting, $x=2$ in $x^{2}-4 x+5$, we get

Ans :

We have

$$
x^{2}+4 x-3 \sqrt{2}=0
$$

Here

$$
a=1, b=4 \text { and } c=-3 \sqrt{2}
$$

Now $\quad D=b^{2}-4 a c=(4)^{2}-4(1)(-3 \sqrt{2})$

$$
(2)^{2}-4(2)+5=4-8+5=1 \neq 0
$$

So, $\quad x=2$ is not a root of

$$
x^{2}-4 x+5=0
$$

(b) Substituting, $x=2$ in $x^{2}+3 x-12$, we get

$$
(2)^{2}+3(2)-12=4+6-12=-2 \neq 0
$$

So, $x=2$ is not a root of $x^{2}+3 x-12=0$.
(c) Substituting, $\quad x=2$ in $2 x^{2}-7 x+6$, we get

$$
\begin{aligned}
2(2)^{2}-7(2)+6 & =2(4)-14+6 \\
& =8-14+6 \\
& =14-14=0
\end{aligned}
$$

So, $x=2$ is a root of the equation $2 x^{2}-7 x+6=0$.
(d) Substituting, $x=2$ in $3 x^{2}-6 x-2$, we get

$$
3(2)^{2}-6(2)-2=12-12-2=-2 \neq 0
$$

So, $\quad x=2$ is not a root of

$$
3 x^{2}-6 x-2=0
$$

Thus (c) is correct option.
27. Which of the following equations has the sum of its roots as 3 ?
(a) $2 x^{2}-3 x+6=0$
(b) $-x^{2}+3 x-3=0$
(c) $\sqrt{2} x^{2}-\frac{3}{\sqrt{2}} x+1=0$
(d) $3 x^{2}-3 x+3=0$

Ans :

Sum of the roots,

$$
\alpha+\beta=\frac{- \text { Coefficient of } x}{\text { Coefficient of } x^{2}}=-\frac{b}{a}
$$

Option a : $\quad \alpha+\beta=-\left(\frac{-3}{2}\right)=\frac{3}{2} \neq 3$
Option b: $\quad \alpha+\beta=-\left(\frac{3}{-1}\right)=3$
d270

Option c : $\quad \alpha+\beta=-\left(\frac{\frac{3}{\sqrt{2}}}{\sqrt{2}}\right)=\frac{3}{2} \neq 3$
Option d $\quad \alpha+\beta=-\left(\frac{-3}{3}\right)=1 \neq 3$
Thus (b) is correct option.
28. Assertion : $4 x^{2}-12 x+9=0$ has repeated roots.

Reason : The quadratic equation $a x^{2}+b x+c=0$ have repeated roots if discriminant $D>0$.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion

(A).

(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
Reason is false because if $D=0$, equation has repeated roots.

Assertion

$$
\begin{aligned}
& 4 x^{2}-12 x+9=0 \\
& \qquad=b^{2}-4 a c \\
& =(-12)^{2}-4(4)(9) \\
& =144-144=0
\end{aligned}
$$

Roots are repeated.
Assertion (A) is true but reason (R) is false.
Thus (c) is correct option.
29. Assertion : The equation $x^{2}+3 x+1=(x-2)^{2}$ is a quadratic equation.
Reason : Any equation of the form $a x^{2}+b x+c=0$ where $a \neq 0$, is called a quadratic equation.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans:
We have, $x^{2}+3 x+1=(x-2)^{2}=x^{2}-4 x+4$

$$
\begin{aligned}
x^{2}+3 x+1 & =x^{2}-4 x+4 \\
7 x-3 & =0
\end{aligned}
$$

It is not of the form $a x^{2}+b x+c=0$
(d) Assertion (A) is false but reason (R) is true.

Thus (d) is correct option.
30. Assertion: The values of x are $-\frac{a}{2}, a$ for a quadratic equation $2 x^{2}+a x-a^{2}=0$.
Reason : For quadratic equation $a x^{2}+b x+c=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
We have

$$
\begin{aligned}
& 2 x^{2}+a x-a^{2}=0 \\
& x=\frac{-a \pm \sqrt{a^{2}+8 a^{2}}}{4} \\
& =\frac{-a+3 a}{4}=\frac{2 a}{4}, \frac{-4 a}{4} \\
& x=\frac{a}{2},-a
\end{aligned}
$$

Assertion (A) is false but reason (R) is true.
Thus (d) is correct option.
31. Assertion : The equation $8 x^{2}+3 k x+2=0$ has equal roots then the value of k is $\pm \frac{8}{3}$.
Reason : The equation $a x^{2}+b x+c=0$ has equal roots if $D=b^{2}-4 a c=0$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
We have

$$
8 x^{2}+3 k x+2=0
$$

Discriminant,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(3 k)^{2}-4 \times 8 \times 2=9 k^{2}-64
\end{aligned}
$$

For equal roots, $\quad D=0$

$$
\begin{aligned}
9 k^{2}-64 & =0 \\
9 k^{2} & =64 \\
k^{2} & =\frac{64}{9} \Rightarrow k= \pm \frac{8}{3}
\end{aligned}
$$

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Thus (a) is correct option.
32. Assertion : The roots of the quadratic equation $x^{2}+2 x+2=0$ are imaginary.
Reason : If discriminant $D=b^{2}-4 a c<0$ then the roots of quadratic equation $a x^{2}+b x+c=0$ are
imaginary.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
We have

$$
x^{2}+2 x+2=0
$$

Discriminant,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(2)^{2}-4 \times 1 \times 2 \\
& =4-8=-4<0
\end{aligned}
$$

d275

Roots are imaginary.
Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Thus (a) is correct option.
Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online

Fill in the Blank Questions

33. A real number α is said to be \qquad of the quadratic equation $a x^{2}+b x+c=0$, if $a \alpha^{2}+b \alpha+c=0$.
Ans :
root

34. For any quadratic equation $a x^{2}+b x+c=0$, $b^{2}-4 a c$, is called the \qquad of the equation.
Ans :
discriminant
35. If the discriminant of a quadratic equation is zero, then its roots are \qquad and \qquad
Ans :
real, equal
36. If the discriminant of a quadratic equation is greater than zero, then its roots are \qquad and
Ans :
real, distinct
37. A polynomial of degree 2 is called the polynomial.
Ans :
quadratic
38. A quadratic equation cannot have more than roots.
Ans :
two
d281
39. Let $a x^{2}+b x+c=0$, where a, b, c are real numbers, $a \neq 0$, be a quadratic equation, then this equation has no real roots if and only if \qquad
Ans :
$b^{2}<4 a c$

40. If the product $a c$ in the quadratic equation $a x^{2}+b x+c$ is negative, then the equation cannot have \qquad roots.
Ans:
Non-real

d283
41. The equation of the form $a x^{2}+b x=0$ will always have \qquad roots.
Ans :
real
42. A quadratic equation in the variable x is of the form

$$
a x^{2}+b x+c=0
$$

where a, b, c are real numbers and a \qquad
Ans :
$\neq 0$

43. The roots of a quadratic equation is same as the \qquad of the corresponding quadratic polynomial.
Ans:
zero

d286
44. Value of the roots of the quadratic equation,
$x^{2}-x-6=0$ are \qquad .

Ans:
[Board 2020 OD Basic]

$$
\begin{aligned}
x^{2}-x-6 & =0 \\
x^{2}-3 x+2 x-6 & =0 \\
x(x-3)+2(x-3) & =0 \\
(x-3)(x+2) & =0 \Rightarrow x=3 \text { and } x=-2
\end{aligned}
$$

45. If quadratic equation $3 x^{2}-4 x+k=0$ has equal roots, then the value of k is \qquad .
Ans :
[Board 2020 Delhi Basic]

Given, quadratic equation is $3 x^{2}-4 x+k=0$

Comparing with $a x^{2}+b x+c=0$, we get $a=3$, $b=-4$ and $c=k$
For equal roots, $\quad b^{2}-4 a c=0$

$$
(-4)^{2}-4(3)(k)=0
$$

$$
\begin{aligned}
16-12 k & =0 \\
k & =\frac{16}{12}=\frac{4}{3}
\end{aligned}
$$

Very Short Answer Questions

46. Find the positive root of $\sqrt{3 x^{2}+6}=9$.

Ans :
[Board Term-2, 2015]
We have $\quad \sqrt{3 x^{2}+6}=9$

$$
\begin{aligned}
3 x^{2}+6 & =81 \\
3 x^{2} & =81-6=75 \\
x^{2} & =\frac{75}{3}=25
\end{aligned}
$$

Thus

$$
x= \pm 5
$$

Hence 5 is positive root.
47. If $x=-\frac{1}{2}$, is a solution of the quadratic equation $3 x^{2}+2 k x-3=0$, find the value of k.
Ans :
[Board Term-2, Delhi 2015]
We have $\quad 3 x^{2}+2 k x-3=0$
Substituting $x=-\frac{1}{2}$ in given equation we get

$$
\begin{aligned}
3\left(-\frac{1}{2}\right)^{2}+2 k\left(-\frac{1}{2}\right)-3 & =0 \\
\frac{3}{4}-k-3 & =0 \\
k & =\frac{3}{4}-3 \\
& =\frac{3-12}{4}=\frac{-9}{4}
\end{aligned}
$$

Hence $k=\frac{-9}{4}$
48. Find the roots of the quadratic equation $\sqrt{3} x^{2}-2 x-\sqrt{3}=0$
Ans :
[Board Term-2, 2012, 2011]
We have

$$
\begin{aligned}
\sqrt{3} x^{2}-2 x-\sqrt{3} & =0 \\
\sqrt{3} x^{2}-3 x+x-\sqrt{3} & =0 \\
\sqrt{3} x(x-\sqrt{3})+1(x-\sqrt{3}) & =0
\end{aligned}
$$

Thus

$$
(x-\sqrt{3})(\sqrt{3} x+1)=0
$$

$$
x=\sqrt{3}, \frac{-1}{\sqrt{3}}
$$

49. Find the value of k, for which one root of the quadratic equation $k x^{2}-14 x+8=0$ is six times the other.
Ans :
[Board Term-2, 2016]
We have

$$
k x^{2}-14 x+8=0
$$

Let one root be α and other root be 6α.
Sum of roots,

$$
\begin{align*}
\alpha+6 \alpha & =\frac{14}{k} \\
7 \alpha & =\frac{14}{k} \text { or } \alpha=\frac{2}{k} \tag{1}
\end{align*}
$$

Product of roots , $\quad \alpha(6 \alpha)=\frac{8}{k}$ or $6 \alpha^{2}=\frac{8}{k}$
Solving (1) and (2), we obtain

$$
\begin{aligned}
6\left(\frac{2}{k}\right)^{2} & =\frac{8}{k} \\
6 \times \frac{4}{k^{2}} & =\frac{8}{k} \\
\frac{3}{k^{2}} & =\frac{1}{k} \\
3 k & =k^{2} \\
3 k-k^{2} & =0 \\
k[3-k] & =0 \\
k & =0 \text { or } k=3
\end{aligned}
$$

Since $k=0$ is not possible, therefore $k=3$.
50. If one root of the quadratic equation $6 x^{2}-x-k=0$ is $\frac{2}{3}$, then find the value of k.
Ans :
[Board Term-2 Foreign-2, 2017]
We have

$$
6 x^{2}-x-k=0
$$

Substituting $x=\frac{2}{3}$, we get

$$
\begin{aligned}
6\left(\frac{2}{3}\right)^{2}-\frac{2}{3}-k & =0 \\
6 \times \frac{4}{9}-\frac{2}{3}-k & =0 \\
\frac{8}{3}-\frac{2}{3}-k & =0 \\
\frac{8-2}{3}-k & =0 \\
2-k & =0
\end{aligned}
$$

Thus $k=2$.
51. Find the value(s) of k if the quadratic equation $3 x^{2}-k \sqrt{3} x+4=0$ has real roots.
Ans :
[SQP 2017]
If discriminant $D=b^{2}-4 a c$ of quadratic equation is equal to zero, or more than zero, then roots are real.
We have

$$
3 x^{2}-k \sqrt{3} x+4=0
$$

Comparing with $a x^{2}+b x+c=0=0$ we get

$$
a=3, b=-k \sqrt{3} \text { and } c=4
$$

For real roots

$$
b^{2}-4 a c \geq 0
$$

$$
\begin{aligned}
(-k \sqrt{3})^{2}-4 \times 3 \times 4 & \geq 0 \\
3 k^{2}-48 & \geq 0 \\
k^{2}-16 & \geq 0 \\
(k-4)(k+4) & \geq 0
\end{aligned}
$$

Thus $k \leq-4$ and $k \geq 4$

For Free PDFS of all Sample Papers Visit www.cbse.online

TWO MARKS QUESTIONS

52. For what values of k, the roots of the equation $x^{2}+4 x+k=0$ are real?
Ans :
[Board 2019 Delhi]
We have

$$
x^{2}+4 x+k=0 .
$$

Comparing the given equation with $a x^{2}+b x+c=0$ we get $a=1, b=4, c=k$.
Since, given the equation has real roots,

$$
\begin{aligned}
D & \geqslant 0 \\
b^{2}-4 a c & \geqslant 0 \\
4^{2}-4 \times 1 \times k & \geqslant 0 \\
4 k & \leqslant 16 \\
k & \leqslant 4
\end{aligned}
$$

53. Find the value of k for which the roots of the equations $3 x^{2}-10 x+k=0$ are reciprocal of each other.
Ans :
[Board 2019 Delhi]
We have

$$
3 x^{2}-10 x+k=0
$$

Comparing the given equation with $a x^{2}+b x+c=0$
we get $a=3, b=-10, c=k$
Let one root be α so other root is $\frac{1}{\alpha}$.
Now product of roots $\alpha \times \frac{1}{\alpha}=\frac{c}{a}$

$$
1=\frac{k}{3} \Rightarrow k=3
$$

Hence, value of k is 3 .
54. Find the value of k such that the polynomial $x^{2}-(k+6) x+2(2 k+1)$ has sum of its zeros equal to half of their product.
Ans :
[Board 2019 Delhi]
Let α and β be the roots of given quadratic equation

$$
x^{2}-(k+6) x+2(2 k+1)=0
$$

Now sum of roots,. $\quad \alpha+\beta=-\frac{-(k+6)}{1}=k+6$
Product of roots, $\quad \alpha \beta=\frac{2(2 k+1)}{1}=2(2 k+1)$
According to given condition,

$$
\begin{aligned}
\alpha+\beta & =\frac{1}{2} \alpha \beta \\
k+6 & =\frac{1}{2}[2(2 k+1)] \\
k+6 & =2 k+1 \Rightarrow k=5
\end{aligned}
$$

Hence, the value of k is 5 .
55. Find the nature of roots of the quadratic equation $2 x^{2}-4 x+3=0$.
Ans :
[Board 2019 OD]
We have

$$
2 x^{2}-4 x+3=0
$$

Comparing the given equation with $a x^{2}+b x+c=0$ we get $a=2 b=-4, c=3$

Now

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-4)^{2}-4(2) \times(3) \\
& =-8<0 \text { or }(-\mathrm{ve})
\end{aligned}
$$

$$
\mathrm{d} 311
$$

Hence, the given equation has no real roots.
56. Find the roots of the quadratic equation $6 x^{2}-x-2=0$

Ans :
[Board Term-2, 2012]
We have

$$
\begin{array}{r}
6 x^{2}-x-2=0 \\
6 x^{2}+3 x-4 x-2=0 \\
3 x(2 x+1)-2(2 x+1)=0
\end{array}
$$

$$
\begin{aligned}
(2 x+1)(3 x-2) & =0 \\
3 x-2 & =0 \text { or } 2 x+1=0 \\
x & =\frac{2}{3} \text { or } x=-\frac{1}{2}
\end{aligned}
$$

Hence roots of equation are $\frac{2}{3}$ and $-\frac{1}{2}$.
57. Find the roots of the following quadratic equation :
$15 x^{2}-10 \sqrt{6} x+10=0$
Ans:
[Board Term-2, 2012]
We have

$$
15 x^{2}-10 \sqrt{6} x+10=0
$$

$$
\begin{aligned}
3 x^{2}-2 \sqrt{6} x+2 & =0 \\
3 x^{2}-\sqrt{6} x-\sqrt{6} x+2 & =0
\end{aligned}
$$

$$
\mathrm{d} 108
$$

$$
\begin{aligned}
\sqrt{3} x(\sqrt{3} x-\sqrt{2})-\sqrt{2}(\sqrt{3} x-\sqrt{2}) & =0 \\
(\sqrt{3} x-\sqrt{2})(\sqrt{3} x-\sqrt{2}) & =0
\end{aligned}
$$

Thus $x=\frac{\sqrt{2}}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}}$
58. Solve the following quadratic equation for x :
$4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$
Ans :
[Board Term-2, 2013, 2012]
We have

$$
4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0
$$

$$
\begin{aligned}
4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3} & =0 \\
4 x(\sqrt{3} x+2)-\sqrt{3}(\sqrt{3} x+2) & =0 \\
(\sqrt{3} x+2)(4 x-\sqrt{3}) & =0
\end{aligned}
$$

Thus $x=-\frac{2}{\sqrt{3}}, \frac{\sqrt{3}}{4}$
59. Solve for x : $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$

Ans :
[Board Term-2 Foreign 2015]
We have

$$
\begin{aligned}
x^{2}-(\sqrt{3}+1) x+\sqrt{3} & =0 \\
x^{2}-\sqrt{3} x-1 x+\sqrt{3} & =0 \\
x(x-\sqrt{3})-1(x-\sqrt{3}) & =0 \\
(x-\sqrt{3})(x-1) & =0
\end{aligned}
$$

Thus $x=\sqrt{3}, x=1$
60. Find the roots of the following quadratic equation:
$(x+3)(x-1)=3\left(x-\frac{1}{3}\right)$
Ans :
[Board Term-2 2012]

We have

$$
\begin{aligned}
(x+3)(x-1) & =3\left(x-\frac{1}{3}\right) \\
x^{2}+3 x-x-3 & =3 x-1 \\
x^{2}-x-2 & =0 \\
x^{2}-2 x+x-2 & =0 \\
x(x-2)+1(x-2) & =0 \\
(x-2)(x+1) & =0
\end{aligned}
$$

Thus $x=2,-1$

SUPPORT OUR MISSION

Click Here to Know About Mission

61. Find the roots of the following quadratic equation :

$$
\frac{2}{5} x^{2}-x-\frac{3}{5}=0
$$

Ans:
[Board Term-2, 2012]
We have

$$
\begin{aligned}
\frac{2}{5} x^{2}-x-\frac{3}{5} & =0 \\
\frac{2 x^{2}-5 x-3}{5} & =0 \\
2 x^{2}-5 x-3 & =0 \\
2 x^{2}-6 x+x-3 & =0 \\
2 x(x-3)+1(x-3) & =0 \\
(2 x+1)(x-3) & =0
\end{aligned}
$$

Thus $x=-\frac{1}{2}, 3$
62. Solve the following quadratic equation for x :

$$
4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)=0
$$

Ans:
[Delhi Term-2, 2015]
We have

$$
4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)=0
$$

Comparing with $A x^{2}+B x+C=0$ we have

$$
\begin{aligned}
A & =4, B=-4 a^{2}, C=\left(a^{4}-b^{4}\right) \\
x & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
& =\frac{4 a^{2} \pm \sqrt{\left(-4 a^{2}\right)^{2}-4 \times 4\left(a^{4}-b^{4}\right)}}{2 \times 4} \\
& =\frac{4 a^{2} \pm \sqrt{16 a^{2}-16 a^{4}+16 b^{4}}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 a^{2} \pm \sqrt{16 b^{4}}}{8} \\
\text { or, } \quad x & =\frac{4 a^{2} \pm 4 b^{2}}{8}=\frac{a^{2} \pm b^{2}}{2}
\end{aligned}
$$

Thus either $x=\frac{a^{2}+b^{2}}{2}$ or $x=\frac{a^{2}-b^{2}}{2}$
63. Solve the following quadratic equation for x :

$$
9 x^{2}-6 b^{2} x-\left(a^{4}-b^{4}\right)=0
$$

Ans:
[Delhi Term-2, 2015]
We have

$$
9 x^{2}-6 b^{2} x-\left(a^{4}-b^{4}\right)=0
$$

Comparing with $A x^{2}+B x+C$ $=0$ we have

$$
\begin{aligned}
& A=9, B=-6 b^{2}, C=-\left(a^{4}-b^{4}\right) \\
& x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
\end{aligned}
$$

$$
x=\frac{6 b^{2} \pm \sqrt{\left(-6 b^{2}\right)^{2}-4 \times 9 \times\left\{\left(a^{4}-b^{4}\right)\right\}}}{2 \times 9}
$$

$$
=\frac{6 b^{2} \pm \sqrt{36 b^{4}+36 a^{4}-36 b^{4}}}{18}
$$

$$
=\frac{6 b^{2} \pm \sqrt{36 a^{4}}}{18}=\frac{6 b^{2} \pm 6 a^{2}}{18}
$$

Thus $x=\frac{a^{2}+b^{2}}{3}, \frac{b^{2}-a^{2}}{3}$
64. Solve the following equation for x :

$$
4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0
$$

Ans:
We have $4 x^{2}+4 b x+b^{2}-a^{2}=0$

$$
(2 x+b)^{2}-a^{2}=0
$$

$$
(2 x+b+a)(2 x+b-a)=0
$$

Thus $\quad x=\frac{-(a+b)}{2}$ and $x=\frac{a-b}{2}$
65. Solve the following quadratic equation for x :

$$
x^{2}-2 a x-\left(4 b^{2}-a^{2}\right)=0
$$

Ans:
[Board Term-2, 2015]
We have

$$
\begin{aligned}
x^{2}-2 a x-\left(4 b^{2}-a^{2}\right) & =0 \\
x^{2}-2 a x+a^{2}-4 b^{2} & =0 \\
(x-a)^{2}-(2 b)^{2} & =0
\end{aligned}
$$

d116

$$
(x-a+2 b)(x-a-2 b)=0
$$

Thus $x=a-2 b, x=a+2 b$
66. Solve the quadratic equation, $2 x^{2}+a x-a^{2}=0$ for x. Ans:
[Board Term-2 Delhi 2014]
We have

$$
2 x^{2}+a x-a^{2}=0
$$

Comparing with $A x^{2}+B x+C=0$ we have

Now

$$
\begin{aligned}
A & =2, B=a, C=-a^{2} \\
x & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
& =\frac{-a \pm \sqrt{a^{2}-4 \times 2 \times\left(-a^{2}\right)}}{2 \times 2} \\
& =\frac{-a \pm \sqrt{a^{2}+8 a^{2}}}{4} \\
& =\frac{-a \pm \sqrt{9 a^{2}}}{4}=\frac{-a \pm 3 a}{4} \\
x & =\frac{-a+3 a}{4}, \frac{-a-3 a}{4}
\end{aligned}
$$

Thus $x=\frac{a}{2},-a$

Don't Take Printout of This PDF. Buy Hard Book at

Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

67. Find the roots of the quadratic equation $4 x^{2}-4 p x+\left(p^{2}-q^{2}\right)=0$
Ans:
[Board Term-2, 2014]
We have

$$
4 x^{2}-4 p x+\left(p^{2}-q^{2}\right)=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=4, b=-4 p, c=\left(p^{2}-q^{2}\right)
$$

The roots are given by the quadratic formula,

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{4 p \pm \sqrt{16 p^{2}-4 \times 4 \times\left(p^{2}-q^{2}\right)}}{2 \times 4} \\
& =\frac{4 p \pm \sqrt{16 p^{2}-16 p^{2}+16 q^{2}}}{8}
\end{aligned}
$$

$$
=\frac{4 p \pm 4 q}{8}
$$

Thus roots are $\frac{p+q}{2}, \frac{p-q}{2}$.
68. Solve for x (in terms of a and b):
$\frac{a}{x-b}+\frac{b}{x-a}=2, x \neq a, b$
Ans :
[Board Term-2 Foreign 2016]

We have

$$
\frac{a(x-a)+b(x-b)}{(x-b)(x-a)}=2
$$

$$
\begin{gathered}
a(x-a)+b(x-b)=2\left[x^{2}-(a+b) x+a b\right] \\
a x-a^{2}+b x-b^{2}=2 x^{2}-2(a+b) x+2 a b \\
2 x^{2}-3(a+b) x+(a+b)^{2}=0 \\
2 x^{2}-2(a+b) x-(a-b) x+(a+b)^{2}=0 \\
{[2 x-(a+b)][x-(a+b)]=0}
\end{gathered}
$$

Thus $x=a+b, \frac{a+b}{2}$
69. Solve for $x: \sqrt{3} x^{2}-2 \sqrt{2} x-2 \sqrt{3}=0$

Ans :
[Board Term-2 Foreign 2016]
We have
$\sqrt{3} x^{2}-3 \sqrt{2} x+\sqrt{2} x-2 \sqrt{3}$
$=0$

$$
\begin{aligned}
\sqrt{3} x[x-\sqrt{6}]+\sqrt{2}[x-\sqrt{6}] & =0 \\
(x-\sqrt{6})(\sqrt{3} x+\sqrt{2}) & =0
\end{aligned}
$$

Thus $\quad x \sqrt{6},-\sqrt{\frac{2}{3}}$
70. If $x=\frac{2}{3}$ and $x=-3$ are roots of the quadratic equation $a x^{2}+7 x+b=0$, find the values of a and b.
Ans :
[Board Term-2 Delhi 2016]
We have

$$
\begin{equation*}
a x^{2}+7 x+b=0 \tag{1}
\end{equation*}
$$

Substituting $x=\frac{2}{3}$ in above equation we obtain

$$
\begin{align*}
\frac{4}{9} a+\frac{14}{3}+b & =0 \\
4 a+42+9 b & =0 \\
4 a+9 b & =-42 \tag{2}
\end{align*}
$$

and substituting $x=-3$ in (1) we obtain

$$
\begin{align*}
9 a-21+b & =0 \\
9 a+b & =21 \tag{3}
\end{align*}
$$

Solving (2) and (3), we get $a=3$ and $b=-6$
71. Solve for $x: \sqrt{6 x+7}-(2 x-7)=0$

Ans :
[Board Term-2 OD 2016]
We have $\sqrt{6 x+7}-(2 x-7)=0$
or,

$$
\sqrt{6 x+7}=(2 x-7)
$$

Squaring both sides we get

$$
\begin{aligned}
6 x+7 & =(2 x-7)^{2} \\
6 x+7 & =4 x^{2}-28 x+49 \\
4 x^{2}-34 x+42 & =0 \\
2 x^{2}-17 x+21 & =0 \\
2 x^{2}-14 x-3 x+21 & =0 \\
2 x(x-7)-3(x-7) & =0 \\
(x-7)(2 x-3) & =0
\end{aligned}
$$

Thus $x=7$ and $x=\frac{2}{3}$.
72. Find the roots of $x^{2}-4 x-8=0$ by the method of completing square.
Ans :
[Board Term-2, 2015]
We have

$$
\begin{aligned}
x^{2}-4 x-8 & =0 \\
x^{2}-4 x+4-4-8 & =0 \\
(x-2)^{2}-12 & =0 \\
(x-2)^{2} & =12 \\
(x-2)^{2} & =(2 \sqrt{3})^{2} \\
x-2 & = \pm 2 \sqrt{3} \\
x & =2 \pm 2 \sqrt{3}
\end{aligned}
$$

Thus $x=2+2 \sqrt{3}, 2-2 \sqrt{3}$
73. Solve for $x: \sqrt{2 x+9}+x=13$

Ans :
[Board Term-2 OD 2016]
We have

$$
\sqrt{2 x+9}+x=13
$$

$$
\sqrt{2 x+9}=13-x
$$

Squaring both side we have

$$
\begin{aligned}
2 x+9 & =(13-x)^{2} \\
2 x+9 & =169+x^{2}-26 x \\
0 & =x^{2}+169-26 x-9-2 x \\
x^{2}-28 x+160 & =0
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-20 x-8 x+160 & =0 \\
x(x-20)-8(x-20) & =0 \\
(x-8)(x-20) & =0
\end{aligned}
$$

Thus $x=8$ and $x=20$.
74. Find the roots of the quadratic equation $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$
Ans:
[Board Term-2 OD 2017]
We have $\quad \sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$

$$
\begin{aligned}
\sqrt{2} x^{2}+2 x+5 x+5 \sqrt{2} & =0 \\
\sqrt{2} x(x+\sqrt{2})+5(x+\sqrt{2}) & =0 \\
(x+\sqrt{2})(\sqrt{2} x+5) & =0
\end{aligned}
$$

Thus $x=-\sqrt{2}$ and $=-\frac{5}{\sqrt{2}}=-\frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=-\frac{5}{2} \sqrt{2}$
75. Find the value of k for which the roots of the quadratic equation $2 x^{2}+k x+8=0$ will have the equal roots ?
Ans :
[Board Term-2 OD Compt., 2017]
We have

$$
2 x^{2}+k x+8=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=2, b=k, \text { and } c=8
$$

For equal roots, $D=0$

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4 \times 2 \times 8 & =0 \\
k^{2} & =64 \\
k & = \pm \sqrt{64}
\end{aligned}
$$

Thus $k= \pm 8$
76. Solve for $x: \sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$

Ans :
[Board Term-II Foreign 2017 Set-2]
We have

$$
\begin{aligned}
\sqrt{3} x^{2}+10 x+7 \sqrt{3} & =0 \\
\sqrt{3} x^{2}+3 x+7 x+7 \sqrt{3} & =0 \\
\sqrt{3 x}(x+\sqrt{3})+7(x+\sqrt{3}) & =0 \\
(x+\sqrt{3})(\sqrt{3} x+7) & =0
\end{aligned}
$$

Thus $x=-\sqrt{3}$ and $x=-\frac{7}{\sqrt{3}}$
77. Find k so that the quadratic equation $(k+1) x^{2}-2(k+1) x+1=0$ has equal roots. Ans :
[Board Term-2, 2016]

We have $\quad(k+1) x^{2}-2(k+1) x+1=0$
Comparing with $A x^{2}+B x+C=0$ we get
$A=(k+1), B=-2(k+1), C=1$
If roots are equal, then $D=0$, i.e.

$$
\begin{aligned}
B^{2} & =4 A C \\
4(k+1)^{2} & =4(k+1) \\
k^{2}+2 k+1 & =k+1 \\
k^{2}+k & =0 \\
k(k+1) & =0 \\
k & =0,-1
\end{aligned}
$$

$k=-1$ does not satisfy the equation, thus $k=0$
78. If 2 is a root of the equation $x^{2}+k x+12=0$ and the equation $x^{2}+k x+q=0$ has equal roots, find the value of q.
Ans :
[Board Term 2 SQP 2016]
We have $\quad x^{2}+k x+12=0$
If 2 is the root of above equation, it must satisfy it.

$$
\begin{aligned}
(2)^{2}+2 k+12 & =0 \\
2 k+16 & =0 \\
k & =-8
\end{aligned}
$$

Substituting $k=-8$ in $x^{2}+k x+q=0$ we have

$$
x^{2}-8 x+q=0
$$

For equal roots,

$$
\begin{aligned}
(-8)^{2}-4(1) q & =0 \\
64-4 q & =0 \\
4 q & =64 \Rightarrow q=16
\end{aligned}
$$

79. Find the values of k for which the quadratic equation $9 x^{2}-3 k x+k=0$ has equal roots.

Ans:

[Board Term-2 Delhi, OD 2014]
We have $\quad 9 x^{2}-3 k x+k=0$
Comparing with $a x^{2}+b x+c=0$ we get

$$
a=9, b=-3 k, c=k
$$

Since roots of the equation are equal, $b^{2}-4 a c=0$

$$
\begin{aligned}
(-3 k)^{2}-(4 \times 9 \times k) & =0 \\
9 k^{2}-36 k & =0 \\
k^{2}-4 k & =0
\end{aligned}
$$

$$
k(k-4)=0 \Rightarrow k=0 \text { or } k=4
$$

Hence, $\quad k=4$.
80. If the equation $k x^{2}-2 k x+6=0$ has equal roots, then find the value of k.
Ans :
[Board Term-2, 2012]
We have

$$
k x^{2}-2 k x+6=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=k, b=-2 k, c=6
$$

Since roots of the equation are equal, $b^{2}-4 a c=0$

$$
\begin{aligned}
(-2 k)^{2}-4(k)(6) & =0 \\
4 k^{2}-24 k & =0 \\
4 k(k-6) & =0 \\
k & =0,6
\end{aligned}
$$

But $k \neq 0$, as coefficient of x^{2} can't be zero.
Thus $\quad k=6$

SUPPORT OUR MISSION

Click Here to Know About Mission

81. Find the positive value of k for which $x^{2}-8 x+k=0$, will have real roots.
Ans :
[Board Term-2, 2014]
We have $\quad x^{2}-8 x+k=0$
Comparing with $A x^{2}+B x+C=0$ we get

$$
A=1, B=-8, C=k
$$

Since the given equation has real roots, $B^{2}-4 A C>0$

$$
\begin{aligned}
(-8)^{2}-4(1)(k) & \geq 0 \\
64-4 k & \geq 0 \\
16-k & \geq 0 \\
16 & \geq k
\end{aligned}
$$

Thus $k \leq 16$
82. Find the values of p for which the quadratic equation $4 x^{2}+p x+3=0$ has equal roots.
Ans :
[Board Term-2, 2014]
We have $\quad 4 x^{2}+p x+3=0$
Comparing with $a x^{2}+b x+c=0$ we get

$$
a=4, b=p, c=3
$$

Since roots of the equation are equal,

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
p^{2}-4 \times 4 \times 3 & =0 \\
p^{2}-48 & =0 \\
p^{2} & =48 \\
p & = \pm 4 \sqrt{3}
\end{aligned}
$$

83. Find the nature of the roots of the quadratic equation : $13 \sqrt{3} x^{2}+10 x+\sqrt{3}=0$
Ans :
[Board Term-2, 2012]
We have

$$
13 \sqrt{3} x^{2}+10 x+\sqrt{3}=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
\begin{aligned}
& a=13 \sqrt{3}, b=10, c=\sqrt{3} \\
& \begin{aligned}
b^{2}-4 a c & =(10)^{2}-4(13 \sqrt{3})(\sqrt{3}) \\
& =100-156 \\
& =-56
\end{aligned}
\end{aligned}
$$

As $D<0$, the equation has not real roots.

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality
We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

THREE MARKS QUESTIONS

84. Solve the following equation: $\frac{1}{x}-\frac{1}{x-2}=3, x \neq 0,2$ Ans :
[Board 2020 SQP Standard]
We have $\frac{1}{x}-\frac{1}{x-2}=3$

$$
\begin{aligned}
\frac{x-2-x}{x(x-2)} & =3 \\
\frac{-2}{x(x-2)} & =3 \\
3 x(x-2) & =-2 \\
3 x^{2}-6 x+2 & =0
\end{aligned}
$$

Comparing it by $a x^{2}+b x+c$, we get $a=3, b=-6$ and $c=2$.

$$
\text { Now, } \quad \begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(2)}}{2(3)} \\
& =\frac{6 \pm \sqrt{36-24}}{6}=\frac{6 \pm \sqrt{12}}{6} \\
& =\frac{6 \pm 2 \sqrt{3}}{6} \\
& =\frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3}
\end{aligned}
$$

85. Find the values of k for which the quadratic equation $x^{2}+2 \sqrt{2 k} x+18=0$ has equal roots.
Ans :
[Board 2020 SQP Standard]
We have $x^{2}+2 \sqrt{2 k} x+18=0$
Comparing it by $a x^{2}+b x+c$, we get $a=1, b=2 \sqrt{2 k}$ and $c=18$.
Given that, equation $x^{2}+2 \sqrt{2} k x+18=0$ has equal roots.

$$
b^{2}-4 a c=0
$$

$$
\begin{aligned}
(2 \sqrt{2} k)^{2}-4 \times 1 \times 18 & =0 \\
8 k^{2}-72 & =0 \\
8 k^{2} & =72 \\
k^{2} & =\frac{72}{8}=9 \\
k & = \pm 3
\end{aligned}
$$

86. If α and β are the zeroes of the polynomial $f(x)=x^{2}-4 x-5$ then find the value of $\alpha^{2}+\beta^{2}$
Ans :
[Board 2020 Delhi Basic]
We have

$$
p(x)=x^{2}-4 x-5
$$

Comparing it by $a x^{2}+b x+c$, we get $a=1, b=-4$ and $c=-5$
Since, given α and β are the zeroes of the polynomial,
Sum of zeroes,

$$
\alpha+\beta=-\frac{b}{a}=\frac{-(-4)}{1}=4
$$

and product of zeroes,

$$
\alpha \beta=\frac{c}{a}=\frac{-5}{1}=-5
$$

Now,

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(4)^{2}-2(-5) \\
& =16+10=26
\end{aligned}
$$

87. Find the quadratic polynomial, the sum and product
of whose zeroes are -3 and 2 respectively. Hence find the zeroes.

Ans :
Sum of zeroes

$$
\begin{equation*}
\alpha+\beta=-3 \tag{1}
\end{equation*}
$$

and product of zeroes $\quad \alpha \beta=2$
Thus quadratic equation is

$$
\begin{array}{r}
x^{2}-(\alpha+\beta) x+\alpha \beta=0 \\
x^{2}-(-3) x+2=0 \\
x^{2}+3 x+2=0
\end{array}
$$

[Board 2020 OD Basic]

$$
\alpha \beta=2
$$

Thus quadratic equation is $x^{2}+3 x+2=0$.
Now above equation can be written as

$$
\begin{array}{r}
x^{2}+2 x+x+2=0 \\
x(x+2)+(x+2)=0 \\
(x+2)(x+1)=0
\end{array}
$$

Hence, zeroes are -2 and -1 .

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

88. If α and β are the zeroes of the polynomial $f(x)=5 x^{2}-7 x+1$ then find the value of $\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$
Ans :
[Board 2020 OD Basic]
Since, α and β are the zeroes of the quadratic polynomial $f(x)=5 x^{2}-7 x+1$,

Sum of zeros,

$$
\begin{equation*}
\alpha+\beta=-\left(\frac{-7}{5}\right)=\frac{7}{5} \tag{1}
\end{equation*}
$$

Product of zeros,

$$
\begin{equation*}
\alpha \beta=\frac{1}{5} \tag{2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\frac{\alpha}{\beta}+\frac{\beta}{\alpha} & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{\left(\frac{7}{5}\right)^{2}-2 \times \frac{1}{5}}{\frac{1}{5}} \\
& =\frac{49-2 \times 5}{5}=\frac{39}{5}
\end{aligned}
$$

89. Find the zeroes of the quadratic polynomial $6 x^{2}-3-7 x$ and verify the relationship between the zeroes and the coefficients.

Ans:
[Board 2020 Delhi Basic]
We have

$$
p(x)=6 x^{2}-3-7 x
$$

For zeroes of polynomial, $p(x)=0$,

$$
\begin{array}{r}
6 x^{2}-7 x-3=0 \\
6 x^{2}-9 x+2 x-3=0 \\
3 x(2 x-3)+1(2 x-3)=0
\end{array}
$$

$$
(2 x-3)(3 x+1)=0
$$

Thus $2 x-3=0$ and $3 x+1=0$
Hence $x=\frac{3}{2}$ and $x=-\frac{1}{3}$
Therefore $\alpha=\frac{3}{2}$ and $\beta=-\frac{1}{3}$ are the zeroes of the given polynomial.

Verification :

Sum of zeroes,

$$
\begin{aligned}
\alpha+\beta & =\frac{3}{2}+\left(-\frac{1}{3}\right) \\
& =\frac{3}{2}-\frac{1}{3}=\frac{7}{6} \\
& =-\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}}
\end{aligned}
$$

and product of zeroes $\alpha \beta=\left(\frac{3}{2}\right)\left(-\frac{1}{3}\right)=-\frac{1}{2}$

$$
=\frac{\text { constant term }}{\text { coefficient of } x^{2}}
$$

90. Find the zeroes of the quadratic polynomial $x^{2}+7 x+10$, and verify the relationship between the zeroes and the coefficients.

Ans :
[Board 2020 Delhi Basic]
Let,

$$
p(x)=x^{2}+7 x+10
$$

For zeroes of polynomial $p(x)=0$,

$$
x^{2}+7 x+10=0
$$

$$
\begin{array}{r}
x^{2}+5 x+2 x+10=0 \\
x(x+5)+2(x+5)=0 \\
(x+5)(x+2)=0
\end{array}
$$

So, $x=-2$ and $x=-5$
Therefore, $\alpha=-2$ and $\beta=-5$ are the zeroes of the given polynomial.
Verification:
Sum of zeroes,

$$
\begin{aligned}
\alpha+\beta & =-2+(-5) \\
& =-7=\frac{-7}{1} \\
& =-\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}}
\end{aligned}
$$

and product of zeroes

$$
\begin{aligned}
\alpha \beta & =(-2)(-5)=10 \\
& =\frac{10}{1} \\
& =\frac{\text { contant term }}{\text { coefficient of } x^{2}}
\end{aligned}
$$

91. Solve for $x: \frac{1}{x+4}-\frac{1}{x+7}=\frac{11}{30} x \neq-4,-7$.

Ans :
[Board 2020 OD Standard]
We have

$$
\begin{aligned}
\frac{1}{x+4}-\frac{1}{x+7} & =\frac{11}{30} \\
\frac{x+7-x-4}{(x+4)(x+7)} & =\frac{11}{30} \\
\frac{3}{x^{2}+4 x+7 x+28} & =\frac{11}{30} \\
\frac{3}{x^{2}+11 x+28} & =\frac{11}{30} \\
11 x^{2}+121 x+308 & =90 \\
11 x^{2}+121 x+218 & =0
\end{aligned}
$$

Comparing with $a x^{2}+b x+c=0$, we get $a=11$, $b=121$ and $c=218$ we obtain

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-121 \pm \sqrt{14641-9592}}{22} \\
x & =\frac{-121 \pm \sqrt{5049}}{22} \\
& =\frac{-121 \pm 71.06}{22} \\
x & =\frac{-49.94}{22}, \frac{-192.06}{22}
\end{aligned}
$$

$$
x=-2.27,-8.73
$$

92. Solve for x :
$\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2 x+3}{x-2} ; x \neq 1,-2,2$
Ans :
[Board Term-2 OD 2016]

We have

$$
\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2 x+3}{x-2}
$$

$$
\begin{aligned}
\frac{x^{2}+3 x+2+x^{2}-3 x+2}{x^{2}+x-2} & =\frac{4 x-8-2 x-3}{x-2} \\
\frac{2 x^{2}+4}{x^{2}+x-2} & =\frac{2 x-11}{x-2} \\
\left(2 x^{2}+4\right)(x-2) & =(2 x-11)\left(x^{2}+x-2\right) \\
5 x^{2}+19 x-30 & =0 \\
(5 x-6)(x+5) & =0 \\
x & =-5, \frac{6}{5}
\end{aligned}
$$

93. Solve for x :

$$
\frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x+3)}=0, x \neq 3,-\frac{3}{2}
$$

Ans:

We have

$$
\begin{aligned}
\frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x+3)} & =0 \\
2 x(2 x+3)+(x-3)+(3 x+9) & =0 \\
4 x^{2}+6 x+x-3+3 x+9 & =0 \\
4 x^{2}+10 x+6 & =0 \\
2 x^{2}+5 x+3 & =0 \\
(x+1)(2 x+3) & =0
\end{aligned}
$$

Thus $x=-1, x=-\frac{3}{2}$
94. Solve for $x: \frac{1}{x}+\frac{2}{2 x-3}=\frac{1}{x-2}, x \neq 0, \frac{2}{3}, 2$.

Ans:
[Board Term-2, Foreign 2016]

We have

$$
\begin{aligned}
\frac{1}{x}+\frac{2}{2 x-3} & =\frac{1}{x-2} \\
\frac{2 x-3+2 x}{x(2 x-3)} & =\frac{1}{x-2} \\
\frac{4 x-3}{x(2 x-3)} & =\frac{1}{x-2}
\end{aligned}
$$

,

We

$$
\begin{aligned}
(x-2)(4 x-3) & =2 x^{2}-3 x \\
4 x^{2}-11 x+6 & =2 x^{2}-3 x \\
2 x^{2}-8 x+6 & =0 \\
x^{2}-4 x+3 & =0 \\
(x-1)(x-3) & =0
\end{aligned}
$$

Thus $x=1,3$
95. Solve the following quadratic equation for x :
$x^{2}+\left(\frac{a}{a+b}+\frac{a+b}{a}\right) x+1=0$
Ans :
[Board Term-2 OD 2016]
We have

$$
x^{2}+\left(\frac{a}{a+b}+\frac{a+b}{a}\right) x+1=0
$$

$$
x^{2}+\frac{a}{a+b} x+\frac{a+b}{a} x+1=0
$$

$$
x\left(x+\frac{a}{a+b}\right)+\frac{a+b}{a}\left(x+\frac{a}{a+b}\right)=0
$$

$$
\left(x+\frac{a}{a+b}\right)\left(x+\frac{a+b}{a}\right)=0
$$

Thus

$$
x=\frac{-a}{a+b}, \frac{-(a+b)}{a}
$$

96. Solve for x :
$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}=\frac{2}{3} ; x \neq 1,2,3$
Ans:
[Board Term-2 OD 2016]
We have $\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}=\frac{2}{3}$

$$
\begin{aligned}
\frac{x-3+x-1}{(x-1)(x-2)(x-3)} & =\frac{2}{3} \\
\frac{2 x-4}{(x-1)(x-2)(x-3)} & =\frac{2}{3} \\
\frac{2(x-2)}{(x-1)(x-2)(x-3)} & =\frac{2}{3} \\
\frac{2}{(x-1)(x-3)} & =\frac{2}{3} \\
3 & =(x-1)(x-3) \\
x^{2}-4 x+3 & =3 \\
x^{2}-4 x & =0 \\
x(x-4) & =0
\end{aligned}
$$

Thus $x=0$ or $x=4$
97. Solve for $x: \sqrt{3} x^{2}-2 \sqrt{2} x-2 \sqrt{3}=0$

Ans:
[Board Term-2, OD 2015, Foreign 2014]
We have

$$
\sqrt{3} x^{2}-2 \sqrt{2} x-2 \sqrt{3}=0
$$

$$
\sqrt{3} x^{2}-[3 \sqrt{2}-\sqrt{2}] x-2 \sqrt{3}=0
$$

$$
\sqrt{3} x^{2}-3 \sqrt{2} x+\sqrt{2} x-2 \sqrt{3}=0
$$

$$
\sqrt{3} x^{2}-\sqrt{3} \sqrt{3} \sqrt{2} x+\sqrt{2} x-\sqrt{2} \sqrt{2} \sqrt{3}=0
$$

$$
\sqrt{3} x(x-\sqrt{3} \sqrt{2})+\sqrt{2}(x-\sqrt{2} \sqrt{3})=0
$$

$$
\sqrt{3} x[x-\sqrt{6}]+\sqrt{2}[x-\sqrt{6}]=0
$$

$$
(x-\sqrt{6})(\sqrt{3} x+\sqrt{2})=0
$$

Thus $x=\sqrt{6}=-\sqrt{\frac{2}{3}}$
98. Solve for x : $2 x^{2}+6 \sqrt{3} x-60=0$

Ans :
[Board Term-2, OD 2015]
We have

$$
\begin{aligned}
2 x^{2}+6 \sqrt{3} x-60 & =0 \\
x^{2}+3 \sqrt{3} x-30 & =0 \\
x^{2}+5 \sqrt{3} x-2 \sqrt{3} x-30 & =0 \\
x(x+5 \sqrt{3})-2 \sqrt{3}(x+5 \sqrt{3}) & =0 \\
(x+5 \sqrt{3})(x-2 \sqrt{3}) & =0
\end{aligned}
$$

Thus $x=-5 \sqrt{3}, 2 \sqrt{3}$
99. Solve for x : $x^{2}+5 x-\left(a^{2}+a-6\right)=0$

Ans :
[Board Term-2 Foreign Set I 2015]
We have

$$
x^{3}+5 x-\left(a^{2}+a-6\right)=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Thus

$$
\begin{aligned}
x & =\frac{-5 \pm \sqrt{25+4\left(a^{2}+a-6\right)}}{2} \\
& =\frac{-5 \pm \sqrt{25+4 a^{2}+4 a-24}}{2} \\
& =\frac{-5 \pm \sqrt{4 a^{2}+4 a+1}}{2} \\
& =\frac{-5 \pm(2 a+1)}{2} \\
& =\frac{2 a-4}{2}, \frac{-2 a-6}{2}
\end{aligned}
$$

Thus $x=a-2, x=-(a+3)$
100. Solve for $x: x^{2}-(2 b-1) x+\left(b^{2}-b-20\right)=0$

Ans :
[Board Term-2 Foreign 2015]

We have $x^{2}-(2 b-1) x+\left(b^{2}-b-20\right)=0$
Comparing with $A x^{2}+B x+C=0$ we have

$$
\begin{aligned}
A & =1, B=-(2 b-1), C=\left(b^{2}-b-20\right) \\
x & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
x & =\frac{(2 b-1) \pm \sqrt{(2 b-1)^{2}-4\left(b^{2}-b-20\right)}}{2} \\
& =\frac{(2 b-1) \pm \sqrt{4 b^{2}-4 b+1-4 b^{2}+4 b+80}}{2} \\
& =\frac{(2 b-1) \pm \sqrt{81}}{2}=\frac{(2 b-1) \pm 9}{2} \\
& =\frac{2 b+8}{2}, \frac{2 b-10}{2} \\
& =b+4, b-5
\end{aligned}
$$

Thus $x=b+4$ and $x=b-5$
101. Solve for $x: \frac{16}{x}-1=\frac{15}{x+1} ; x \neq 0,-1$

Ans:
[Board Term-2, OD 2014]
We have

$$
\frac{16}{x}-1=\frac{15}{x+1}
$$

$$
\frac{16}{x}-\frac{15}{x+1}=1
$$

$$
16(x+1)-15 x=x(x+1)
$$

$$
16 x+16-15 x=x^{2}+x
$$

$$
x+16=x^{2}+x
$$

$$
x^{2}-16=0
$$

$$
x^{2}=16
$$

$$
x= \pm 4
$$

Thus $x=-4$ and $x=+4$
102. Solve the quadratic equation $(x-1)^{2}-5(x-1)-6=0$

Ans :

[Board Term-2, 2015]
We have

$$
\begin{aligned}
(x-1)^{2}-5(x-1)-6 & =0 \\
x^{2}-2 x+1-5 x+5-6 & =0 \\
x^{2}-7 x+6-6 & =0 \\
x^{2}-7 x & =0 \\
x(x-7) & =0
\end{aligned}
$$

Thus $x=0,7$
103. Solve the equation for $x: \frac{4}{x}-3=\frac{5}{2 x+3} ; x \neq 0, \frac{-3}{2}$

Ans :
[Board Term-2 Delhi 2014]

We have

$$
\begin{aligned}
\frac{4}{x}-3 & =\frac{5}{2 x+3} \\
\frac{4}{x}-\frac{5}{2 x+3} & =3 \\
\frac{4(2 x+3)-5 x}{x(2 x+3)} & =3 \\
8 x+12-5 x & =3 x(2 x+3) \\
3 x+12 & =6 x^{2}+9 x \\
6 x^{2}+6 x-12 & =0 \\
x^{2}+x-2 & =0 \\
x^{2}+2 x-x-2 & =0 \\
x(x+2)-(x+2) & =0 \\
(x+2)(x-1) & =0
\end{aligned}
$$

Thus $x=1,-2$
104. Find the roots of the equation $2 x^{2}+x-4=0$, by the method of completing the squares.
Ans :
[Board Term-2, OD 2014]
We have

$$
\begin{array}{r}
2 x^{2}+x-4=0 \\
x^{2}+\frac{x}{2}-2=0 \\
x^{2}+2 x\left(\frac{1}{4}\right)-2=0
\end{array}
$$

Adding and subtracting $\left(\frac{1}{4}\right)^{2}$, we get

$$
\begin{aligned}
x^{2}+2 x\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}-2 & =0 \\
\left(x+\frac{1}{4}\right)^{2}-\left(\frac{1}{16}+2\right) & =0 \\
\left(x+\frac{1}{4}\right)^{2}-\left(\frac{1+32}{16}\right) & =0 \\
\left(x+\frac{1}{4}\right)^{2}-\frac{33}{16} & =0 \\
\left(x+\frac{1}{4}\right)^{2} & =\frac{33}{16} \\
\left(x+\frac{1}{4}\right) & = \pm \frac{\sqrt{33}}{4}
\end{aligned}
$$

Thus roots are $x=\frac{-1+\sqrt{33}}{4}, \frac{-1-\sqrt{33}}{4}$
105. Solve for $x: 9 x^{2}-6 a x+\left(a^{2}-b^{2}\right)=0$

Ans :
[Board Term-2 2012]
We have

$$
9 x^{2}-6 a x+a^{2}-b^{2}=0
$$

Comparing with $A x^{2}+B x+C=0$ we have

$$
\begin{aligned}
A & =9, B=-6 a, C=\left(a^{2}-b^{2}\right) \\
x & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
x & =\frac{6 a \pm \sqrt{(-6 a)^{2}-4 \times 9 k\left(a^{2}-b^{2}\right)}}{2 \times 9} \\
& =\frac{6 a \pm \sqrt{36 a^{2}-36 a^{2}+36 b^{2}}}{18} \\
& =\frac{6 a \pm \sqrt{36 b^{2}}}{18}=\frac{6 a \pm 6 b}{18} \\
& =\frac{a \pm b}{3} \\
x & =\frac{(a+b)}{3}, \frac{(a-b)}{3}
\end{aligned}
$$

Thus $x=\frac{a+b}{3}, x=\frac{a-b}{3}$
106. Solve the equation $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$ for x.
Ans :
[Board Term-2, 2012]

We have,

$$
\begin{aligned}
\frac{1}{x+4}-\frac{1}{x-7} & =\frac{11}{30} \\
\frac{x-7-x-4}{(x+4)(x-7)} & =\frac{11}{30} \\
\frac{-11}{(x+4)(x-7)} & =\frac{11}{30} \\
\frac{-1}{(x+4)(x-7)} & =\frac{1}{30} \\
(x+4)(x-7) & =-30 \\
x^{2}-3 x-28 & =-30 \\
x^{2}-3 x+2 & =0 \\
x^{2}-2 x-x+2 & =0 \\
(x-1)(x-2) & =0
\end{aligned}
$$

Thus $x=1,2$.
107.Find the roots of the quadratic equation:

$$
a^{2} b^{2} x^{2}+b^{2} x-a^{2} x-1=0
$$

Ans :
We have

$$
\begin{aligned}
a^{2} b^{2} x^{2}+b^{2} x-a^{2} x-1 & =0 \\
b^{2} x\left(a^{2} x+1\right)-1\left(a^{2} x+1\right) & =0 \\
\left(b^{2} x-1\right)\left(a^{2} x+1\right) & =0 \\
x=\frac{1}{b^{2}} \text { or } x=-\frac{1}{a^{2}} &
\end{aligned}
$$

Hence, roots are $\frac{1}{b^{2}}$ and $-\frac{1}{a^{2}}$.
108.If $\left(x^{2}+y^{2}\right)\left(a^{2}+b^{2}\right)=(a x+b y)^{2}$, prove that $\frac{x}{a}=\frac{y}{b}$

Ans :
[Board Term-2, 2014]
We have $\quad\left(x^{2}+y^{2}\right)\left(a^{2}+b^{2}\right)=(a x+b y)^{2}$

$$
\begin{aligned}
& x^{2} a^{2}+x^{2} b^{2}+y^{2} a^{2}+y^{2} b^{2}=a^{2} x^{2}+b^{2} y^{2}+2 a b x y \\
& x^{2} b^{2}+y^{2} a^{2}-2 a b x y=0 \\
& (x b-y a)^{2}=0 \\
& x b=y a \\
& \frac{x}{a}=\frac{y}{b}
\end{aligned}
$$

Thus
Hence Proved.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

109. Solve the following quadratic equation for x :

$$
p^{2} x^{2}+\left(p^{2}-q^{2}\right) x-q^{2}=0
$$

Ans :
[Board Term-2, 2012]
We have $\quad p^{2} x^{2}+\left(p^{2}-q^{2}\right) x-q^{2}=0$
Comparing with $a x^{2}+b x+c=0$ we get

$$
a=p^{2}, b=p^{2}-q^{2}, c=-q^{2}
$$

The roots are given by the quadratic formula

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-\left(p^{2}-q^{2}\right)-\sqrt{\left(p^{2}-q^{2}\right)^{2}-4\left(p^{2}\right)\left(-q^{2}\right)}}{2 p^{2}} \\
& =\frac{-\left(p^{2}-q^{2}\right)-\sqrt{p^{4}+q^{4}-2 p^{2} q^{2}+4 p^{2} q^{2}}}{2 p^{2}} \\
& =\frac{-\left(p^{2}-q^{2}\right)-\sqrt{p^{4}+q^{4}+2 p^{2} q^{2}}}{2 p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\left(p^{2}-q^{2}\right)-\sqrt{\left(p^{2}+q^{2}\right)^{2}}}{2 p^{2}} \\
& =\frac{-\left(p^{2}-q^{2}\right) \pm\left(p^{2}+q^{2}\right)}{2 p^{2}}
\end{aligned}
$$

Thus

$$
x=\frac{-\left(p^{2}-q^{2}\right)+\left(p^{2}+q^{2}\right)}{2 p^{2}}=\frac{2 q^{2}}{2 p^{2}}=\frac{q^{2}}{p^{2}}
$$

and

$$
x=\frac{-\left(p^{2}-q^{2}\right)-\left(p^{2}+q^{2}\right)}{2 p^{2}}=\frac{-2 p^{2}}{2 p^{2}}=-1
$$

Hence, roots are $\frac{q^{2}}{p^{2}}$ and -1 .
110. Solve the following quadratic equation for x :

$$
9 x^{2}-9(a+b) x+2 a^{2}+5 a b+2 b^{2}=0
$$

Ans:
[Board Term-2, Foreign 2016]
We have $9 x^{2}-9(a+b) x+2 a^{2}+5 a b+2 b^{2}=0$
Now

$$
\begin{aligned}
2 a^{2}+5 a b+2 b^{2} & =2 a^{2}+4 a b+a b+2 b^{2} \\
& =2 a[a+2 b]+b[a+2 b] \\
& =(a+2 b)(2 a+b)
\end{aligned}
$$

Hence the equation becomes

$$
\begin{aligned}
& 9 x^{2}-9(a+b) x+(a+2 b)(2 a+b)=0 \\
& 9 x^{2}-3[3 a+3 b] x+(a+2 b)(2 a+b)=0 \\
& 9 x^{2}-3[(a+2 b)+(2 a+b)] x+(a+2 b)(2 a+b)=0 \\
& 9 x^{2}-3(a+2 b) x-3(2 a+b) x+(a+2 b)(2 a+b)=0 \\
& 3 x[3 x-(a+2 b)]-(2 a+b)[3 x-(a+2 b)]=0 \\
& {[3 x-(a+2 b)][3 x-(2 a+b)]=0} \\
& 3 x-(2 a+b)=0 \\
& x=\frac{a+2 b}{3} \\
& 3 x-(2 a+b)=0 \\
& x=\frac{2 a+b}{3}
\end{aligned}
$$

Hence, roots are $\frac{a+2 b}{3}$ and $\frac{2 a+b}{3}$.
111.Solve for $x: x^{2}+6 x-\left(a^{2}+2 a-8\right)$

Ans :
[Board Term-2, Foreign 2015]
We have

$$
x^{2}+6 x-\left(a^{2}+2 a-8\right)=0
$$

Comparing with $A x^{2}+B x+C=0$ we get

$$
A=1, B=6, C=\left(a^{2}+2 a-8\right)
$$

The roots are given by the quadratic formula

Thus $x=a-2,-a-4$
112.If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0 \quad$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.
Ans :
[Board Term-2 2016]
We have $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$
Comparing with $A x^{2}+B x+C=0$ we get
$A=\left(a^{2}+b^{2}\right), B=-2(a c+b d), C=\left(c^{2}+d^{2}\right)$
If roots are equal, $D=B^{2}-4 A C=0$
or

$$
B^{2}=4 A C
$$

Now $[-2(a c+b d)]^{2}=4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$
$4\left(a^{2} c^{2}+2 a b c d+b^{2} d^{2}\right)=4\left(a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right)$
$a^{2} c^{2}+2 a b c d+b^{2} d^{2}=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}$

$$
2 a b c d=a^{2} d^{2}+b^{2} c^{2}
$$

$$
0=a^{2} d^{2}-2 a b c d+b^{2} c^{2}
$$

$$
0=(a d-b c)^{2}
$$

$$
0=a d-b c
$$

Thus

$$
a d=b c
$$

$$
\frac{a}{b}=\frac{c}{d}
$$

Hence Proved
113.If 2 is a root of the quadratic equation $3 x^{2}+p x-8=0$ and the quadratic equation $4 x^{2}-2 p x+k=0$ has equal roots, find k.
Ans :
[Board Term-2 Foreign 2014]
We have $\quad 3 x^{2}+p x-8=0$
Since 2 is a root of above equation, it must satisfy it.
Substituting $x=2$ in $3 x^{2}+p x-8=0$ we have

$$
\begin{aligned}
12+2 p-8 & =0 \\
p & =-2
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
& =\frac{-6 \pm \sqrt{36+4\left(a^{2}+2 a-8\right)}}{2} \\
& =\frac{-6 \pm(2 a+2)}{2}
\end{aligned}
$$

Since $4 x^{2}-2 p x+k=0$ has equal roots,
or $\quad 4 x^{2}+4 x+k=0$ has equal roots,

$$
D=b^{2}-4 a c=0
$$

$$
4^{2}-4(4)(k)=0
$$

$$
16-16 k=0
$$

$$
16 k=16
$$

Thus

$$
k=1
$$

114.For what value of k, the roots of the quadratic equation $k x(x-2 \sqrt{5})+10=0$ are equal ?
Ans :
[Board Term-2 Delhi 2014, 2013]
We have

$$
k x(x-2 \sqrt{5})+10=0
$$

or,

$$
k x^{2}-2 \sqrt{5} k x+10=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=k, b=-2 \sqrt{5} k \text { and } c=10
$$

Since, roots are equal, $\quad D=b^{2}-4 a c=0$

$$
\begin{aligned}
(-2 \sqrt{5} k)^{2}-4 \times k \times 10 & =0 \\
20 k^{2}-40 k & =0 \\
20 k(k-2) & =0 \\
k(k-2) & =0
\end{aligned}
$$

Since $k \neq 0$, we get $k=2$
115.Find the nature of the roots of the following quadratic equation. If the real roots exist, find them : $3 x^{2}-4 \sqrt{3} x+4=0$
Ans :
[Board Term-2, 2012]
We have

$$
3 x^{2}-4 \sqrt{3} x+4=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
\begin{aligned}
a=3, b & =-4 \sqrt{3}, c=4 \\
b^{2}-4 a c & =(-4 \sqrt{3})^{2}-4(3)(4) \\
& =48-48=0
\end{aligned}
$$

Thus roots are real and equal.
Roots are $\left(-\frac{b}{2 a}\right),\left(-\frac{b}{2 a}\right)$ or $\frac{2 \sqrt{3}}{3}, \frac{2 \sqrt{3}}{3}$
116. Determine the positive value of k for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0 \quad$ will both have real and equal roots.
Ans:
[Board Term-2, 2012, 2014]

We have

$$
x^{2}+k x+64=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=1, b=k, c=64
$$

For real and equal roots, $b^{2}-4 a c=0$
Thus

$$
\begin{align*}
k^{2}-4 \times 1 \times 64 & =0 \\
k^{2}-256 & =0 \\
k & = \pm 16 \tag{1}
\end{align*}
$$

Now for equation $x^{2}-8 x+k=0$ we have

$$
\begin{align*}
b^{2}-4 a c & =0 \\
(-8)^{2}-4 \times 1 \times k & =0 \\
64 & =4 k \\
k & =\frac{64}{4}=16 \tag{2}
\end{align*}
$$

From (1) and (2), we get $k=16$. Thus for $k=16$, given equations have equal roots.

For Free PDFS of all Sample Papers Visit www.cbse.online

117. Find that non-zero value of k, for which the quadratic equation $k x^{2}+1-2(k-1) x+x^{2}=0$ has equal roots. Hence find the roots of the equation.
Ans:
[Board Term-2 Delhi 2015]
We have

$$
\begin{aligned}
& k x^{2}+1-2(k-1) x+x^{2}=0 \\
& (k+1) x^{2}-2(k-1) x+1=0
\end{aligned}
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=k+1, b=-2(k-1), c=1
$$

For real and equal roots, $b^{2}-4 a c=0$

$$
\begin{aligned}
4(k-1)^{2}-4(k+1) \times 1 & =0 \\
4 k^{2}-8 k+4-4 k-4 & =0 \\
4 k^{2}-12 k & =0 \\
4 k(k-3) & =0
\end{aligned}
$$

As k can't be zero, thus $k=3$.
118. Find the value of k for which the quadratic equation $(k-2) x^{2}+2(2 k-3) x+(5 k-6)=0$ has equal roots. Ans: [Board Term-2, 2015]

We have

$$
(k-2) x^{2}+2(2 k-3) x+(5 k-6)=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=k-2, b=2(2 k-3), c=(5 k-6)
$$

For real and equal roots, $b^{2}-4 a c=0$

$$
\begin{aligned}
\{2(2 k-3)\}^{2}-4(k-2)(5 k-6) & =0 \\
4\left(4 k^{2}-12 k+9\right)-4(k-2)(5 k-6) & =0 \\
4 k^{2}-12 k+9-5 k^{2}+6 k+10 k-12 & =0 \\
k^{2}-4 k+3 & =0 \\
k^{2}-3 k-k+3 & =0 \\
k(k-3)-1(k-3) & =0 \\
(k-3)(k-1) & =0
\end{aligned}
$$

Thus $\quad k=1,3$
119.If the roots of the quadratic equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ are equal, prove that $2 a=b+c$.
Ans :
[Board Term-2 Delhi 2016]
We have $(a-b) x^{2}+(b-c) x+(c-a)=0$ Comparing with $a x^{2}+b x+c=0$ we get

$$
a=(a-b,), b=(b-c), c=c-a
$$

For real and equal roots, $b^{2}-4 a c=0$

$$
\begin{aligned}
(b-c)^{2}-4(a-b)(c-a) & =0 \\
b^{2}+c^{2}-2 b c-4\left(a c-a^{2}-b c+a b\right) & =0 \\
b^{2}+c^{2}-2 b c-4 a c+4 a^{2}+4 b c-4 a b & =0 \\
4 a^{2}+b^{2}+c^{2}+2 b c-4 a b-4 a c & =0
\end{aligned}
$$

Using $a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2}$,

$$
\begin{aligned}
(-2 a+b+c)^{2} & =0 \\
-2 a+b+c & =0
\end{aligned}
$$

Hence,

$$
b+c=2 a
$$

120.If the quadratic equation,
$\left(1+a^{2}\right) b^{2} x^{2}+2 a b c x+\left(c^{2}-m^{2}\right)=0$ in x has equal roots, prove that $c^{2}=m^{2}\left(1+a^{2}\right)$
Ans:
[Board Term-2, 2014]
We have $\quad\left(1+a^{2}\right) b^{2} x^{2}+2 a b c x+\left(c^{2}-m^{2}\right)=0$
Comparing with $A x^{2}+B x+C=0$ we get

$$
A=\left(1+a^{2}\right) b^{2}, B=2 a b c, C=\left(c^{2}-m^{2}\right)
$$

If roots are equal, $B^{2}-4 A C=0$

$$
\begin{aligned}
(2 a b c)^{2}-4\left(1+a^{2}\right) b^{2}\left(c^{2}-m^{2}\right) & =0 \\
4 a^{2} b^{2} c^{2}-\left(4 b^{2}+4 a^{2} b^{2}\right)\left(c^{2}-m^{2}\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
4 a^{2} b^{2} c^{2}-\left[4 b^{2} c^{2}-4 b^{2} m^{2}+4 a^{2} b^{2} c^{2}-4 a^{2} b^{2} m^{2}\right] & =0 \\
4 a^{2} b^{2} c^{2}-4 b^{2} c^{2}+4 b^{2} m^{2}-4 a^{2} b^{2} c^{2}+4 a^{2} b^{2} m^{2} & =0 \\
4 b^{2}\left[a^{2} m^{2}+m^{2}-c^{2}\right] & =0 \\
c^{2} & =a^{2} m^{2}+m^{2} \\
c^{2} & =m^{2}\left(1+a^{2}\right)
\end{aligned}
$$

121.If -3 is a root of quadratic equation $2 x^{2}+p x-15=0$, while the quadratic equation $x^{2}-4 p x+k=0$ has equal roots. Find the value of k.
Ans :
[Board Term-2 OD Compt. 2017]
Given -3 is a root of quadratic equation.
We have $\quad 2 x^{2}+p x-15=0$
Since 3 is a root of above equation, it must satisfy it. Substituting $x=3$ in above equation we have

$$
\begin{gathered}
2(-3)^{2}+p(-3)-15=0 \\
2 \times 9-3 p-15=0 \Rightarrow p=1
\end{gathered}
$$

Since $\quad x^{2}-4 p x+k=0$ has equal roots,
or

$$
x^{2}-4 x+k=0 \text { has equal roots, }
$$

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
(-4)^{2}-4 k & =0 \\
16-4 k & =0 \\
4 k & =16 \Rightarrow k=4
\end{aligned}
$$

122.If $a d \neq b c$, then prove that the equation $\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ has no real roots.
Ans:
[Board Term-2 OD 2017]
We have

$$
\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0
$$

Comparing with $A x^{2}+B x+C=0$ we get

$$
A=\left(a^{2}+b^{2}\right), B=2(a c+b d) \text { and } C=\left(c^{2}+d^{2}\right)
$$

For no real roots, $D=B^{2}-4 A C<0$

$$
\begin{aligned}
D & =B^{2}-4 A C \\
& =[2(a c+b d)]^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
& =4\left[a^{2} c^{2}+2 a b c d+b^{2} d^{2}\right]-4\left[a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right] \\
& =4\left[a^{2} c^{2}+2 a b c d+b^{2} d^{2}-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}\right] \\
& =-4\left[a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right] \\
& =-4(a d-b c)^{2}
\end{aligned}
$$

Since $a d \neq b c$, therefore $D \neq 0$ and always negative. Hence the equation has no real roots.
123.Find the value of c for which the quadratic equation $4 x^{2}-2(c+1) x+(c+1)=0$ has equal roots.
Ans:
[Board Term-2 Delhi 2017]
We have

$$
4 x^{2}-2(c+1) x+(x+1)=0
$$

Comparing with $A x^{2}+B x+C=0$ we get

$$
A=4, B=2(c+1), C=(c+1)
$$

If roots are equal, $B^{2}-4 A C=0$

$$
\begin{aligned}
{[2(c+1)]^{2}-4 \times 4(c+1) } & =0 \\
4\left(c^{2}+2 c+1\right)-4(4 c+4) & =0 \\
4\left(c^{2}+2 c+1-4 c-4\right) & =0 \\
c^{2}-2 c-3 & =0 \\
c^{2}-3 c+c-3 & =0 \\
c(c-3)+1(c-3) & =0 \\
(c-3)(c+1) & =0 \\
c & =3,-1
\end{aligned}
$$

Hence for equal roots $c=3,-1$.
124. Show that if the roots of the following equation are equal then $a d=b c$ or $\frac{a}{b}=\frac{c}{d}$.

$$
x^{2}\left(a^{2}+b^{2}\right)+2(a c+b d) x+c^{2}+d^{2}=0
$$

Ans:
[Board Term-2 OD Compt. 2017]
We have

$$
x^{2}\left(a^{2}+b^{2}\right)+2(a c+b d) x+c^{2}+d^{2}=0
$$

Comparing with $A x^{2}+B x+C=0$ we get

$$
A=a^{2}+b^{2}, B=2(a c+b d), C=c^{2}+d^{2}
$$

If roots are equal, $B^{2}-4 A C=0$

$$
[2(a c+b d)]^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=0
$$

$$
4\left(a^{2} c^{2}+2 a b c d+b^{2} d^{2}\right)-4\left(a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right)=0
$$

$$
4\left(a^{2} c^{2}+2 a b c d+b^{2} d^{2}-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}\right)=0
$$

$$
-4\left(a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right)=0
$$

$$
(a d-b c)^{2}=0
$$

Thus

$$
a d=b c
$$

$$
\frac{a}{b}=\frac{c}{d} \quad \text { Hence Proved. }
$$

125.Solve $\frac{1}{(a+b+x)}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}, a+b \neq 0$.

Ans :
[Board Term-2 SQP 2016]
We have

$$
\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}
$$

$$
\begin{aligned}
\frac{1}{a+b+x}-\frac{1}{x} & =\frac{1}{a}+\frac{1}{b} \\
\frac{x-(a+b+x)}{x(a+b+x)} & =\frac{a+b}{a b} \\
\frac{x-a-b-x}{x(a+b+x)} & =\frac{a+b}{a b} \\
\frac{-(a+b)}{x(a+b+x)} & =\frac{a+b}{a b} \\
x(a+b+x) & =-a b \\
x^{2}+(a+b) x+a b & =0 \\
(x+a)(x+b) & =0 \\
x=-a \text { or } x & =-b
\end{aligned}
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

FOUR MARKS QUESTIONS

126. Solve for $x:\left(\frac{2 x}{x-5}\right)^{2}+\left(\frac{2 x}{x-5}\right)-24=0, x \neq 5$

Ans :
[Board Term-2 2016]
We have $\quad\left(\frac{2 x}{x-5}\right)^{2}+5\left(\frac{2 x}{x-5}\right)-24=0$
Let $\frac{2 x}{x-5}=y$ then we have

$$
\begin{aligned}
y^{2}+5 y-24 & =0 \\
(y+8)(y-3) & =0 \\
y & =3,-8
\end{aligned}
$$

Taking $y=3$ we have

$$
\frac{2 x}{x-5}=3
$$

$$
2 x=3 x-15 \Rightarrow x=15
$$

Taking $y=-8$ we have

$$
\begin{aligned}
\frac{2 x}{x-5} & =-8 \\
2 x & =-8 x+40 \\
10 x & =40 \Rightarrow x=4
\end{aligned}
$$

Hence, $x=15,4$
127.Solve for $x: \frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4} \quad x \neq-1,-2,-4$

Ans:
[Board Term-2 OD 2016]
We have $\quad \frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}$

$$
\begin{gathered}
\begin{array}{c}
\frac{x+2+2(x+1)}{(x+1)(x+2)}=\frac{4}{x+4} \\
\frac{3 x+4}{x^{2}+3 x+2}=\frac{4}{x+4} \\
(3 x+4)(x+4)=4\left(x^{2}+3 x+2\right) \\
\\
3 x^{2}+16 x+16=4 x^{2}+12 x+8 \\
\\
\text { Now } \quad x^{2}-4 x-8=0 \\
x= \\
=\frac{-b \sqrt{b^{2}+4 a c}}{2 a} \\
= \\
=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-8)}}{2 \times 1} \\
= \\
= \\
2 \pm 2 \sqrt{46+32} \\
2
\end{array}
\end{gathered}
$$

Hence, $x=2+2 \sqrt{3}$ and $2-2 \sqrt{3}$
128. Find x in terms of a, b and c :

$$
\frac{a}{x-a}+\frac{b}{x-b}=\frac{2 c}{x-c}, x \neq a, b, c
$$

Ans:
[Board Term-2, Delhi 2016]

We have

$$
\frac{a}{x-a}+\frac{b}{x-b}=\frac{2 c}{x-c}
$$

d160
129. Solve for $x: \frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4 x-1} ; x \neq-1,1, \frac{1}{4}$

Ans :
[Board Term-2 Delhi 2015]
We have

$$
\begin{aligned}
\frac{3}{x+1}+\frac{4}{x-1} & =\frac{29}{4 x-1} \\
\frac{3 x-3+4 x+4}{x^{2}-1} & =\frac{29}{4 x-1} \\
\frac{7 x+1}{x^{2}-1} & =\frac{29}{4 x-1} \\
(7 x+1)(4 x-1) & =29 x^{2}-29 \\
28 x^{2}-7 x+4 x-1 & =29 x^{2}-29 \\
-3 x & =x^{2}-28 \\
x^{2}+3 x-28 & =0 \\
x^{2}+7 x-4 x-28 & =0 \\
x(x+7)-4(x+7) & =0 \\
(x+7)(x-4) & =0
\end{aligned}
$$

Hence, $x=4,-7$
130. Solve for $x: \frac{x-1}{2 x+1}+\frac{2 x+1}{x-1}=2$ where $x \neq-\frac{1}{2}, 1$

Ans:
[Board Term-2, OD 2015]
We have $\quad \frac{x-1}{2 x+1}+\frac{2 x+1}{x-1}=2$
Let $\frac{x-1}{2 x+1}$ be y so $\frac{2 x+1}{x-1}=\frac{1}{y}$
Substituting this value we obtain

$$
\begin{aligned}
y+\frac{1}{y} & =2 \\
y^{2}+1 & =2 y \\
y^{2}-2 y+1 & =0 \\
(y-1)^{2} & =0 \\
y & =1
\end{aligned}
$$

Substituting $y=\frac{x-1}{2 x+1}$ we have

$$
\begin{aligned}
\frac{x-1}{2 x+1} & =1 \text { or } x-1=2 x+1 \\
x & =-2
\end{aligned}
$$

131.Find for $x: \frac{1}{x-2}+\frac{2}{x-1}=\frac{6}{x} ; x \neq 0,1,2$

Ans:
[Board Term-2 OD 2017]

Thus $x=-\left(\frac{a c+b c-2 a b}{a+b-2 c}\right)$

We have $\quad \frac{1}{x-2}+\frac{2}{x-1}=\frac{6}{x}$

$$
\begin{aligned}
& \frac{x-1+2 x-4}{(x-2)(x-1)}=\frac{6}{x} \\
& 3 x^{2}-5 x=6 x^{2}-18 x+12 \\
& 3 x^{2}-13 x+12=0 \\
& 3 x^{2}-4 x-9 x+12=0 \\
& x(3 x-4)-3(3 x-4)=0 \\
&(3 x-4)(x-3)=0 \\
& x=\frac{4}{3} \text { and } 3
\end{aligned}
$$

Hence, $x=3, \frac{4}{3}$
132. Solve, for $x: \sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$

Ans :

[Board Term-2 Foreign 2017]
We have

$$
\begin{aligned}
& \sqrt{3} x^{2}+10 x+7 \sqrt{3}=0 \\
& \sqrt{3} x^{2}+3 x+7 x+7 \sqrt{3}=0 \\
&(x+\sqrt{3})(\sqrt{3} x+7)=0 \\
&(x+\sqrt{3})(\sqrt{3} x+7)=0 \\
& x=-\sqrt{3} \text { and } x=\frac{-7}{\sqrt{3}}
\end{aligned}
$$

Hence roots $x=-\sqrt{3}$ and $x=\frac{-7}{\sqrt{3}}$
133.Solve for $x: \frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4} ; x \neq 0,2$

Ans :
[Board Term -2 Delhi Compt. 2017]
We have

$$
\frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4}
$$

$$
\begin{aligned}
\frac{x(x+3)-(1-x)(x-2)}{x(x-2)} & =\frac{17}{4} \\
\frac{\left(x^{2}+3 x\right)-\left(-x^{2}+3 x-2\right)}{x^{2}-2 x} & =\frac{17}{4} \\
\frac{2 x^{2}+2}{x^{2}-2 x} & =\frac{17}{4} \\
8 x^{2}+8 & =17 x^{2}-34 x \\
9 x^{2}-34 x-8 & =0 \\
9 x^{2}-36 x+2 x-8 & =0 \\
9 x(x-4)+2(x-4) & =0 \\
(x-4)(9 x+2) & =0
\end{aligned}
$$

$$
x=4 \text { or } x=-\frac{2}{9}
$$

Hence, $x=4,-\frac{2}{9}$
134. Solve for $x: 4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$

Ans:
[Board Term-2 Foreign 2017]
We have

$$
4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0
$$

Comparing with $A x^{2}+B x+C=0$ we get

$$
\begin{aligned}
A & =4, B=4 b \text { and } C=b^{2}-a^{2} \\
x & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
& =\frac{-4 b \pm \sqrt{(4 b)^{2}-4.4\left(b^{2}-a^{2}\right)}}{2.4} \\
& =\frac{-4 b \pm \sqrt{16 b^{2}-16 b^{2}+16 a^{2}}}{8} \\
& =\frac{-4 b \pm 4 a}{8} \\
& =-\frac{(a+b)}{2}, \frac{(a-b)}{2}
\end{aligned}
$$

Hence the roots are $-\frac{(a+b)}{2}$ and $\frac{(a-b)}{2}$

Don’t Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

135.Find the zeroes of the quadratic polynomial $7 y^{2}-\frac{11}{3} y-\frac{2}{3}$ and verify the relationship between the zeroes and the coefficients.
Ans:
[Board 2019 OD]
We have $\quad 7 y^{2}-\frac{11}{3} y-\frac{2}{3}=0$

$$
\begin{align*}
21 y^{2}-11 y-2 & =0 \tag{1}\\
21 y^{2}-14 y+3 y-2 & =0 \\
7 y(3 y-2)+(3 y-2) & =0 \\
(3 y-2)(7 y+1) & =0 \\
y & =\frac{2}{3}, \frac{-1}{7}
\end{align*}
$$

Hence, zeros of given polynomial are,

$$
y=\frac{2}{3} \text { and } y=\frac{-1}{7}
$$

Comparing the given equation with $a x^{2}+b x+c=0$ we get $a=21, b=-11$ and $c=-2$

Now, sum of roots,

$$
\begin{aligned}
\alpha+\beta & =\frac{2}{3}+\left(-\frac{1}{7}\right) \\
& =\frac{2}{3}-\frac{1}{7}=\frac{11}{21}
\end{aligned}
$$

Thus $\alpha+\beta=-\frac{b}{a} \quad$ Hence verified and product of roots,

$$
\alpha \beta=\frac{2}{3} \times\left(-\frac{1}{7}\right)=\frac{-2}{21}
$$

Thus

$$
\alpha \beta=\frac{c}{a} \quad \text { Hence verified }
$$

136. Write all the values of p for which the quadratic equation $x^{2}+p x+16=0$ has equal roots. Find the roots of the equation so obtained.
Ans :
[Board 2019 OD]
We have

$$
\begin{equation*}
x^{2}+p x+16=0 \tag{1}
\end{equation*}
$$

If this equation has equal roots, then discriminant $b^{2}-4 a c$ must be zero.
i.e.,

$$
\begin{equation*}
b^{2}-4 a c=0 \tag{2}
\end{equation*}
$$

Comparing the given equation with $a x^{2}+b x+c=0$ we get $a=1, b=p$ and $c=16$
Substituting above in equation (2) we have

$$
\begin{aligned}
p^{2}-4 \times 1 \times 16 & =0 \\
p^{2} & =64 \Rightarrow p= \pm 8
\end{aligned}
$$

When $p=8$, from equation (1) we have

$$
\begin{aligned}
x^{2}+8 x+16 & =0 \\
x^{2}+2 \times 4 x+4^{2} & =0 \\
(x+4)^{2} & =0 \Rightarrow x=-4,-4
\end{aligned}
$$

Hence, roots are -4 and -4 .
When $p=-8$ from equation (1) we have

$$
\begin{aligned}
x^{2}-8 x+16 & =0 \\
x^{2}-2 \times 4 x+4^{2} & =0 \\
(x-4)^{2} & =0 \Rightarrow x=4,4
\end{aligned}
$$

Hence, the required roots are either $-4,-4$ or 4,4
137. Solve for $x: x^{2}+5 x-\left(a^{2}+a-6\right)=0$

Ans :
[Board 2019 OD]
We have

$$
\begin{aligned}
x^{2}+5 x-\left(a^{2}+a-6\right) & =0 \\
x^{2}+5 x-\left[a^{2}+3 a-2 a-6\right] & =0 \\
x^{2}+5 x-[a(a+3)-2(a+3)] & =0
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+5 x-(a+3)(a-2) & =0 \\
x^{2}+[a+3-(a-2)] x-(a+3)(a-2) & =0 \\
x^{2}+(a+3) x-(a-2) x-(a+3)(a-2) & =0 \\
x[x+(a+3)]-(a-2)[x+(a+3)] & =0 \\
{[x+(a+3)][x-(a-2)] } & =0
\end{aligned}
$$

Thus $x=-(a+3)$ and $x=(a-2)$
Hence, roots of given equations are $x=-(a+3)$ and $x=a-2$.
138.Find the nature of the roots of the quadratic equation $4 x^{2}+4 \sqrt{3 x}+3=0$.
Ans :
[Board 2019 OD]
We have $\quad 4 x^{2}+4 \sqrt{3 x}+3=0$
Comparing the given equation with $a x^{2}+b x+c=0$ we get $a=4, b=4 \sqrt{3}$ and $c=3$.

Now,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(4 \sqrt{3})^{2}-4 \times 4 \times 3 \\
& =48-48=0
\end{aligned}
$$

Since, $b^{2}-4 a c=0$, then roots of the given equation are real and equal.
139.If $x=3$ is one root of the quadratic equation $x^{2}-2 k x-6=0$, then find the value of k.
Ans :
[Board 2018]
If $x=3$ is one root of the equation $x^{2}-2 k x-6=0$, it must satisfy it.
Thus substituting $x=3$ in given equation we have

$$
\begin{array}{r}
9-6 k-6=0 \\
k=\frac{1}{2}
\end{array}
$$

140.Find the positive values of k for which quadratic equations $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ both will have the real roots.
Ans :
[Board Term-2 Foreign 2016]
(1) For $x^{2}+k x+64=0$ to have real roots

$$
\begin{aligned}
k^{2}-256 & \geq 0 \\
k^{2} & \geq 256 \\
k & \geq 16 \text { or } k<-16
\end{aligned}
$$

(2) For $x^{2}-8 x+k=0$ to have real roots

$$
64-4 k \geq 0
$$

$$
16-k \geq 0
$$

$$
16 \geq k
$$

For (1) and (2) to hold simultaneously

$$
k=16
$$

141.Find the values of k for which the equation $(3 k+1)^{2}+2(k+1) x+1$ has equal roots. Also find the roots.

Ans :
[Board Term-2, 2014]
We have $\quad(3 k+1)^{2}+2(k+1) x+1$
Comparing with $A x^{2}+B x+C=0$ we get

$$
A=(3 k+1), B=2(k+1), C=1
$$

If roots are equal, $B^{2}-4 A C=0$

$$
\begin{aligned}
{[2(k+1)]^{2}-4(3 k+1)(1) } & =0 \\
4\left(k^{2}+2 k+1\right)-(12 k+4) & =0 \\
4 k^{2}+8 k+4-12 k-4 & =0 \\
4 k^{2}-4 k & =0 \\
4 k(k-1) & =0 \\
k & =0,1
\end{aligned}
$$

Substituting $k=0$, in the given equation,

$$
\begin{aligned}
x^{2}+2 x+1 & =0 \\
(x+1)^{2} & =0 \\
x & =-1
\end{aligned}
$$

Again substituting $k=1$, in the given equation,

$$
\begin{aligned}
4 x^{2}+4 x+1 & =0 \\
(2 x+1)^{2} & =0 \\
x & =-\frac{1}{2}
\end{aligned}
$$

or,
Hence, roots $=-1,-\frac{1}{2}$
142. Find the values of k for which the quadratic equations $(k+4) x^{2}+(k+1) x+1=0$ has equal roots. Also, find the roots.
Ans:
[Board Term-2 Delhi 2014]
We have $\quad(k+4) x^{2}+(k+1) x+1=0$
Comparing with $A x^{2}+B x+C=0$ we get

$$
A=(k+4), B=(k+1), C=1
$$

If roots are equal, $B^{2}-4 A C=0$

$$
\begin{array}{r}
(k+1)^{2}-4(k+4)(1)=0 \\
k^{2}+1+2 k-4 k-16=0 \\
k^{2}-2 k-15=0
\end{array}
$$

$$
\begin{aligned}
(k-5)(k+3) & =0 \\
k & =5,-3
\end{aligned}
$$

For $k=5$, equation becomes

$$
\begin{aligned}
9 x^{2}+6 x+1 & =0 \\
(3 x+1)^{2} & =0 \\
x & =-\frac{1}{3}
\end{aligned}
$$

or
For $k=-3$, equation becomes

$$
\begin{array}{r}
x^{2}-2 x+1=0 \\
(x-1)^{2}=0 \\
x=1
\end{array}
$$

Hence roots are 1 and $-\frac{1}{3}$.

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality
We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

143.If $x=-2$ is a root of the equation $3 x^{2}+7 x+p=0$, find the value of k so that the roots of the equation $x^{2}+k(4 x+k-1)+p=0$ are equal.
Ans :
[Board Term-2 Foreign 2015]
We have $\quad 3 x^{2}+7 x+p=0$
Since $x=-2$ is the root of above equation, it must satisfy it.

Thus

$$
\begin{aligned}
3(-2)+7(-2)+p & =0 \\
p & =2
\end{aligned}
$$

Since roots of the equation $x^{2}+4 k x+k^{2}-k+2=0$ are equal,

$$
\begin{aligned}
16 k^{2}-4\left(k^{2}-k+2\right) & =0 \\
16 k^{2}-4 k^{2}+4 k-8 & =0 \\
12 k^{2}+4 k-8 & =0 \\
3 k^{2}+k-2 & =0 \\
(3 k-2)(k+1) & =0 \\
k & =\frac{2}{3},-1
\end{aligned}
$$

Hence, roots $=\frac{2}{3},-1$
144.If $x=-4$ is a root of the equation $x^{2}+2 x+4 p=0$
, find the values of k for which the equation $x^{2}+p x(1+3 k)+7(3+2 k)=0$ has equal roots.
Ans:
[Board Term-2 Foreign 2015]
We have

$$
x^{2}+2 x+4 p=0
$$

Since $x=-4$ is the root of above equation. It must satisfy it.

$$
\begin{aligned}
(-4)^{2}+(2 \times-4)+4 p & =0 \\
p & =-2
\end{aligned}
$$

Since equation $x^{2}-2(1+3 k) x+7(3+2 k)=0$ has equal roots.

$$
\begin{aligned}
4(1+3 k)^{2}-28(3+2 k) & =0 \\
9 k^{2}-8 k-20 & =0 \\
(9 k+10)(k-2) & =0 \\
k & \frac{-10}{9}, 2
\end{aligned}
$$

Hence, the value of k are $-\frac{10}{9}$ and 2 .
145.Find the value of p for which the quadratic equation $(p+1) x^{2}-6(p+1) x+3(p+9)=0, \quad p \neq-1 \quad$ has equal roots. Hence find the roots of the equation.
Ans :
[Board Term-2, 2015]
We have

$$
(p+1) x^{2}-6(p+1) x+3(p+9)=0
$$

Comparing with $a x^{2}+b x+c=0$ we get

$$
a=p+1, b=-6(p+1), c=3(p+9)
$$

For real and equal roots, $b^{2}-4 a c=0$

$$
\begin{aligned}
36(p+1)^{2}-4(p+1) \times 3(p+9) & =0 \\
3\left(p^{2}+2 p+1\right)-(p+1)(p+9) & =0 \\
3 p^{2}+6 p+3-\left(p^{2}+9 p+p+9\right) & =0 \\
2 p^{2}-4 p-6 & =0 \\
p^{2}-2 p-3 & =0 \\
p^{2}-3 p+p-3 & =0 \\
p(p-3)+1(p-3) & =0 \\
(p-3)(p+1) & =0 \\
p & =-1,3
\end{aligned}
$$

Neglecting $p \neq-1$ we get $p=3$
Now the equation becomes
or

$$
\begin{array}{r}
4 x^{2}-24 x+36=0 \\
x^{2}-6 x+9=0
\end{array}
$$

or,

$$
\begin{aligned}
(x-3)(x-3) & =0 \\
x & =3,3
\end{aligned}
$$

Thus roots are 3 and 3 .
146.If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+\left(c^{2}-a^{2}\right)=0$ has equal roots, prove that $c^{2}=a^{2}\left(1+m^{2}\right)$
Ans :
[Board Term-2 Delhi 2015]
We have $\quad\left(1+m^{2}\right) x^{2}+2 m c x+\left(c^{2}-a^{2}\right)=0$
Comparing with $A x^{2}+B x+C=0$ we get

$$
A=1+m^{2}, B=2 m c, C=\left(c^{2}-a^{2}\right)
$$

If roots are equal, $B^{2}-4 A C=0$

$$
\begin{aligned}
(2 m c)^{2}-4\left(1+m^{2}\right)\left(c^{2}-a^{2}\right) & =0 \\
4 m^{2} c^{2}-4\left(1+m^{2}\right)\left(c^{2}-a^{2}\right) & =0 \\
m^{2} c^{2}-\left(c^{2}-a^{2}+m^{2} c^{2}-m^{2} a^{2}\right)=0 & \text { 或緇 } \\
m^{2} c^{2}-c^{2}+a^{2}-m^{2} c^{2}+m^{2} a^{2} & =0 \\
-c^{2}+a^{2}+m^{2} a^{2} & =0 \\
c^{2} & =a^{2}\left(1+m^{2}\right)
\end{aligned}
$$

Hence Proved.
147.If (-5) is a root of the quadratic equation $2 x^{2}+p x+15=0$ and the quadratic equation $p\left(x^{2}+x\right)+k=0$ has equal roots, then find the values of p and k.
Ans :
[Board Term-2 Delhi 2015]
We have $\quad 2 x^{2}+p x-15=0$
Since $x=-5$ is the root of above equation. It must satisfy it.

$$
\begin{array}{r}
2(-5)^{2}+p(-5)-15=0 \\
50-5 p-15=0
\end{array}
$$

$$
5 p=35 \Rightarrow p=7
$$

Now

$$
\begin{aligned}
p\left(x^{2}+x\right)+k & =0 \text { has equal roots } \\
7 x^{2}+7 x+k & =0
\end{aligned}
$$

Taking $b^{2}-4 a c=0$ we have

$$
7^{2}-4 \times 7 \times k=0
$$

$$
\begin{aligned}
7-4 k & =0 \\
k & =\frac{7}{4}
\end{aligned}
$$

Hence $p=7$ and $k=\frac{7}{4}$.
148.If the roots of the quadratic equation
$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are equal. Then show that $a=b=c$.
Ans:
[Board Term-2 Delhi 2015]
We have

$$
\begin{aligned}
& (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 \\
& x^{2}-a x-b x+a b+ \\
& +x^{2}-b x-c x+b c+ \\
& +x^{2}-c x-a x+a c=0 \\
& 3 x^{2}-2 a c-2 b x-2 c x+a b+b c+c a=0
\end{aligned}
$$

For equal roots $B^{2}-4 A C=0$

$$
\begin{gathered}
\{-2(a+b+c)\}^{2}-4 \times 3(a b+b c+c a)=0 \\
4(a+b+c)^{2}-12(a b+b c+c a)=0 \\
a^{2}+b^{2}+c^{2}-3(a b+b c+c a)=0 \\
a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c-3 a b-3 b c-3 a c=0 \\
a^{2}+b^{2}+c^{2}-a b-a c-b c=0 \\
\frac{1}{2}\left[2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 a c-2 b c\right]=0 \\
\frac{1}{2}\left[\left(a^{2}+b^{2}-2 a b\right)+\left(b^{2}+c^{2}-2 b c\right)+\left(c^{2}+a^{2}-2 a c\right)\right]=0 \\
\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0 \\
\text { or, } \quad(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0
\end{gathered}
$$

If $a \neq b \neq c$
$(a-b)^{2}>0,(b-c)^{2}>0,(c-a)^{2}>0$
If $\quad(a-b)^{2}=0 \Rightarrow a=b$

$$
\begin{aligned}
& (a-c)^{2}=0 \Rightarrow b=c \\
& (c-a)^{2}=0 \Rightarrow c=a
\end{aligned}
$$

Thus $a=b=c$
Hence Proved
149.If the roots of the quadratic equation $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+b^{2}-a c=0$ in x are equal then show that either $a=0$ or $a^{3}+b^{3}+c^{3}=3 a b c$
Ans :
[Board Term 2Outside Delhi 2017]
We have $\quad\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+b^{2}-a c=0$
Comparing with $A x^{2}+B x+C=0$ we get
$A=\left(c^{2}-a b\right), B=\left(a^{2}-b c\right), C=\left(b^{2}-a c\right)$
If roots are equal, $B^{2}-4 A C=0$

$$
\begin{gathered}
{\left[2\left(a^{2}-b c\right)\right]^{2}-4\left(c^{2}-a b\right)\left(b^{2}-a c\right)=0} \\
4\left[a^{4}+b^{2} c^{2}-2 a^{2} b c\right]-4\left(b^{2} c^{2}-c^{3} a-a b^{3}-a^{2} b c\right)=0 \\
4\left[a^{4}+b^{2} c^{2}-2 a^{2} b c-b^{2} c^{2}+c^{3} a+a b^{3}-a^{2} b c\right]=0
\end{gathered}
$$

$$
\begin{aligned}
4\left[a^{4}+a c^{3}+a b^{3}-3 a^{2} b c\right] & =0 \\
a\left(a^{3}+c^{3}+b^{3}-3 a b c\right) & =0 \\
a=0 \text { or } a^{3}+b^{3}+c^{3} & =3 a b c
\end{aligned}
$$

150. Solve for $x: \frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}$
where $a+b+x \neq 0$ and $a, b, x \neq 0$
Ans :
[Board Term-2 Foreign 2017]
We have

$$
\begin{aligned}
\frac{1}{a+b+x}-\frac{1}{x} & =\frac{1}{a}+\frac{1}{b} \\
\frac{-(a+b)}{x^{2}+(a+b) x} & =\frac{b+a}{a b} \\
x^{2}+(a+b) x+a b & =0 \\
(x+a)(x+b) & =0 \\
x & =-a, x=-b
\end{aligned}
$$

Hence $x=-a,-b$
151. Check whether the equation $5 x^{2}-6 x-2=0$ has real roots if it has, find them by the method of completing the square. Also verify that roots obtained satisfy the given equation.
Ans:
[Board Term-2 SQP 2017]
We have $\quad 5 x^{2}-6 x-2=0$
Comparing with $a x^{2}+b x+c=0$ we get

$$
\begin{aligned}
a=5, b & =(-6) \text { and } c=(-2) \\
b^{2}-4 a c & =(-6)^{2}-4 \times 5 \times-2 \\
& =36+40=76>0
\end{aligned}
$$

So the equation has real and two distinct roots.

$$
5 x^{2}-6 x=2
$$

Dividing both the sides by 5 we get

$$
\begin{aligned}
\frac{x^{2}}{5}-\frac{6}{5} x & =\frac{2}{5} \\
x^{2}-2 x\left(\frac{3}{5}\right) & =\frac{2}{5}
\end{aligned}
$$

Adding square of the half of coefficient of x

$$
\begin{aligned}
x^{2}-2 x\left(\frac{3}{5}\right)+\frac{9}{25} & =\frac{2}{5}+\frac{9}{25} \\
\left(x-\frac{3}{5}\right)^{2} & =\frac{19}{25} \\
x-\frac{3}{5} & = \pm \frac{\sqrt{19}}{5}
\end{aligned}
$$

$$
x=\frac{3+\sqrt{19}}{5} \text { or } \frac{3-\sqrt{19}}{5}
$$

Verification :

$$
\begin{aligned}
5\left[\frac{3+\sqrt{19}}{5}\right]^{2} & -6\left[\frac{3+\sqrt{19}}{5}\right]-2 \\
& =\frac{9+6 \sqrt{19}+19}{5}-\left(\frac{18+6 \sqrt{19}}{5}\right)-2 \\
& =\frac{28+6 \sqrt{19}}{5}-\frac{18+6 \sqrt{19}}{5}-2 \\
& =\frac{28+6 \sqrt{19}-18-6 \sqrt{19}-10}{5} \\
& =0
\end{aligned}
$$

Similarly

$$
5\left[\frac{3-\sqrt{19}}{5}\right]^{2}-6\left[\frac{3-\sqrt{19}}{5}\right]-2=0
$$

Hence verified.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

CHAPTER 5

ARITHMETIC PROGRESSION

ONE MARK QUESTIONS

Multiple Choice Questions

1. The $n^{\text {th }}$ term of the AP $a, 3 a, 5 a, \ldots$ is
(a) $n a$
(b) $(2 n-1) a$
(c) $(2 n+1) a$
(d) $2 n a$

Ans :
[Board 2020 OD Standard]
Given AP is $a, 3 a, 5 a, \ldots$
First term is a and $d=3 a-a=2 a$
$n^{\text {th }}$ term

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
& =a+(n-1) 2 a \\
& =a+2 n a-2 a \\
& =2 n a-a=(2 n-1) a
\end{aligned}
$$

Thus (b) is correct option.
2. The common difference of the AP $\frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{p}$, ... is
(a) 1
(b) $\frac{1}{p}$
(c) -1
(d) $-\frac{1}{p}$

Ans :
[Board 2020 OD Standard]
Given AP is $\frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{p} \ldots$
Common difference

$$
d=\frac{1-p}{p}-\frac{1}{p}=\frac{1-p-1}{p}=\frac{-p}{p}=-1
$$

Thus (c) is correct option.
3. The value of x for which $2 x,(x+10)$ and $(3 x+2)$ are the three consecutive terms of an AP, is
(a) 6
(b) -6
(c) 18
(d) -18

Ans :
[Board 2020 Delhi Standard]

Since $2 x,(x+10)$ and $(3 x+2)$ are in AP we obtain,

$$
\begin{aligned}
(x+10)-2 x & =(3 x+2)-(x+10) \\
-x+10 & =2 x-8 \\
-x-2 x & =-8-10 \\
-3 x & =-18 \Rightarrow x=6
\end{aligned}
$$

Thus (a) is correct option.
4. The first term of AP is p and the common difference is q, then its 10 th term is
(a) $q+9 p$
(b) $p-9 q$
(c) $p+9 q$
(d) $2 p+9 q$

Ans :
[Board 2020 Delhi Standard]
We have

$$
\begin{aligned}
a & =p \text { and } d=q \\
a_{10} & =a+(10-1) d \\
& =p+9 q
\end{aligned}
$$

Thus (c) is correct option.
5. In an AP, if $d=-4, n=7$ and $a_{n}=4$, then a is equal to
(a) 6
(b) 7
(c) 20
(d) 28

Ans: (d) 28
In an AP,

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
4 & =a+(7-1)(-4) \\
4 & =a+6(-4) \\
4+24 & =a \Rightarrow a=28
\end{aligned}
$$

Thus (d) is correct option.
6. In an AP, if $a=3.5, d=0$ and $n=101$, then a_{n} will be
(a) 0
(b) 3.5
(c) 103.5
(d) 104.5

Ans : (b) 3.5

As, $d=0$ all the terms are same whatever the value of n. So, $a_{n}=3.5$.

Alternate Method :

In an AP,

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
& a_{n}=3.5+(101-1) \times 0=3.5
\end{aligned}
$$

Thus (b) is correct option.
7. The 11 th term of an AP $-5, \frac{-5}{2}, 0, \frac{5}{2}, \ldots .$. , is
(a) -20
(b) 20
(c) -30
(d) 30

Ans: (b) 20
Here, $\quad a=-5, d=\frac{-5}{2}-(-5)=\frac{5}{2}$
nth term,

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
& a_{11}=-5+(11-1) \times\left(\frac{5}{2}\right) \\
& a_{11}=-5+25=20
\end{aligned}
$$

Thus (b) is correct option.
8. In an AP, if $a=3.5, d=0$ and $n=101$, then a_{n} will be
(a) 0
(b) 3.5
(c) 103.5
(d) 104.5

Ans: (b) 3.5
For an AP,

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
& =3.5+(101-1) \times 0 \\
& =3.5
\end{aligned}
$$

Thus (b) is correct option.
9. Which term of an AP, $21,42,63,84, \ldots$ is 210 ?
(a) 9 th
(b) 10th
(c) 11 th
(d) 12 th

Ans: (b) 10th
Let nth term of given AP be 210,
First term,

$$
\begin{aligned}
a & =21 \\
d & =42-21=21 \\
a_{n} & =210 \\
a_{n} & =a+(n-1) d \\
210 & =21+(n-1) 21 \\
210 & =21+21 n-21
\end{aligned}
$$

Common difference,
and

In an AP,

$$
210=21 n \Rightarrow n=10
$$

Hence, the 10 th term of the given AP is 210 .
Thus (b) is correct option.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

10. If the common difference of an AP is 5 , then what is $a_{18}-a_{13}$?
(a) 5
(b) 20
(c) 25
(d) 30

Ans: (c) 25
Given, the common difference of AP i.e, $d=5$
Using, $\quad a_{n}=a+(n-1) d$
We have, $a_{18}=a+(18-1) d$
and $\quad a_{13}=a+(13-1) d$
Now, $a_{18}-a_{13}=a+(18-1) d-[a+(13-1) d]$
$=a+17 \times 5-a-12 \times 5$
$=85-60=25$
Thus (c) is correct option.
11. What is the common difference of an AP in which $a_{18}-a_{14}=32$?
(a) 8
(b) -8
(c) -4
(d) 4

Ans: (a) 8
We have $\quad a_{18}-a_{14}=32$
In an AP, $\quad a_{n}=a+(n-1) d$

$$
\begin{aligned}
a+(18-1) d-[a+(14-1) d] & =32 \\
a+17 d-a-13 d & =32 \\
4 d & =32 \Rightarrow d=8
\end{aligned}
$$

Hence, the required common difference of the given AP is 8 .

Thus (a) is correct option.
12. The 4 th term from the end of an AP $-11,-8,-5$,, 49 is
(a) 37
(b) 40
(c) 43
(d) 58

Ans: (b) 40
e256

Common difference,

$$
d=-8-(-11)=-8+11=3
$$

Last term, $\quad l=49$
nth term of an AP from the end is

$$
\begin{aligned}
a_{n} & =l-(n-1) d \\
a_{4} & =49-(4-1) \times 3 \\
& =49-9=40
\end{aligned}
$$

13. If the first term of an AP is -5 and the common difference is 2 , then the sum of the first 6 terms is
(a) 0
(b) 5
(c) 6
(d) 15

Ans: (a) 0
We have $\quad a=-5$ and $d=2$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\{2 a+(n-1) d\} \\
S_{6} & =\frac{6}{2}[2 a+(6-1) d] \\
& =3[2(-5)+5(2)] \\
& =3(-10+10)=0
\end{aligned}
$$

Thus (a) is correct option.
14. The sum of first 16 terms of the AP $10,6,2, \ldots$. is
(a) -320
(b) 320
(c) -352
(d) -400

Ans: (a) -320
Given, AP , is $10,6,2 \ldots$.
We have $\quad a=10$ and $d=(6-10)=-4$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\{2 a+(n-1) d\} \\
S_{16} & =\frac{16}{2}[2 a+(16-1) d] \\
& =8[2 \times 10+15(-4)] \\
& =8(20-60) \\
& =8(-40)=-320
\end{aligned}
$$

Thus (a) is correct option.
15. In an AP, if $a=1, a_{n}=20$ and $S_{n}=399$, then n is equal to
(a) 19
(b) 21
(c) 38
(d) 42

Ans: (c) 38

We have $a=1, a_{n}=20$ and $S_{n}=399$
Now,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a+a_{n}\right) \\
399 & =\frac{n}{2}(1+20) \\
n & =\frac{399 \times 2}{21}=38
\end{aligned}
$$

16. The sum of first five multiples of 3 is
(a) 45
(b) 55
(c) 65
(d) 75

Ans : (a) 45
e261
The first five multiples of 3 are $3,6,9,12$ and 15 .
Here, first term, $a=3, d=6-3=3$ and $n=5$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\{2 a+(n-1)\} d \\
S_{5} & =\frac{5}{2}[2 a+(5-1) d] \\
& =\frac{5}{2}[2 \times 3+4 \times 3] \\
& =\frac{5}{2}(6+12)=\frac{5}{2} \times 18=45
\end{aligned}
$$

Thus (a) is correct option.
No Need to Buy any Question Bank or Sample Chapter From
Market. Download Free PDF of all Study Material from
www.c bse.online
17. If the sum of the series $2+5+8+11$ \qquad is 60100, then the number of terms are
(a) 100
(b) 200
(c) 150
(d) 250

Ans : (b) 200
We have $a=2 . d=5-2=3$ and $S_{n}=60100$

$$
\begin{aligned}
\frac{n}{2}[2 a+(n-1) d] & =S_{n} \\
\frac{n}{2}[4+(n-1) 3] & =60100 \\
n(3 n+1) & =120200 \\
3 n^{2}+n-120200 & =0 \\
(n-200)(3 n+601) & =0 \Rightarrow n=200, \frac{601}{3}
\end{aligned}
$$

Thus $n=200$ because n can not be fraction.
Thus (b) is correct option.
18. If the common difference of an AP is 5 , then what is $a_{18}-a_{13}$?
(a) 5
(b) 20
(c) 25
(d) 30

Ans: (c) 25
Given, the common difference of AP i.e., $d=5$
Now $\quad a_{n}=a+(n-1) d$

$$
\text { Now, } \begin{aligned}
a_{18}-a_{13} & =a+(18-1) d-[a+(13-1) d] \\
& =a+17 \times 5-a-12 \times 5 \\
& =85-60=25
\end{aligned}
$$

Thus (c) is correct option.
19. There are 60 terms is an AP of which the first term is 8 and the last term is 185 . The $31^{\text {st }}$ term is
(a) 56
(b) 94
(c) 85
(d) 98

Ans: (d) 98
Let d be the common difference;
Now

$$
a_{n}=a+(n-1) d
$$

Then $60^{\text {th }}$ term, $\quad a_{60}=8+(60-1) d$

$$
185=8+59 d
$$

$$
59 d=177 \Rightarrow d=3
$$

$31^{\text {th }}$ term $\quad a_{31}=8+30 \times 3=98$
Thus (d) is correct option.
20. The first and last term of an AP are a and ℓ respectively. If S is the sum of all the terms of the AP and the common difference is $\frac{\ell^{2}-a^{2}}{k-(\ell+a)}$, then k is equal to
(a) S
(b) $2 S$
(c) $3 S$
(d) None of these

Ans: (b) $2 S$

We have,

$$
S=\frac{n}{2}(a+\ell)
$$

$$
\begin{equation*}
\frac{2 S}{a+\ell}=n \tag{1}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\ell & =a+(n-1) d \\
d & =\frac{\ell-a}{n-1}=\frac{\ell-a}{\frac{2 S}{a+\ell}-1} \\
& =\frac{\ell^{2}-a^{2}}{2 S-(\ell+a)}
\end{aligned}
$$

Thus

$$
k=2 S
$$

Thus (b) is correct option.
21. If the nth term of an AP is given by $a_{n}=5 n-3$, then the sum of first 10 terms if
(a) 225
(b) 245
(c) 255
(d) 270

Ans: (b) 245
We have

$$
a_{n}=5 n-3
$$

Substituting $n=1$ and 10 we have

$$
\begin{aligned}
a & =2 \\
a_{10} & =47 \\
S_{n} & =\frac{n}{2}\left(a+a_{n}\right) \\
S_{10} & =\frac{10}{2}(2+47) \\
& =5 \times 49=245
\end{aligned}
$$

Thus

Thus (b) is correct option.
22. Two APs have the same common difference. The first term of one of these is -1 and that of the other is -8 . Then the difference between their 4th terms is
(a) -1
(b) -8
(c) 7
(d) -9

Ans: (c) 7
4th term of first AP,

$$
a_{4}=-1+(4-1) d=-1+3 d
$$

and 4 th term of second AP,

$$
a_{4}^{\prime}=-8+(4-1) d=-8+3 d
$$

Now, the difference between their 4 th terms,

$$
\begin{aligned}
a_{4}^{\prime}-a_{4} & =(-1+3 d)-(-8+3 d) \\
& =-1+3 d+8-3 d=7
\end{aligned}
$$

Hence, the required difference is 7 .
Thus (c) is correct option.
23. An AP starts with a positive fraction and every alternate term is an integer. If the sum of the first 11 terms is 33 , then the fourth term is
(a) 2
(b) 3
(c) 5
(d) 6

Ans: (a) 2
We have

$$
S_{11}=33
$$

$$
\begin{aligned}
\frac{11}{2}[2 a+10 d] & =33 \\
a+5 d & =3
\end{aligned}
$$

i.e. $\quad a_{6}=3 \Rightarrow a_{4}=2$

Since, alternate terms are integers and the given sum is possible, $a_{4}=2$.
Thus (a) is correct option.
24. If the sum of the first $2 n$ terms of $2,5,8$, \qquad is equal to the sum of the first n terms of $57,59,61$,, then n is equal to
(a) 10
(b) 12
(c) 11
(d) 13

Ans: (c) 11

$$
\begin{gathered}
\frac{2 n}{2}\{2 \times 2+(2 n-1) 3\}=\frac{n}{2}\{2 \times 57+(n-1) 2\} \\
2(6 n+1)=112+2 n \\
10 n=110 \Rightarrow n=11
\end{gathered}
$$

Thus (c) is correct option.

Don't Take Printout of This PDF. Buy Hard Book at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

25. In an AP, if $d=-4, n=7$ and $a_{n}=4$, then a is equal to
(a) 6
(b) 7
(c) 20
(d) 28

Ans: (d) 28
In an AP,

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
4 & =a+(7-1)(-4) \\
4 & =a+6(-4) \\
4+24 & =a \Rightarrow a=28
\end{aligned}
$$

Thus (d) is correct option.
26. The first four terms of an AP whose first term is -2 and the common difference is -2 are
(a) $-2,0,2,4$
(b) $-2,4,-8,16$
(c) $-2,-4,-6,-8$
(d) $-2,-4,-8,-16$

Ans: (c) $-2,-4,-6,-8$

Let the first four terms of an AP are $a, a+d, a+2 d$
and $a+3 d$.
Given, that first term, $a=-2$ and common difference, $d=-2$, then we have an AP as follows

$$
\begin{gathered}
-2, \quad-2-2, \quad-2+2(-2), \quad-2+3(-2) \\
=-2,-4,-6,-8
\end{gathered}
$$

Thus (c) is correct option.
27. The $21^{\text {th }}$ term of an AP whose first two terms are -3 and 4 , is
(a) 17
(b) 137
(c) 143
(d) -143

Ans: (b) 137
Given, first two terms of an AP are

$$
a=-3
$$

and

$$
a+d=4
$$

$$
-3+d=4 \Rightarrow d=7
$$

For an AP,

$$
a_{n}=a+(n-1) d
$$

Thus

$$
\begin{aligned}
a_{21} & =a+(21-1) d \\
& =-3+(20) 7 \\
& =-3+140=137
\end{aligned}
$$

Thus (b) is correct option.
28. The number of two digit numbers which are divisible by 3 is
(a) 33
(b) 31
(c) 30
(d) 29

Ans: (c) 30
Two digit numbers which are divisible by 3 are 12, 15, 18, \qquad 99;

Here $a=12, d=3$ and $a_{n}=99$
For an AP,

$$
\begin{aligned}
\mathrm{P}, \quad a_{n} & =a+(n-1) d \\
99 & =12+(n-1) \times 3 \\
99-12 & =3 n-3 \\
99-12+3 & =3 n
\end{aligned}
$$

So,

$$
90=3 n \Rightarrow n=30
$$

Thus (c) is correct option.
29. The list of numbers $-10,-6,-2,2, \ldots$. is
(a) an AP with $d=-16$
(b) an AP with $d=4$
(c) an AP with $d=-4$
(d) not an AP

Ans: (b) an AP with $d=4$
The given numbers are $-10,-6,-2,2, \ldots$.
Here, $\quad a_{1}=10, a_{2}=-6, a_{3}=-2$ and $a_{4}=2, \ldots$.
Since, $\quad d_{1}=a_{2}-a_{1}=-6-(-10)=-6+10=4$
$d_{2}=a_{3}-a_{2}=-2-(-6)=-2+6=4$
$d_{3}=a_{4}-a_{3}=2-(-2)=2+2=4$
Since, $\quad d_{1}=d_{2}=d_{3}=$ \qquad $=4$
i.e., each successive term of given list has same difference. So, the given list forms an AP with common difference, $d=4$.

Thus (b) is correct option.

30. If the nth term of an AP is $4 n+1$, then the common difference is
(a) 3
(b) 4
(c) 5
(d) 6

Ans: (b) 4
Given that the $n^{\text {th }}$ term of an AP is $4 n+1$.

$$
a_{n}=4 n+1
$$

Substituting $n=1,2,3, \ldots$. we have

$$
\begin{aligned}
& a_{1}=4(1)+1=5 \\
& a_{2}=4(2)+1=9
\end{aligned}
$$

Common difference,

$$
d=a_{2}-a_{1}=9-5=4
$$

Thus (b) is correct option.

Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online
31. If a, b, c, d, e, f are in AP , then $e-c$ is equal to
(a) $2(c-a)$
(b) $2(d-c)$
(c) $2(f-d)$
(d) $(d-c)$

Ans: (b) $2(d-c)$
Let x be the common difference of the AP a, b, c, d, e, f.
For an AP,

$$
\begin{align*}
a_{n} & =a+(n-1) d \\
e & =a+(5-1) x \\
e & =a+4 x \tag{1}
\end{align*}
$$

$$
\begin{equation*}
c=a+2 x \tag{2}
\end{equation*}
$$

Using equation (1) and (2), we get

$$
\begin{aligned}
e-c & =a+4 x-a-2 x \\
& =2 x=2(d-c)
\end{aligned}
$$

Thus (b) is correct option.
32. If 7 times the 7 th term of an AP is equal to 11 times its 11th term, then its term will be
(a) 7
(b) 11
(c) 18
(d) 0

Ans: (d) 0
In an AP, $\quad a_{n}=a+(n-1) d$
Now, according to the question,

$$
\begin{align*}
7 a_{7} & =11 a_{11} \\
7[a+(7-1) d] & =11[a+(11-1) d] \\
7(a+6 d) & =11(a+10 d) \\
7 a+42 d & =11 a+110 d \\
4 a+68 d & =0 \\
4(a+17 d) & =0 \\
a+17 d & =0 \tag{1}
\end{align*}
$$

18th term of an AP,

$$
a_{18}=a+(18-1) d=a+17 d
$$

But from equation (1) this is zero.
33. The sum of 11 terms of an AP whose middle term is 30 , is
(a) 320
(b) 330
(c) 340
(d) 350

Ans: (b) 330
Middle term is $\frac{11+1}{2}=6$ th term.
Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{6} & =a+5 d \\
30 & =a+5 d \\
a & =30-5 d
\end{aligned}
$$

Now

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{11}=\frac{11}{2}(2 a+10 d)
\end{aligned}
$$

Substituting value of a we have

$$
\begin{aligned}
S_{11} & =\frac{11}{2}[2(30-5 d)+10 d] \\
& =\frac{11}{2}[60-10 d+10 d] \\
& =11 \times 30 \\
S_{11} & =330
\end{aligned}
$$

Thus (b) is correct option.
34. Five distinct positive integers are in a arithmetic progression with a positive common difference. If their sum is 10020 , then the smallest possible value of the last term is
(a) 2002
(b) 2004
(c) 2006
(d) 2007

Ans : (c) 2006
Let the five integers be $a-2 d, a-d, a, a+d, a+2 d$. Then, we have,
$(a-2 d)+(a-d)+a+(a+d)+(a+2 d)=10020$

$$
5 a=10020 \Rightarrow a=2004
$$

Now, as smallest possible value of d is 1 .
Hence, the smallest possible value of $a+2 d$ is $2004+2$ $=2006$

Thus (c) is correct option.
35. If the 2 nd term of an AP is 13 and 5 th term is 25 , what is its 7 th term?
(a) 30
(b) 33
(c) 37
(d) 38

Ans: (b) 33
We have $a_{2}=13$, and $a_{5}=25$
In an AP,

$$
\begin{align*}
a_{n} & =a+(n-1) d \\
a_{2} & =a+(2-1) d=13 \\
a+d & =13 \tag{1}
\end{align*}
$$

and

$$
a_{5}=a+(5-1) d=25
$$

$$
\begin{equation*}
a+4 d=25 \tag{2}
\end{equation*}
$$

Subtracting equation (1) from equation (2), we get

$$
3 d=25-13=12 \Rightarrow d=4
$$

From equation (1), $a=13-4=9$
Now, 7 th term, $\quad a_{7}=a+(7-1) d$

$$
=9+6 \times 4=33
$$

Thus (b) is correct option.
36. Assertion : Common difference of the AP $-5,-1$, 3, 7, \qquad is 4 .
Reason : Common difference of the AP $a, a+d, a+2 d, \ldots \ldots \ldots$. is given by $d=a_{2}-a_{1}$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Common difference, $\quad d=-1-(-5)=4$
So, both A and R are correct and R explains A.

Thus (c) is correct option.
e282
37. Assertion : Sum of first 10 terms of the arithmetic progression $-0.5,-1.0,-1.5$, \qquad is 31 .
Reason : Sum of n terms of an AP is given as $S_{n}=\frac{n}{2}[2 a+(n-1) d]$ where a is first term and d common difference.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
Assertion, $\quad S_{10}$
$=\frac{10}{2}[2(-0.5)+(10-1)(-0.5)]$

$$
\begin{aligned}
& =5[-1-4.5] \\
& =5(-5.5)=27.5
\end{aligned}
$$

Assertion (A) is false but reason (R) is true.
Thus (d) is correct option.
38. Assertion : $a_{n}-a_{n-1}$ is not independent of n then the given sequence is an AP.
Reason : Common difference $d=a_{n}-a_{n-1}$ is constant or independent of n.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but
reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
Common difference of an AP $d=a_{n}-a_{n-1} \quad$ is independent of n or constant.
So, A is correct but R is incorrect.
Thus (d) is correct option.

39. Assertion : If $n^{\text {th }}$ term of an AP is $7-4 n$, then its common differences is -4 .
Reason : Common difference of an AP is given by $d=a_{n+1}-a_{n}$.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

Assertion,

$$
\begin{aligned}
a_{n} & =7-4 n \\
d & =a_{n+1}-a_{n} \\
& =7-4(n+1)-(7-4 n) \\
& =7-4 n-4-7+4 n=-4
\end{aligned}
$$

Both are correct. Reason is the correct explanation. Thus (a) is correct option.

For Free PDFS of all Sample Papers Visit www.cbse.online

40. Assertion : If sum of the first n terms of an AP is given by $S_{n}=3 n^{2}-4 n$. Then its $n^{\text {th }}$ term is $a_{n}=6 n-7$.
Reason : $n^{\text {th }}$ term of an AP, whose sum to n terms is S_{n}, is given by $a_{n}=S_{n}-S_{n-1}$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.
nth term of an AP,

$$
a_{n}=S_{n}-S_{n-1}
$$

$=3 n^{2}-4 n-3(n-1)^{2}+4(n-1)$

$$
=6 n-7
$$

So, both A and R are correct and R explains A . Thus (a) is correct option.

Fill in the Blank Questions

41. In an AP, the letter d is generally used to denote the
\qquad
Ans :
common difference

42. If a and d are respectively the first term and the common difference of an AP, $a+10 d$, denotes the term of the AP.
Ans:
eleventh

43. An arithmetic progression is a list of numbers in which each term is obtained by \qquad a fixed number to the preceding term except the first term.
Ans :
adding

44. If S_{n} denotes the sum of n term of an AP, then $S_{12}-S_{11}$ is the \qquad term of the AP.
Ans :
twelfth

45. The nth term of an AP whose first term is a and common difference is d is \qquad
Ans :
$a+(n-1) d$

e291
46. The nth term of an AP is always a \qquad expression.
Ans :
linear

47. The difference of corresponding terms of two AP's will be
Ans :
another AP
48. Fill the two blanks in the sequence 2 \qquad 26, \qquad so that the sequence forms an AP.
Ans :
[Board 2020 SQP Standard]
Let a and b be the two numbers. AP will be $2, a$, 26, b.

Now,

$$
\begin{aligned}
26-a & =a-2 \\
2 a & =28 \Rightarrow a=\frac{28}{2}=14
\end{aligned}
$$

and

$$
\begin{aligned}
b-26 & =26-a \\
a+b & =52 \\
14+b & =52 \Rightarrow b=38
\end{aligned}
$$

Thus $a=14$ and $b=38$.

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission

Very Short Answer Questions

49. The sum of first 20 terms of the AP $1,4,7,10$ \qquad
Ans :
[Board 2020 Delhi Standard]
Given AP is $1,4,7,10 \ldots$
Here, $\quad a=1, d=4-1=3$ and $n=20$

$$
\begin{aligned}
S_{20} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{20}{2}[2 \times 1+(20-1) 3] \\
& =10(2+57)=10 \times 59=590
\end{aligned}
$$

50. Show that $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$ are in AP.

Ans :
[Board 2020 Delhi Standard]
Given, $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$.
Common difference,

$$
\begin{aligned}
d_{1} & =\left(a^{2}+b^{2}\right)-(a-b)^{2} \\
& =\left(a^{2}+b^{2}\right)-\left(a^{2}+b^{2}-2 a b\right) \\
& =a^{2}+b^{2}-a^{2}-b^{2}+2 a b \\
& =2 a b
\end{aligned}
$$

and

$$
\begin{aligned}
d_{2} & =(a+b)^{2}-\left(a^{2}+b^{2}\right) \\
& =a^{2}+b^{2}+2 a b-a^{2}-b^{2} \\
& =2 a b
\end{aligned}
$$

Since, $d_{1}=d_{2}$, thus, $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$ are in AP.
51. Find the sum of all 11 terms of an AP whose middle term is 30 .
Ans :
[Board 2020 OD Standard]
In an AP with 11 terms, the middle term is $\frac{11+1}{2}=6^{\text {th }}$ term.

Now,
Thus,

$$
\begin{aligned}
a_{6} & =a+5 d=30 \\
S_{11} & =\frac{11}{2}[2 a+10 d] \\
& =11(a+5 d) \\
& =11 \times 30=330
\end{aligned}
$$

52. If 4 times the $4^{\text {th }}$ term of an AP is equal to 18 times the $18^{\text {th }}$ term, then find the $22^{\text {nd }}$ term.
Ans :
[Board 2020 Delhi Basic]
Let a be the first term and d be the common difference of the AP.

Now

$$
a_{n}=a+(n-1) d
$$

As per the information given in question

$$
\begin{aligned}
4 \times a_{4} & =18 \times a_{18} \\
4(a+3 d) & =18(a+17 d) \\
2 a+6 d & =9 a+153 d \\
7 a & =-147 d \\
a & =-21 d \\
a+21 d & =0 \\
a+(22-1) d & =0 \\
a_{22} & =0
\end{aligned}
$$

Hence, the $22^{\text {nd }}$ term of the AP is 0 .
53. If the first three terms of an AP are b, c and $2 b$, then find the ratio of b and c.
Ans :
[Board 2020 SQP Standard]
Given, b, c and $2 b$ are in AP.
Thus

$$
\begin{aligned}
c-b & =2 b-c \\
2 c & =3 b \\
\frac{2}{3} & =\frac{b}{c} \\
\frac{b}{c} & =\frac{2}{3} \Rightarrow b: c=2: 3
\end{aligned}
$$

54. The $n^{\text {th }}$ term of an AP is $(7-4 n)$, then what is its
common difference?

Ans :
[Board 2020 Delhi Basic]
We have

$$
a_{n}=7-4 n
$$

Putting $n=1$,

$$
a_{1}=7-4=3
$$

Putting $n=2$,

$$
a_{2}=7-8=-1
$$

Common difference

$$
\begin{aligned}
d & =a_{2}-a_{1} \\
& =-1-3=-4
\end{aligned}
$$

55. In an AP, if the common difference $d=-4$, and the seventh term a_{7} is 4 , then find the first term.
Ans:
[Board 2018]
We have

$$
d=-4
$$

and

$$
a_{7}=4
$$

Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{7} & =a+(7-1) d \\
4 & =a+(7-1)(-4) \\
4 & =a-24 \Rightarrow a=4+24=28
\end{aligned}
$$

First term of the AP is 28 .
56. Find the sum of first 8 multiples of 3 .

Ans :
[Board 2018]
First 8 multiples of 3 are $3,6,9,12,15,18,21,24$ which are in AP where $a=3, d=3$ and $n=8$.

Now

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{8} & =\frac{8}{2}[2 \times 3+(8-1) 3] \\
& =4[6+21] \\
S_{8} & =4 \times 27=108
\end{aligned}
$$

Thus, sum of first 8 multiples of 3 is 108 .
57. Find, how many two digit natural numbers are divisible by 7 .
Ans :
[Board 2019 Delhi]
Two digits number which are divisible by 7 form an AP given by $14,21,28, \ldots, 98$
Here, $\quad a=14, d=21-14=7$ and $a_{n}=98$
Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
98 & =14+(n-1) 7 \\
98-14 & =7 n-7 \\
91 & =7 n \Rightarrow n=13
\end{aligned}
$$

Hence, there are 13 numbers divisible by 7 .
58. Find the number of natural numbers between 102 and 998 which are divisible by 2 and 5 both.
Ans :
[Board 2020 SQP Standard]
If any number is divisible by 2 and 5 , it must be divisible by LCM of 2 and 5 , i.e. 10 .
Numbers between 102 \qquad 998 which are divisible by 2 and 5 are $110,120,130$, \qquad
Here $\quad a=110, d=120-110=10$ and $a_{n}=990$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
990 & =110+(n-1) 10 \\
880 & =10(n-1) \\
88 & =n-1 \\
n & =88+1=89
\end{aligned}
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.
59. Is -150 a term of the AP $11,8,5,2, \ldots \ldots$?

Ans :
[Board Term-2 2016]
Let the first term of an AP be a and common difference be d.

We have

$$
a=11, d=-3, a_{n}=-150
$$

Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
-150 & =11+(n-1)(-3) \\
-150 & =11-3 n+3 \\
3 n & =164 \\
n & =\frac{164}{3}=54.66
\end{aligned}
$$

or, $\quad n=\frac{164}{3}=54.66$
Since, 54.66 is not a whole number, -150 is not a term of the given AP
60. Which of the term of AP $5,2,-1, \ldots \ldots$ is -49 ?

Ans :
[Board Term-2 2012]
Let the first term of an AP be a and common difference d.

We have $a=5, d=-3$
Now

$$
a_{n}=a+(n-1) d
$$

Substituting all values we have

$$
\begin{aligned}
-49 & =5+(n-1)(-3) \\
-49 & =5-3 n+3 \\
3 n & =49+5+3 \\
n & =\frac{57}{3}=19^{\text {th }} \text { term. }
\end{aligned}
$$

61. Find the first four terms of an AP Whose first term is -2 and common difference is -2 .

Ans :

[Board Term-2 2012]
We have

$$
a_{1}=-2
$$

$$
\begin{aligned}
& a_{2}=a_{1}+d=-2+(-2)=-4 \\
& a_{3}=a_{2}+d=-4+(-2)=-6 \\
& a_{4}=a_{3}+d=-6+(-2)=-8
\end{aligned}
$$

Hence first four terms are $-2,-4,-6,-8$
62. Find the tenth term of the sequence $\sqrt{2}, \sqrt{8}, \sqrt{18}, \ldots$ Ans :
[Board Term-2 2016]
Let the first term of an AP be a and common difference be d.
Given AP is $\sqrt{2}, \sqrt{8}, \sqrt{18}$ or $\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2} \ldots$
where,

$$
a=\sqrt{2}, d=\sqrt{2}, n=10
$$

Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{10} & =\sqrt{2}+(10-1) \sqrt{2} \\
& =\sqrt{2}+9 \sqrt{2} \\
& =10 \sqrt{2}
\end{aligned}
$$

Therefore tenth term of the given sequence $\sqrt{200}$.
63. Find the next term of the series $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32} \ldots$

Ans :
[Board Term-2 2012]
Let the first term of an AP be a and common difference d.

Here,

$$
\begin{aligned}
& a=\sqrt{2}, a+d=\sqrt{8}=2 \sqrt{2} \\
& d=2 \sqrt{2}-\sqrt{2}=\sqrt{2} \\
& \text { Next term }=\sqrt{32}+\sqrt{2} \\
& =4 \sqrt{2}+\sqrt{2} \\
& =5 \sqrt{2} \\
& =\sqrt{50} \\
& \text { 64. Is series } \sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots \text { an AP? Give rea }
\end{aligned}
$$ Ans :

Let common difference be d then we have

$$
\begin{aligned}
& d=a_{2}-a_{1}=\sqrt{6}-\sqrt{3}=\sqrt{3}(\sqrt{2}-1) \\
& d=a_{3}-a_{2}=\sqrt{9}-\sqrt{6}=3-\sqrt{6} \\
& d=a_{4}-a_{3}=\sqrt{12}-\sqrt{9}=2 \sqrt{3}-3
\end{aligned}
$$

As common difference are not equal, the given series is not in AP
65. What is the next term of an AP $\sqrt{7}, \sqrt{28}, \sqrt{63}, \ldots$?

Ans :

[Board Term-2 Foreign 2014]
Let the first term of an AP be a and common difference be d.

Here,

$$
\begin{aligned}
a & =\sqrt{7}, a+d=\sqrt{28} \\
d & =\sqrt{28}-\sqrt{7}=2 \sqrt{7}-\sqrt{7} \\
& =\sqrt{7} \\
\text { Next term } & =\sqrt{63}+\sqrt{7} \\
& =3 \sqrt{7}+\sqrt{7}=4 \sqrt{7} \\
& =\sqrt{7 \times 16} \\
& =\sqrt{112}
\end{aligned}
$$

66. If the common difference of an AP is -6 , find $a_{16}-a_{12}$. Ans :
[Board Term-2 2014]
Let the first term of an AP be a and common difference be d.

Now $\quad d=-6$

$$
\begin{aligned}
a_{16} & =a+(16-1)(-6)=a-90 \\
a_{12} & =a+(12-1)(-6)=a-66 \\
a_{16}-a_{12} & =(a-90)-(a-66)=a-90-n+66 \\
& =-24
\end{aligned}
$$

67. For what value of k will the consecutive terms $2 k+1$, $3 k+3$ and $5 k-1$ form an AP?
Ans :
[Board Term-2 Foreign 2016]
If x, y and z are in AP then we have

$$
y-x=z-y
$$

Thus if $2 k+1,3 k+3,5 k-1$ are in AP then

$$
\begin{array}{rl}
(5 k-1)-3 k+3 & =(3 k+3)-(2 k+1) \\
5 k-1-3 k-3 & 3 k+3-2 k-1 \\
2 k-4 & =k+2 \\
2 k-k & =4+2 \\
k & =6
\end{array}
$$

I
68. Find the $25^{\text {th }}$ term of the AP $-5, \frac{-5}{2}, \frac{5}{2}, \ldots .$.

Ans :
[Board Term-2 Foreign 2015]
Let the first term of an AP be a and common difference be d.

Here,

$$
\begin{aligned}
a & =-5, d=-\frac{5}{2}-(-5)=\frac{5}{2} \\
a_{n} & =a+(n-1) d^{`} \\
a_{25} & =5+(25-1) \times\left(\frac{5}{2}\right) \\
& =-5+60=55
\end{aligned}
$$

69. The first three terms of an AP are $3 y-1,3 y+5$ and $5 y+1$ respectively then find y.
Ans :
[Board Term-2 Delhi 2015]
If x, y and z are in AP then we have

$$
y-x=z-y
$$

Therefore if $3 y-1,3 y+5$ and $5 y+1$ in AP

$$
\begin{aligned}
(3 y+5)-(3 y-1) & =(5 y+1)-(3 y+5) \\
3 y+5-3 y+1 & =5 y+1-3 y-5 \\
6 & =2 y-4 \\
2 y & =6+4 \\
y & =\frac{10}{2}=5
\end{aligned}
$$

70. For what value of $k, k+9,2 k-1$ and $2 k+7$ are the consecutive terms of an AP
Ans:
[Board Term-2 OD 2016]
If x, y and z are consecutive terms of an AP then we have

$$
y-x=z-y
$$

Thus if $k+9,2 k-1$, and $2 k+7$ are consecutive terms of an AP then we have

$$
\begin{aligned}
(2 k-1)-(k+9) & =(2 k+7)-(2 k-1) \\
2 k-1-k-9 & =2 k+7-2 k+1 \\
k-10 & =8 \quad k \Rightarrow 18
\end{aligned}
$$

71. What is the common difference of an AP in which $a_{21}-a_{7}=84$?
Ans:
[Board Term-2 2016]
Let the first term of an AP be a and common difference be d.

$$
a_{21}-a_{7}=84
$$

$$
\begin{aligned}
a+(21-1) d-[a+(7-1) d] & =84 \\
a+20 d-a-6 d & =84 \\
14 d & =84 \\
d & =6
\end{aligned}
$$

72. In the AP $2, x, 26$ find the value of x.

Ans :
[Board Term-2 2012]
If x, y and z are in AP then we have

$$
y-x=z-y
$$

Since $2, x$ and 26 are in AP we have

e114

$$
\begin{aligned}
x-2 & =26-x \\
2 x & =26+2 \\
x & =\frac{28}{2}=14
\end{aligned}
$$

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK
73. For what value of $k ; k+2,4 k-6,3 k-2$ are three consecutive terms of an AP.

Ans:
[Board Term-2 Delhi 2014, 2012]
If x, y and z are three consecutive terms of an AP then we have

$$
y-x=z-y
$$

Since $k+2,4 k-6$ and $3 k-2$ are three consecutive terms of an AP, we obtain

$$
\begin{aligned}
(4 k-6)-(k+2) & =(3 k-2)-(4 k-6) \\
4 k-6-k-2 & =3 k-2-4 k+6 \\
3 k-8 & =-k+4 \\
4 k & =4+8 \\
k & =\frac{12}{4}=3
\end{aligned}
$$

74. If $18, a, b,-3$ are in AP, then find $a+b$.

Ans :
[Board Term-2 2012]
If $18, a, b,-3$ are in AP, then,

$$
\begin{aligned}
a-18 & =-3-b \\
a+b & =-3+18 \\
a+b & =15
\end{aligned}
$$

75. Find the common difference of the AP $\frac{1}{3 q}, \frac{1-6 q}{3 q}$, $\frac{1-12 q}{3 q}, \ldots$.
Ans:
[Board Term-2 Delhi 2011]
Let common difference be d then we have

$$
d=\frac{1-6 q}{3 q}-\frac{1}{3 q}
$$

$=\frac{1-6 q-1}{3 q}=\frac{-6 q}{3 q}=-2$
76. Find the first four terms of an AP whose first term is $3 x+y$ and common difference is $x-y$.
Ans :
[Board Term-2 2012]
Let the first term of an AP be a and common difference be d.

$$
\text { Now } \quad \begin{aligned}
a_{1} & =3 x+y \\
a_{2} & =a_{1}+d=3 x+y+x-y=4 x \\
a_{3} & =a_{2}+d=4 x+x-y=5 x-y \\
a_{4} & =a_{3}+d=5 x-y+x-y \\
& =6 x-2 y
\end{aligned}
$$

So, the four terms are $3 x+y, 4 x, 5 x-y$ and $6 x-2 y$.
77. Find the $37^{\text {th }}$ term of the AP $\sqrt{x}, 3 \sqrt{x}, 5 \sqrt{x}$.

Ans :
[Board Term-2 2012]
Let the nth term of an AP be a_{n} and common difference be d.

Here,

$$
a_{1}=\sqrt{x}
$$

$$
\begin{aligned}
a_{2} & =3 \sqrt{x} \\
d & =a_{2}-a_{1}=3 \sqrt{x}-\sqrt{x}=2 \sqrt{x} \\
a_{n} & =a+(n-1) d \\
a_{37} & =\sqrt{x}+(37-1)^{2} \sqrt{x} \\
& =\sqrt{x}+36 \times 2 \sqrt{x}=73 \sqrt{x}
\end{aligned}
$$

78. For an AP, if $a_{25}-a_{20}=45$, then find the value of d.

Ans :
[Board Term-2 2011]
Let the first term of an AP be a and common difference be d.

$$
\begin{aligned}
a_{25}-a_{20} & =\{a+(25-1) d\}-\{a+(20-1) d\} \\
45 & =a+24 d-a-19 d \\
45 & =5 d \\
d & \frac{45}{5}=9
\end{aligned}
$$

79. Find the sum of first ten multiple of 5 .

Ans :
[Board Term-2 Delhi, 2014]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
Here, $a=5, n=10, d=5$
e151

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{10} & =\frac{10}{2}[2 \times 5+(10-1) 5] \\
& =5[10+9 \times 5] \\
& =5[10+45] \\
& =5 \times 55=275
\end{aligned}
$$

Hence the sum of first ten multiple of 5 is 275 .
80. Find the sum of first five multiples of 2 .

Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n the term be S_{n}
Here, $a=2, d=2, n=5$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{5} & =\frac{5}{2}[2 \times 2+(5-1) 2] \\
& =\frac{5}{2}[4+4 \times 2]=\frac{5}{2}[4+8] \\
& =\frac{5}{2} \times 12=5 \times 6=30
\end{aligned}
$$

81. Find the sum of first 16 terms of the AP $10,6,2, \ldots$. Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}
Here, $a=10, d=6-1=-4, n=16$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{16} & =\frac{16}{2}[2 \times 10+(16-1)(-4)] \\
& =8[20+15 \times(-4)] \\
& =8[20-60] \\
& =8 \times(-40) \\
& =-320
\end{aligned}
$$

82. What is the sum of five positive integer divisible by 6 . Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n the term be S_{n}
Here, $a=6, d=6, n=5$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{5} & =\frac{5}{2}[2 \times 6+(5-1)(6)] \\
& =\frac{5}{2}[12+4 \times 6] \\
& =\frac{5}{2}[12+24]=\frac{5}{2}[36] \\
& =5 \times 18=90
\end{aligned}
$$

83. If the sum of n terms of an AP is $2 n^{2}+5 n$, then find the $4^{\text {th }}$ term.
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}

Now, $\quad S_{n}=2 n^{2}+5 n$
$n^{\text {th }}$ term of AP,

$$
\begin{aligned}
a_{n} & =S_{n}-S_{n-1} \\
a_{n} & =\left(2 n^{2}+5 n\right)-\left[2(n-1)^{2}+5(n-1)\right] \\
& =2 n^{2}+5 n-\left[2 n^{2}-4 n+2+5 n-5\right] \\
& =2 n^{2}+5 n-2 n^{2}-n+3 \\
& \quad=4 n+3
\end{aligned}
$$

Thus $4^{\text {th }}$ term $\quad a_{4}=4 \times 4+3=19$
84. If the sum of first k terms of an AP is $3 k^{2}-k$ and its common difference is 6 . What is the first term?
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n}. Let the sum of k terms of AP is S_{k}.

We have

$$
S_{k}=3 k^{2}-k
$$

Now $k^{\text {th }}$ term of AP,

$$
\begin{aligned}
a_{k} & =S_{k}-S_{k-1} \\
a_{k} & =\left(3 k^{2}-k\right)-\left[3(k-1)^{2}-(k-1)\right] \\
& =3 k^{2}-k-\left[3 k^{2}-6 k+3-k+1\right] \\
& =3 k^{2}-k-3 k^{2}+7 k-4 \\
& =6 k-4
\end{aligned}
$$

First term $a=6 \times 1-4=2$

Don't Take Printout of This PDF. Buy Hard Book at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

85. Which term of the AP $8,14,20,26, \ldots \ldots$ will be 72 more than its $41^{\text {st }}$ term.
Ans :
[Board Term-2 OD 2017]
Let the first term be a, common difference be d and nth term be a_{n}.
We have $a=8, d=6$.

Since $n^{\text {th }}$ term is 72 more than $41^{\text {st }}$ term. we get

$$
\begin{aligned}
a_{n} & =a_{41}+72 \\
8+(n-1) 6 & =8+40 \times 6+72 \\
6 n-6 & =240+72 \\
6 n & =312+6=318 \\
n & =53
\end{aligned}
$$

86. If the $n^{\text {th }}$ term of an AP $-1,4,9,14, \ldots .$. is 129 . Find the value of n.
Ans :
[Board Term-2 OD Compt. 2017]
Let the first term be a, common difference be d and nth term be a_{n}.
We have $a=-1$ and $d=4-(-1)=5$

$$
\begin{aligned}
-1+(n-1) \times 5 & =a_{n} \\
-1+5 n-5 & =129 \\
5 n & =135
\end{aligned}
$$

$$
n=27
$$

Hence $27^{\text {th }}$ term is 129 .
87. Write the $n^{\text {th }}$ term of the AP $\frac{1}{m}, \frac{1+m}{m}, \frac{1+2 m}{m}, \ldots .$.

Ans :
[Board Term-2 OD Compt. 2017]
Let the first term be a, common difference be d and nth term be a_{n}.

We have

$$
\begin{aligned}
a & =\frac{1}{m} \\
d & =\frac{1+m}{m}-\frac{1}{m}=1 \\
a_{n} & =\frac{1}{m}+(n-1) 1
\end{aligned}
$$

Hence,

$$
a_{n}=\frac{1}{m}+n-1
$$

88. What is the common difference of an AP which $a_{21}-a_{7}=84$.
Ans:
[Board Term-2 OD 2017]
Let the first term be a, common difference be d and nth term be a_{n}.

We have

$$
a_{21}-a_{7}=84
$$

$$
\begin{aligned}
a+20 d-a-6 d & =84 \\
14 d & =84 \\
d & =\frac{84}{14}=6
\end{aligned}
$$

Hence common difference is 6 .
89. Which term of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4} \ldots$. is the first negative.
Ans :
[Board Term-2 OD 2017]
Let the first term be a, common difference be d and nth term be a_{n}.
We have $a=20$ and $d=-\frac{3}{4}$
Let the $n^{\text {th }}$ term be first negative term, then

$$
\begin{aligned}
a+(n-1) d & <0 \\
20+(n-1)\left(-\frac{3}{4}\right) & <0 \\
20-\frac{3}{4} n+\frac{3}{4} & <0 \\
3 n & >83 \\
n & >\frac{83}{3}=27 \frac{2}{3}
\end{aligned}
$$

Hence $28^{\text {th }}$ term is first negative.

TWO MARKS QUESTIONS

90. If the sum of first m terms of an AP is the same as the sum of its first n terms, show that the sum of its first $(m+n)$ terms is zero.
Ans :
[Board 2020 SQP Standard]
Let a be the first term and d be the common difference of the given AP. Then,

$$
\begin{aligned}
S_{m} & =S_{n} \\
\frac{m}{2}\{2 a+(m-1) d\} & =\frac{n}{2}\{2 a+(n-1) d\} \\
2 a(m-n)+\{m(m-1)-n(n-1) d\} & =0 \\
2 a(m-n)+\left[\left(m^{2}-n^{2}\right)-(m-n) d\right]=0 & \\
(m-n)[2 a+(m+n-1) d] & =0 \\
2 a+(m+n-1) d & =0
\end{aligned}
$$

Now, $\quad S_{m+n}=\frac{m+n}{2}\{2 a+(m+n-1) d\}$

$$
=\frac{m+n}{2} \times 0=0
$$

91. If $3 k-2,4 k-6$ and $k+2$ are three consecutive terms of AP, then find the value of k.
Ans:
[Board 2020 OD Basic]
To be term of an AP the difference between two consecutive terms must be the same.
If $3 k-2,4 k-6$ and $k+2$ are terms of an AP, then

$$
\begin{aligned}
4 k-6-(3 k-2) & =k+2-(4 k-6) \\
4 k-6-3 k+2 & =k+2-4 k+6 \\
k-4 & =8-3 k \\
4 k & =12 \Rightarrow k=3
\end{aligned}
$$

Hence, the value of k is 3 .
92. How many terms of AP $3,5,7,9, \ldots$. must be taken to get the sum 120 ?
Ans :
[Board 2020 OD Basic]
Given AP : 3, 5, 7, 9,
We have $a=3, d=2$ and $S_{n}=120$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
120 & =\frac{n}{2}[2 \times 3+(n-1) 2] \\
120 & =n(3+n-1) \\
120 & =n(n+2)
\end{aligned}
$$

$$
\begin{aligned}
n^{2}+2 n-120 & =0 \\
n^{2}+12 n-10 n-120 & =0 \\
(n+12)(n-10) & =0 \Rightarrow n=10 \text { or } n=-12
\end{aligned}
$$

Neglecting $n=-12$ because n can't be negative we get $n=10$. Hence, 10 terms must be taken to get the sum 120 .
93. How many two digits numbers are divisible by 3 ?

Ans :
[Board 2019 Delhi]
Numbers divisible by 3 are $3,6,9,12,15, \ldots \ldots ., 96$ and 99. Lowest two digit number divisible by 3 is 12 and highest two digit number divisible by 3 is 99 .
Hence, the sequence start with 12 , ends with 99 and common difference is 3 .
So, the AP is $12,15,18, \ldots . ., 96,99$.
Here,

$$
\begin{aligned}
a & =12, d=3 \text { and } a_{n}=99 \\
a_{n} & =a+(n-1) d \\
99 & =12+(n-1) 3 \\
99-12 & =3(n-1) \\
n-1 & =\frac{87}{3}=29 \Rightarrow n=30
\end{aligned}
$$

Therefore, there are 30, two digit numbers divisible by 3 .
94. Which term of the AP $3,15,27,39, \ldots$ will be 120 more than its 21st term?

Ans :
[Board 2019 Delhi]
Given AP is $3,15,27,39 \ldots \ldots$
Here, first term, $a=3$ and common difference, $d=12$
Now, $21^{\text {st }}$ term of AP is

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{21} & =3+(21-1) \times 12 \\
& =3+20 \times 12=243
\end{aligned}
$$

Therefore, $21^{\text {st }}$ term is 243 .
Now we need to calculate term which is 120 more than $21^{\text {st }}$ term i.e it should be $243+120=363$

Therefore,

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
363 & =3+(n-1) 12 \\
360 & =12(n-1) \\
n-1 & =30 \Rightarrow n=31
\end{aligned}
$$

So, $31^{\text {st }}$ term is 120 more than $21^{\text {st }}$ term.
95. If S_{n} the sum of first n terms of an AP is given by
$S_{n}=3 n^{2}-4 n$, find the $n^{\text {th }}$ term.
Ans :
[Board 2019 Delhi]
We have

$$
S_{n}=3 n^{2}-4 n
$$

Substituting $n=1$, we get

$$
S_{1}=3 \times 1^{2}-4 \times 1=-1
$$

So, sum of first term of AP is -1 , but sum of first term is the first term itself,

Thus first term $\quad a_{1}=-1$
Now substituting $n=2$ we have

$$
S_{2}=3 \times 2^{2}-4 \times 2=4
$$

Sum of first two terms is 4 .

$$
\begin{aligned}
a_{1}+a_{2} & =4 \\
-1+a_{2} & =4 \Rightarrow a_{2}=5
\end{aligned}
$$

Hence, common difference,

$$
d=a_{2}-a_{1}=5-(-1)=6
$$

Now $n^{\text {th }}$ term,

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=-1+(n-1) 6 \\
& a_{n}=6 n-7
\end{aligned}
$$

Therefore, $n^{\text {th }}$ term is $6 n-7$.
96. Find the $21^{\text {st }}$ term of the AP $-4 \frac{1}{2},-3,-1 \frac{1}{2}, \ldots$

Ans :
[Board 2019 OD]
Given AP is $-4 \frac{1}{2},-3,-1 \frac{1}{2}, \ldots$ or $-\frac{9}{2},-3,-\frac{3}{2}, \ldots$
First term, $\quad a=\frac{-9}{2}$
Common difference,

$$
\begin{aligned}
d & =-3-\left(-\frac{9}{2}\right)=-3+\frac{9}{2} \\
& =\frac{-6+9}{2}=\frac{3}{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{21} & =\left(-\frac{9}{2}\right)+(21-1)\left(\frac{3}{2}\right) \\
& =-\frac{9}{2}+20 \times \frac{3}{2}=-\frac{9}{2}+30 \\
& =\frac{-9+30}{2}=\frac{51}{2}=25 \frac{1}{2}
\end{aligned}
$$

Hence, $21^{\text {st }}$ term of given AP is $25 \frac{1}{2}$.
97. If the sum of first n terms of an AP is n^{2}, then find

Chap 5
Arithmetic Progression
its 10th term.
Ans :
[Board 2019 Delhi]
We have

$$
\begin{equation*}
S_{n}=n^{2} \tag{1}
\end{equation*}
$$

Substituting $n=1$ in equation (1), we have

$$
S_{1}=1
$$

Hence, sum of first term of AP is 1 , but sum of first term is first term itself.

So, first term, $\quad a=1$
Substituting $n=2$ in equation (1), we have

$$
S_{2}=(2)^{2}=4
$$

Sum of first 2 terms is 4 .
Now $\quad a+a_{2}=4$
From equation (2) and (3) we have

$$
a_{2}=3
$$

Now, common difference,

$$
d=a_{2}-a=3-1=2
$$

Now, $10^{\text {th }}$ term of AP,

$$
\begin{aligned}
a_{10} & =a+(10-1) d \\
& =1+9 \times 2=19
\end{aligned}
$$

Hence, the $10^{\text {th }}$ term of AP is 19 .

Download 15 Years Previous Years Chapterwise
 Question Bank Free PDFs For all Subject from www.cbse.online

98. Is 184 a term of the sequence $3,7,11, \ldots \ldots$?

Ans :
[Board Term-2 2012]
Let the first term of an AP be a, common difference be d and number of terms be n.
Let $a_{n}=184$
Here, $a=3, d=7-3=11-7=4$
Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d, \\
184 & =3+(n-1) 4 \\
\frac{181}{4} & =n-1 \\
45.25 & =n-1 \\
46.25 & =n
\end{aligned}
$$

Since 46.25 is not an whole number, thus 184 is not a term of given AP
99. Find, 100 is a term of the AP $25,28,31, \ldots \ldots$. or not.

Ans :
[Board Term-2 2012]
Let the first term of an AP be a, common difference be d and number of terms be n.
Let $a_{n}=100$
Here $a=25, d=28-25=31-28=3$
Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d, \\
100= & 25+(n-1) \times 3 \\
100-25=75= & (n-1) \times 3 \\
25= & n-1 \\
& \quad n=26
\end{aligned}
$$

Since 26 is an whole number, thus 100 is a term of given AP.
100.Find the $7^{\text {th }}$ term from the end of AP $7,10,13, \ldots .184$.

Ans :
[Board Term-2 2012]
Let us write AP in reverse order i.e., $184, \ldots .13,10,7$
Let the first term of an AP be a and common difference be d.

Now

$$
\begin{aligned}
& d=7-10=-3 \\
& a=184, n=7
\end{aligned}
$$

$7^{\text {th }}$ term from the original end,

$$
\begin{aligned}
a_{7} & =a+6 d \\
a_{7} & =184+6(-3) \\
& =184-18=166 .
\end{aligned}
$$

Hence, 166 is the $7^{\text {th }}$ term from the end.
101. Which term of an AP $150,147,144, \ldots$. is its first negative term?
Ans :
[KVS 2014]
Let the first term of an AP be a, common difference be d and nth term be a_{n}.

For first negative term $\quad a_{n}<0$

$$
\begin{aligned}
a+(n-1) d & <0 \\
150+(n-1)(-3) & <0 \\
150-3 n+3 & <0 \\
-3 n & <-153 \\
n>51 &
\end{aligned}
$$

Therefore, the first negative term is $52^{\text {nd }}$ term.
102.In a certain AP $32^{\text {th }}$ term is twice the $12^{\text {th }}$ term. Prove
that $70^{\text {th }}$ term is twice the $31^{\text {st }}$ term.
Ans :
[Board Term-2 2015, 2012]
Let the first term of an AP be a, common difference be d and nth term be a_{n}.

$$
\begin{aligned}
& \text { Now we have } \begin{aligned}
a_{32} & =2 a_{12} \\
a+31 d & =2(a+11 d) \\
a+31 d & =2 a+22 d \\
a & =9 d \\
a_{70} & =a+69 d \\
& =9 d+69 d=78 d \\
a_{31} & =a+30 d \\
& =9 d+30 d=39 d \\
a_{70} & =2 a_{31}
\end{aligned}
\end{aligned}
$$

Hence Proved.
103.The $8^{\text {th }}$ term of an AP is zero. Prove that its $38^{\text {th }}$ term is triple of its $18^{\text {th }}$ term.
Ans :
[Board Term-2 2012]
Let the first term of an AP be a, common difference be d and nth term be a_{n}.
We have, $a_{8}=0$ or, $a+7 d=0$ or, $a=-7 d$
Now

$$
\begin{aligned}
a_{38} & =a+37 d \\
a_{38} & =-7 d+37 d=30 d \\
a_{18} & =a+17 d \\
& =-7 d+17 d=10 d \\
a_{38} & =30 d=3 \times 10 d=3 \times a_{18} \\
a_{38} & =3 a_{18} \quad \text { Hence Proved }
\end{aligned}
$$

104.If five times the fifth term of an AP is equal to eight times its eighth term, show that its $13^{\text {th }}$ term is zero.

Ans :
[Board Term-2 2012]
Let the first term of an AP be a, common difference be d and nth term be a_{n}.

Now

$$
\begin{aligned}
5 a_{5} & =8 a_{8} \\
5(a+4 d) & =8(a+7 d) \\
5 a+20 d & =8 a+56 d \\
3 a+36 d & =0 \\
3(a+12 d) & =0 \\
a+12 d & =0 \\
a_{13} & =0
\end{aligned}
$$

Hence Proved
105. The fifth term of an AP is 20 and the sum of its seventh and eleventh terms is 64 . Find the common difference.
Ans :
[Board Term-2 Foreign 2015]
Let the first term be a and common difference be d.

Solving equations (1) and (2), we have

$$
d=3
$$

106. The ninth term of an AP is -32 and the sum of its eleventh and thirteenth term is -94 . Find the common difference of the AP
Ans :
[Board Term-2 Foreign 2015]
Let the first term be a and common difference be d.

Now $\quad a+8 d=a_{9}$

$$
\begin{equation*}
a+8 d=-32 \tag{1}
\end{equation*}
$$

and $\quad a_{11}+a_{13}=-94$

$$
\begin{array}{r}
a+10 d+a+12 d=-94 \\
a+11 d=-47 \tag{2}
\end{array}
$$

Solving equation (1) and (2), we have

$$
d=-5
$$

107. The seventeenth term of an AP exceeds its $10^{\text {th }}$ term by 7 . Find the common difference.
Ans:
[Board Term-2 2015, 2014]
Let the first term be a and common difference be d.
Now

$$
\begin{aligned}
a_{17} & =a_{10}+7 \\
a+16 d & =a+9 d+7 \\
16 d-9 d & =7 \\
7 d & =7 \\
d & =1
\end{aligned}
$$

Thus common difference is 1 .
108. The fourth term of an AP is 11 . The sum of the fifth and seventh terms of the AP is 34 . Find the c difference.
Ans :
[Foreign

Let the first term be a and common difference be d.
Now

$$
\begin{align*}
a_{4} & =11 \\
a+3 d & =11 \tag{1}\\
a_{5}+a_{7} & =34 \\
a+4 d+a+6 d & =34 \\
2 a+10 d & =34 \\
a+5 d & =17 \tag{2}
\end{align*}
$$

Solving equations (1) and (2) we have

$$
d=3
$$

No Need to Buy any Question Bank or Sample Chapter From
Market. Download Free PDF of all Study Material from www.cbse.online
109.Find the middle term of the AP $213,205,197, \ldots .37$.

Ans :
[Board Term-2 Delhi 2015]
Let the first term of an AP be a, common difference be d and number of terms be m.
Here, $a=213, d=205-213=-8, a_{m}=37$

$$
\begin{aligned}
a_{m} & =a+(m-1) d \\
37 & =213+(m-1)(-8) \\
37-213 & =-8(m-1) \\
m-1 & =\frac{-176}{-8}=22 \\
m & =22+1=23
\end{aligned}
$$

The middle term will be $=\frac{23+1}{2}=12^{\text {th }}$

$$
\begin{aligned}
a_{12} & =a+(12-1) d \\
& =213+(12-1)(-8) \\
& =213-88=125
\end{aligned}
$$

Middle term will be 125 .
110. Find the middle term of the AP $6,13,20, \ldots .216$.

Ans :

[Board Term-2 Delhi 2015]
Let the first term of an AP be a, common difference be d and number of terms be m.
Here, $a=6, a_{m}=216, d=13-6=7$

$$
\begin{aligned}
a_{m} & =a+(m-1) d \\
216 & =6+(m-1)(7)
\end{aligned}
$$

$$
\begin{aligned}
216-6 & =7(m-1) \\
m-1 & =\frac{210}{7}=30 \\
m & =30+1=31
\end{aligned}
$$

The middle term will be $=\frac{31+1}{2}=16^{\text {th }}$

$$
\begin{aligned}
a_{16} & =a+(16-1) d \\
& =6+(16-1)(7) \\
& =6+15 \times 7 \\
& =6+105=111
\end{aligned}
$$

Middle term will be 111 .
111.If the $2^{\text {nd }}$ term of an AP is 8 and the $5^{\text {th }}$ term is 17 , find its $19^{\text {th }}$ term.
Ans :
[Board Term-2 2016]
Let the first term be a and common difference be d.
Now

$$
\begin{align*}
a_{2} & =a+d \\
8 & =a+d \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
a_{5} & =a+4 d \\
17 & =a+4 d \tag{2}
\end{align*}
$$

Solving (1) and (2), we have

$$
\begin{aligned}
a & =5, d=3, \\
a_{19} & =a+18 d \\
& =5+54=59
\end{aligned}
$$

112.If the number $x+3,2 x+1$ and $x-7$ are in AP find the value of x.
Ans :
[Board Term-2 2012]
If x, y and z are three consecutive terms of an AP then we have

$$
y-x=z-y
$$

$$
\begin{aligned}
(2 x+1)-(x+3) & =(x-7)-(2 x+1) \\
2 x+1-x-3 & =x-7-2 x-1 \\
x-2 & =-x-8 \\
2 x & =-6 \\
x & =-3
\end{aligned}
$$

113.Find the values of a, b and c, such that the numbers $a, 10, b, c, 31$ are in AP
Ans :
[Board Term-2 2012]

Let the first term be a and common difference be d.
Since $a, 10, b, c, 31$ are in AP, then

$$
\begin{align*}
a+d & =10 \tag{1}\\
a+4 d & =a_{5} \\
a+4 d & =31 \tag{2}
\end{align*}
$$

Solving (1) and (2) we have

$$
d=7 \text { and } a=3
$$

Now $a=3, b=3+14=17, c=3+21=24$
Thus $a=3, b=17, c=24$.
114.For AP show that $a_{p}+a_{p+2 q}=2 a_{p+q}$.

Ans:
[Board Term-2 2012]
Let the first term be a and the common difference be d. Let a_{n} be the nth term.

$$
\begin{align*}
a_{p} & =a+(p-1) d \\
a_{p+2 q} & =a+(p+2 q-1) d \\
a_{p}+a_{p+2 q} & =a+(p-1) d+a+(p+2 q-1) d \\
& =a+p d-d+a+p d+2 q d-d \\
& =2 a+2 p d+2 q d-2 d \\
\text { or } a_{p}+a_{p+2 q} & =2[a+(p+q-1) d] \tag{1}\\
\text { But } \quad 2 a_{p+q} & =2[a+(p+q-1) d] \tag{2}
\end{align*}
$$

From (1) and (2), we get $a_{p}+a_{p+2 q}=2 a_{p+q}$
115.The sum of first terms of an AP is given by $S_{n}=2 n^{2}+8 n$. Find the sixteenth term of the AP.
Ans:
[Board SQP 2017]
Let the first term be a, common difference be d and nth term be a_{n}.
Now

$$
\begin{aligned}
S_{n} & =2 n^{2}+3 n \\
S_{1} & =2 \times 1^{2}+3 \times 1=2+3=5
\end{aligned}
$$

Since $S_{1}=a_{1}$,

$$
\begin{aligned}
a_{1} & =5 \\
S_{2} & =2 \times 2^{2}+3 \times 2=8+6=14 \\
a_{1}+a_{2} & =14 \\
a_{2} & =14-a_{1}=14-5=9 \\
d & =a_{2}-a_{1}=9-5=4 \\
a_{16} & =a+(16-1) d
\end{aligned}
$$

$$
=5+15 \times 4=65
$$

116. The $4^{\text {th }}$ term of an AP is zero. Prove that the $25^{\text {th }}$ term of the AP is three times its $11^{\text {th }}$ term.
Ans :
[Board Term-2 OD 2016]
Let the first term be a, common difference be d and nth term be a_{n}.

We have, $a_{4}=0$

$$
a+3 d=0 \quad\left[a+(n-1) d=a_{n}\right]
$$

$$
\begin{align*}
3 d & =-a \\
-3 d & =a \tag{1}
\end{align*}
$$

Now, $\quad a_{25}=a+24 d=-3 d+24 d=21 d$

From equation (2) and (3) we have

$$
a_{25}=3 a_{11}
$$

Hence Proved.
117.How many terms of the AP $65,60,55, \ldots$ be taken so that their sum is zero?
Ans:
[Board Term-2 Delhi 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

We have $a=65, d=-5, S_{n}=0$
Now

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Let sum of n term be zero, then we have

$$
\begin{aligned}
\frac{n}{2}[130+(n-1)(-5)] & =0 \\
\frac{n}{2}[130+5 n+5] & =0 \\
135 n-5 n^{2} & =0 \\
n(135-5 n) & =0 \\
5 n & =135 \\
n & =27
\end{aligned}
$$

118. How many terms of the AP $18,16,14 \ldots$. be taken so that their sum is zero?
Ans :
[Board Term-2 Delhi 2016]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

Here $a=18, d=-2, S_{n}=0$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Let sum of n term be zero, then we have

$$
\begin{aligned}
\frac{n}{2}[36+(n-1)(-2)] & =0 \\
n(38-2 n) & =0 \\
n & =19
\end{aligned}
$$

Don't Take Printout of This PDF. Buy Hard Book at
 Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

119.How many terms of the AP $27,24,21 \ldots$. should be taken so that their sum is zero?
Ans :
[Board Term-2 Delhi 2016]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

Here

$$
\begin{aligned}
a & =27, d=-3, S_{n}=0 \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$

Let sum of n term be zero, then we have

$$
\begin{aligned}
\frac{n}{2}[54+(n-1)(-3)] & =0 \\
n(-3 n+57) & =0 \\
n & =19
\end{aligned}
$$

120.In an AP, if $S_{5}+S_{7}=167$ and $S_{10}=235$, then find the AP, where S_{n} denotes the sum of first n terms.
Ans :
[Board Term-2 OD 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

$$
\begin{align*}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{5}+S_{7}=167 \\
& \frac{5}{2}(2 a+4 d)+\frac{7}{2}(2 a+6 d)=167 \\
& 5 a+10 d+7 a+21 d=167 \\
& 12 a+31 d=167 \tag{1}
\end{align*}
$$

Now we have $S_{10}=235$, thus

$$
\begin{align*}
\frac{10}{2}[2 a+(10-1) d] & =235 \\
5(2 a+9 d) & =235 \\
2 a+9 d & =47 \tag{2}
\end{align*}
$$

Solving (1) and (2), we get

$$
a=1, d=5
$$

Thus AP is $1,6,11 \ldots$
121.Find the sum of sixteen terms of an AP $-1,-5,-9, \ldots \ldots$.
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
Here, $a_{1}=-1, a_{2}=-5$ and $d=-4$
Now

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{16} & =\frac{16}{2}[2 \times(-1)+(16-1)(-4)] \\
& =8[-2-60]=8(-62) \\
& =-496
\end{aligned}
$$

122.If the $n^{\text {th }}$ term of an AP is $7-3 n$, find the sum of twenty five terms.
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}
Here $n=25, a_{n}=7-3 n$
Taking $n=1,2,3, \ldots$ we have

$$
\begin{aligned}
& a_{1}=7-3 \times 1=4 \\
& a_{2}=7-3 \times 2=1 \\
& a_{3}=7-3 \times 3=-2
\end{aligned}
$$

Thus required AP is $4,1,-2, \ldots$.
Here, $a=4, d=1-4=-3$
Now,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{25}{2}[2 \times 4+(25-1)(-3)] \\
& =\frac{25}{2}[8+24(-3)] \\
& =\frac{25}{2}(8-72)=-800
\end{aligned}
$$

123.If the $1^{\text {st }}$ term of a series is 7 and $13^{\text {th }}$ term is 35 . Find the sum of 13 terms of the sequence.
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

Here $a=7, a_{13}=35$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{13} & =a+12 d \\
35 & =7+12 d \Rightarrow d=\frac{7}{3} \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{13} & =\frac{13}{2}\left[2 \times 7+12 \times\left(\frac{7}{3}\right)\right] \\
& =\frac{13}{2}[14+28] \\
& =\frac{13}{2} \times 42=273
\end{aligned}
$$

124.If the $n^{\text {th }}$ term of a sequence is $3-2 n$. Find the sum of fifteen terms.
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}
Here, $a_{n}=3-2 n$
Taking $n=1, \quad a_{1}=3-2=1$
15th term, $\quad a_{15}=3-2 \times 15=3-30=-27$
Now

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+1) \\
S_{15} & =\frac{15}{2}[1+(-27)] \\
& =\frac{15}{2}[-26] \\
& =15 \times(-13)=-195
\end{aligned}
$$

125.If S_{n} denotes the sum of n terms of an AP whose common difference is d and first term is a, find $S_{n}-2 S_{n-1}+S_{n-2}$.

Ans:

[Board Term-2 2011]

We have

$$
a_{n}=S_{n}-S_{n-1}
$$

$$
a_{n-1}=S_{n-1}-S_{n-2}
$$

$$
S_{n}-2 S_{n-1}+S_{n-2}=S_{n}-S_{n-1}-S_{n-1}+S_{n-2}
$$

$$
=\left(S_{n}-S_{n-1}\right)-\left(S_{n-1}-S_{n-2}\right)
$$

$$
=a_{n}-a_{n-1}=d
$$

126. The sum of first n terms of an AP is $5 n-n^{2}$. Find the $n^{\text {th }}$ term of the AP
Ans :
[Board Term-2 Foreign 2014]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

We have,

$$
S_{n}=5 n-n^{2}
$$

Now, $n^{\text {th }}$ term of AP,

$$
\begin{aligned}
a_{n} & =S_{n}-S_{n-1} \\
& =\left(5 n-n^{2}\right)-\left[5(n-1)-(n-1)^{2}\right] \\
& =5 n-n^{2}-\left[5 n-5-\left(n^{2}+1-2 n\right)\right] \\
& =5 n-n^{2}-\left(5 n-5-n^{2}-1+2 n\right) \\
& =5 n-n^{2}-7 n+6+n^{2} \\
& =-2 n+6 \\
a_{n} & =-2(n-3)
\end{aligned}
$$

Thus $n^{\text {th }}$ term is $=-2(n-3)$
Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online
127.The first and last term of an AP are 5 and 45 respectively. If the sum of all its terms is 400 , find its common difference.
Ans:
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
We have $a=5, a_{n}=45$
Now

$$
\begin{align*}
45 & =5+(n-1) d \\
(n-1) d & =40 \tag{1}
\end{align*}
$$

Given,

$$
S_{n}=400
$$

Now

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a+a_{n}\right) \\
400 & =\frac{n}{2}(5+45) \\
800 & =50 n \\
n & =16
\end{aligned}
$$

Substituting this value of n in (1) we have

$$
\begin{aligned}
(n-1) d & =40 \\
15 d & =40 \\
d & =\frac{40}{15}=\frac{8}{3}
\end{aligned}
$$

128.If the sum of the first 7 terms of an AP is 49 and that of the first 17 terms is 289 , find the sum of its first n terms.
Ans:
[Board Term-2 Foreign 2012]
Let the first term be a, common difference be d, nth
term be a_{n} and sum of n term be S_{n}.

Now

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
S_{7}=\frac{7}{2}(2 a+6 d)=49
$$

$$
\begin{equation*}
a+3 d=7 \tag{1}
\end{equation*}
$$

and

$$
\begin{aligned}
S_{17} & =\frac{17}{2}(2 a+16 d)=289 \\
a+8 d & =17
\end{aligned}
$$

Subtracting (1) from (2), we get

$$
5 d=10 \Rightarrow d=2
$$

Substituting this value of d in (1) we have

Now

$$
\begin{aligned}
a & =1 \\
S_{n} & =\frac{n}{2}\left[2 \times 1+(n-1)^{2}\right] \\
& =\frac{n}{2}[2+2 n-2]=n^{2}
\end{aligned}
$$

Hence, sum of n terms is n^{2}.
129.How many terms of the $\mathrm{AP}-6, \frac{-11}{2},-5,-\frac{9}{2} \ldots$ are needed to give their sum zero.
Ans :
[Board Term-2 OD Compt. 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
We have $a=-6, d=-\frac{11}{2}-(-6)=\frac{1}{2}$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Let sum of n term be zero, then we have

$$
\begin{aligned}
\frac{n}{2}\left[2 \times-6+(n-1) \frac{1}{2}\right] & =0 \\
\frac{n}{2}\left[-12+\frac{n}{2}-\frac{1}{2}\right] & =0 \\
\frac{n}{2}\left[\frac{n}{2}-\frac{25}{2}\right] & =0 \\
n^{2}-25 n & =0 \\
n(n-25) & =0 \\
n & =25
\end{aligned}
$$

Hence 25 terms are needed.
130. Which term of the AP $3,12,21,30, \ldots$. will be 90 more than its $50^{\text {th }}$ term.
Ans :
[Board Term-2 Compt. 2017]

Let the first term be a, common difference be d and nth term be a_{n}.
We have

$$
a=3, d=9
$$

Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{50} & =3+49 \times 9=444
\end{aligned}
$$

Now, $\quad a_{n}-a_{50}=90$

$$
\begin{aligned}
3+(n-1) 9-444 & =90 \\
(n-1) 9 & =90+441
\end{aligned}
$$

$$
(n-1)=\frac{531}{9}=49
$$

$$
n=49+1=50
$$

131.The $10^{\text {th }}$ term of an AP is -4 and its $22^{\text {nd }}$ term is -16 . Find its $38^{\text {th }}$ term.
Ans:
[Board Term-2 Delhi Compt. 2017]
Let the first term be a, common difference be d and nth term be a_{n}.
and

$$
\begin{align*}
& a_{10}=a+9 d=-4 \tag{1}\\
& a_{22}=a+21 d=-16 \tag{2}
\end{align*}
$$

Subtracting (2) from (1) we have

$$
12 d=-12 \Rightarrow d=-16
$$

Substituting this value of d in (1) we get

$$
a=5
$$

Thus $\quad a_{38}=5+37 \times-1=-32$
Hence, $\quad a_{38}=-32$
132.Find how many integers between 200 and 500 are divisible by 8 .
Ans :
[Board Term-2 Delhi Compt. 2017]
Number divisible by 8 are 208, 2016, 224, ... 496. It is an AP
Let the first term be a, common difference be d and nth term be a_{n}.
We have $a=208, d=8$ and $a_{n}=496$
Now $\quad a+(n-1) d=a_{n}$

$$
\begin{aligned}
208+(n-1) d & =496 \\
(n-1) 8 & =496-208 \\
n-1 & =\frac{288}{8}=36 \\
n & =36+1=37
\end{aligned}
$$

Hence, required numbers divisible by 8 is 37 .
133.The fifth term of an AP is 26 and its $10^{\text {th }}$ term is 51 . Find the AP

Ans :
[Board Term-2 OD Compt. 2017]
Let the first term be a, common difference be d and nth term be a_{n}.

$$
\begin{array}{r}
a_{5}=a+4 d=26 \\
a_{10}=a+9 d=51 \tag{2}
\end{array}
$$

Subtracting (1) from (2) we have

$$
5 d=25 \Rightarrow d=5
$$

Substituting this value of d in equation (1)
 we get

$$
a=6
$$

Hence, the AP is $6,11,16, \ldots$.
134.Find the AP whose third term is 5 and seventh term is 9 .
Ans :
[Board Term-2 Delhi Compt. 2017]
Let the first term be a, common difference be d and nth term be a_{n}.

Now $\quad a_{3}=a+2 d=5$
and $\quad a_{7}=a+6 d=9$
Subtracting (2) from (1) we have

$$
4 d=4 \Rightarrow d=1
$$

Substituting this value of d in (1) we get

$$
a=3
$$

Hence AP is $3,4,5,6, \ldots \ldots$
135.Find whether -150 is a term of the AP $11,8,5,2, \ldots$ Ans :
[Board Term-2 Delhi Compt. 2017]
Let the first term be a, common difference be d and nth term be a_{n}.
Let the $n^{\text {th }}$ term of given AP $11,8,5,2, \ldots$ be -150
Hence $a=11, d=8-11=-3$ and $a_{n}=-150$

$$
\begin{aligned}
a+(n-1) d & =a_{n} \\
11+(n-1)(-3) & =-150 \\
(n-1)(-3) & =-161 \\
(n-1) & =\frac{-161}{-3}=53 \frac{2}{3}
\end{aligned}
$$

which is not a whole number. Hence -150 is not a term of given AP.
136.If seven times the $7^{\text {th }}$ term of an AP is equal to eleven
times the $11^{\text {th }}$ term, then what will be its $18^{\text {th }}$ term.
Ans :
[Board Term-2 Foreign 2017]
Let the first term be a, common difference be d and nth term be a_{n}.

$$
\text { Now } \begin{aligned}
7 a_{7} & =11 a_{11} \\
7(a+6 d) & =11(a+10 d) \\
7 a+42 d & =11 a+110 d \\
11 a-7 a & =42 d-110 d \\
4 a & =-68 d \\
4 a+68 d & =0 \\
4(a+17 d) & =0 \\
\text { Hence, } \quad & =0 \\
& \\
a_{18} & =0
\end{aligned}
$$

For Free PDFS of all Sample Papers Visit www.cbse.online

137.In an AP of 50 terms, the sum of the first 10 terms is 210 and the sum of its last 15 terms is 2565 . Find the AP
Ans :
[Board Term-2 Foreign 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

$$
\begin{align*}
S_{10} & =210 \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
210 & =\frac{10}{2}(2 a+9 d) \\
42 & =2 a+9 d \tag{1}
\end{align*}
$$

Now $\quad a_{36}=a+35 d$

$$
a_{50}=a+49 d
$$

Sum of last 15 terms,

$$
\begin{align*}
S_{36-50} & =\frac{n}{2}\left(a_{36}+a_{50}\right) \\
2565 & =\frac{15}{2}(a+35 d+a+49 d) \\
171 & =\frac{1}{2}(2 a+84 d) \\
171 & =a+42 d \tag{2}
\end{align*}
$$

Solving (1) and (2) we get $a=3$ and $d=4$

Hence, AP is $3,7,11, \ldots$.

THREE MARKS QUESTIONS

138. The sum of four consecutive number in AP is 32 and the ratio of the product of the first and last term to the product of two middle terms is $7: 15$. Find the numbers.
Ans :
[Board 2020 Delhi Standard, 2018]
Let the four consecutive terms of AP be $(a-3 d)$, $(a-d),(a+d)$ and $(a+3 d)$.
As per question statement we have

$$
\begin{aligned}
a-3 d+a-d+a+d+a+3 d & =32 \\
4 a & =32 \Rightarrow a=8
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{(a-3 d)(a+3 d)}{(a-d)(a+d)} & =\frac{7}{15} \\
\frac{a^{2}-9 d^{2}}{a^{2}-d^{2}} & =\frac{7}{15} \\
\frac{64-9 d^{2}}{64-d^{2}} & =\frac{7}{15} \\
960-135 d^{2} & =448-7 d^{2} \\
7 d^{2}-135 d^{2} & =448-960 \\
-128 d^{2} & =-512 \\
d^{2} & =4 \Rightarrow d= \pm 2
\end{aligned}
$$

Hence, the number are $2,6,10$ and 14 or $14,10,6$ and 2.
139. The sum of the first 7 terms of an AP is 63 and that of its next 7 terms is 161 . Find the AP.

Ans :
[Board 2020 Delhi Standard]
We have

$$
S_{7}=63
$$

Now

$$
\begin{align*}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
63 & =\frac{7}{2}[2 a+6 d] \\
9 & =a+3 d \tag{1}
\end{align*}
$$

Now, sum of next 7 terms,

$$
\begin{aligned}
S_{8-14} & =161 \\
S_{8-14} & =\frac{7}{2}\left(a_{8}+a_{14}\right) \\
161 & =\frac{7}{2}(a+7 d+a+13 d)
\end{aligned}
$$

$$
\begin{align*}
161 & =\frac{7}{2}(2 a+20 d) \\
23 & =a+10 d \tag{2}
\end{align*}
$$

Subtracting equation (1) from (2) we have

$$
14=7 d \Rightarrow d=2
$$

Substituting the value of d in (1), we get

$$
a=3
$$

Hence, the AP is $3,5,7,9, \ldots$
140. Which term of the AP $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots$ is the first negative term.
Ans :
[Board 2020 OD Standard]
Here,

$$
a=20
$$

and

$$
d=\frac{77}{4}-20=-\frac{3}{4}
$$

Let a_{n} is the first negative term, thus $a_{n}<0$.
Now $\quad a_{n}=a+(n-1) d$

$$
\begin{aligned}
20+(n-1)\left(-\frac{3}{4}\right) & <0 \\
80-3 n+3 & <0 \\
83-3 n & <0 \\
n & >\frac{83}{3} n>27.6 \\
n & =28
\end{aligned}
$$

Hence, the first negative term is 28 th term.
141.Find the middle term of the AP $7,13,19, \ldots, 247$.

Ans :
[Board 2020 OD Standard]
In this AP,

$$
\begin{aligned}
a & =7 \\
d & =13-7=6 \\
a_{n} & =a+(n-1) d \\
247 & =7+(n-1) 6 \\
6(n-1) & =240 \\
n-1 & =40 \Rightarrow n=41
\end{aligned}
$$

Hence, the middle term $=\frac{n+1}{2}=\frac{41+1}{2}=\frac{42}{2}=21$.

$$
a_{21}=7+(21-1) 6=127
$$

142. Show that the sum of all terms of an AP whose first term is a, the second term is b and last term is c, is
equal to $\frac{(a+c)(b+c-2 a)}{2(b-a)}$
Ans :
Given, first term,

$$
A=a
$$

and second term

$$
A_{2}=b
$$

Common difference,
$D=b-a$
Last term,
$A_{n}=c$

$$
\begin{aligned}
A+(n-1) d & =c \\
a+(n-1)(b-a) & =c \\
(b-a)(n-1) & =c-a \\
n-1 & =\frac{c-a}{b-a} \\
n & =\frac{c-a}{b-a}+1 \\
& =\frac{c-a+b-a}{b-a} \\
n & =\frac{b+c-2 a}{b-a}
\end{aligned}
$$

Now sum of all terms

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[A+A_{n}\right]=\frac{(b+c-2 a)}{2(b-a)}[a+c] \\
& =\frac{(a+c)(b+c-2 a)}{2(b-a)} \quad \text { Hence Proved }
\end{aligned}
$$

143.If in an AP, the sum of first m terms is n and the sum of its first n terms is m, then prove that the sum of its first $(m+n)$ terms is $-(m+n)$.
Ans :
[Board 2020 OD Standard]
Let $1^{\text {st }}$ term of series be a and common difference be d, then we have

$$
S_{m}=n
$$

$$
S_{n}=m
$$

$$
\begin{align*}
\frac{m}{2}[2 a+(m-1) d] & =n \tag{1}\\
\frac{n}{2}[2 a+(n-1) d] & =m \tag{2}
\end{align*}
$$

Subtracting we have

$$
\begin{aligned}
a(m-n)+\frac{d}{2}[m(m-1)-n(n-1)] & =n-m \\
2 a(m-n)+d\left[m^{2}-n^{2}-(m-n)\right] & =2(n-m) \\
2 a(m-n)+d(m-n)[(m+n)-1] & =2(n-m) \\
2 a+d[(m+n)-1] & =-2
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{m+n} & =\frac{m+n}{2}[2 a+(m+n-1) d] \\
& =\frac{m+n}{2}(-2) \\
& =-(m+n)
\end{aligned}
$$

Don't Take Printout of This PDF. Buy Hard Book at
 Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

144.The $17^{\text {th }}$ term of an AP is 5 more than twice its $8^{\text {th }}$ term. If $11^{\text {th }}$ term of AP is 43 , then find its $n^{\text {th }}$ term.
Ans :
[Board 2020 OD Basic]
Let a be the first term and d be the common difference.
$n^{\text {th }}$ term of an AP,

$$
a_{n}=a+(n-1) d
$$

Since $17^{\text {th }}$ term of an AP is 5 more than twice of its $8^{\text {th }}$ term, thus

$$
\begin{align*}
a+(17-1) d & =5+2[a+(8-1) d] \\
a+16 d & =5+2(a+7 d) \\
a+16 d & =5+2 a+14 d \\
2 d-a & =5 \tag{1}
\end{align*}
$$

Since $11^{\text {th }}$ term of AP is 43 ,

$$
\begin{array}{r}
a+(11-1) d=43 \\
a+10 d=43 \tag{2}
\end{array}
$$

Solving equation (1) and (2), we have

$$
a=3 \text { and } d=4
$$

Hence, $n^{\text {th }}$ term would be

$$
a_{n}=3+(n-1) 4=4 n-1
$$

145. How many terms of the AP $24,21,18, \ldots$ must be taken so that their sum is 78 ?
Ans :
[Board 2020 Delhi Basic]
Given : 24, 21, 18, \qquad are in AP.

Here, $\quad a=24, d=21-24=-3$
Sum of n term, $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
78 & =\frac{n}{2}[2 \times 24+(n-1)(-3)] \\
156 & =n(48-3 n+3)
\end{aligned}
$$

$$
\begin{aligned}
& 156=n(51-3 n) \\
& 3 n^{2}-51 n+156=0 \\
& n^{2}-17 n+52=0 \\
& n^{2}-13 n-4 n+52=0 \\
&(n-4)(n-13)=0 \Rightarrow n=4,13
\end{aligned}
$$

When $n=4, \quad S_{4}=\frac{4}{2}[2 \times 24+(4-1)(-3)]$

$$
=2(48-9)=2 \times 39=78
$$

When $n=13, \quad S_{13}=\frac{13}{2}[2 \times 24+(13-1)(-3)]$

$$
=\frac{13}{2}[48+(-36)]=78
$$

Hence, the number of terms $n=4$ or $n=13$.
146. Find the $20^{\text {th }}$ term of an AP whose $3^{\text {rd }}$ term is 7 and the seventh term exceeds three times the $3^{\text {rd }}$ term by 2. Also find its $n^{\text {th }}$ term $\left(a_{n}\right)$.

Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d and nth term be a_{n}.

We have

$$
\begin{align*}
a_{3} & =a+2 d=7 \tag{1}\\
a_{7} & =3 a_{3}+2 \\
a+6 d & =3 \times 7+2=23 \tag{2}
\end{align*}
$$

Solving (1) and (2) we have

$$
\begin{aligned}
4 d & =16 \Rightarrow d=4 \\
a+8 & =7 \Rightarrow a=-1 \\
a_{20} & =a+19 d=-1+19 \times 4=75 \\
a_{n} & =a+(n-1) d \\
& =-1+4 n-4 \\
& =4 n-5 .
\end{aligned}
$$

Hence $n^{\text {th }}$ term is $4 n-5$.
147.If $7^{\text {th }}$ term of an AP is $\frac{1}{9}$ and $9^{\text {th }}$ term is $\frac{1}{7}$, find $63^{\text {rd }}$ term.
Ans :
[Board Term-2 Delhi 2014]
Let the first term be a, common difference be d and nth term be a_{n}.
We have $a_{7}=\frac{1}{9} \Rightarrow a+6 d=\frac{1}{9}$

$$
a_{9}=\frac{1}{7} \Rightarrow a+8 d=\frac{1}{7}
$$

Subtracting equation (1) from (2) we get

$$
2 d=\frac{1}{7}-\frac{1}{9}=\frac{2}{63} \Rightarrow d=\frac{1}{63}
$$

Substituting the value of d in (2) we get

$$
a+8 \times \frac{1}{63}=\frac{1}{7}
$$

$$
a=\frac{1}{7}-\frac{8}{63}=\frac{9-8}{63}=\frac{1}{63}
$$

Thus

$$
\begin{aligned}
a_{63} & =a+(63-1) d \\
& =\frac{1}{63}+62 \times \frac{1}{63}=\frac{1+62}{63} \\
& =\frac{63}{63}=1
\end{aligned}
$$

Hence, $a_{63}=1$.
148. The ninth term of an AP is equal to seven times the second term and twelfth term exceeds five times the third term by 2. Find the first term and the common difference.

Ans :
[Board SQP 2016]
Let the first term be a, common difference be d and nth term be a_{n}.

Now

$$
\begin{align*}
a_{9} & =7 a_{2} \\
a+8 d & =7(a+d) \\
a+8 d & =7 a+7 d \\
-6 a+d & =0 \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
a_{12} & =5 a_{3}+2 \\
a+11 d & =5(a+2 d)+2 \\
a+11 d & =5 a+10 d+2 \\
-4 a+d & =2 \tag{2}
\end{align*}
$$

Subtracting (2) from (1), we get

$$
\begin{aligned}
-2 a & =-2 \\
a & =1
\end{aligned}
$$

Substituting this value of a in equation (1) we get

$$
\begin{array}{r}
-6+d=0 \\
d=6
\end{array}
$$

Hence first term is 1 and common difference is 6 .
149.Determine an AP whose third term is 9 and when fifth term is subtracted from $8^{\text {th }}$ term, we get 6 .
Ans :
[Board Term-2 2015]
Let the first term be a, common difference be d and
nth term be a_{n}.
We have

$$
\begin{align*}
a_{3} & =9 \\
a+2 d & =9 \tag{1}
\end{align*}
$$

$$
a_{8}-a_{5}=6
$$

and $\quad a_{8}-a_{5}=6$

$$
\begin{aligned}
(a+7 d)-(a+4 d) & =6 \\
3 d & =6 \\
d & =2
\end{aligned}
$$

e143

Substituting this value of d in (1), we get

$$
\begin{aligned}
a+2(2) & =9 \\
a & =5
\end{aligned}
$$

So, AP is $5,7,9,11, \ldots$

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission

150. Divide 56 in four parts in AP such that the ratio of the product of their extremes ($1^{s t}$ and $4^{r d}$) to the product of means ($2^{\text {nd }}$ and $\left.3^{\text {rd }}\right)$ is 5:6.
Ans:
[Board Term-2 Foreign 2016]
Let the four numbers be $a-3 d, a-d, a+d, a+3 d$
Now $\quad a-3 d+a-d+a+d+a+3 d=56$

$$
4 a=56 \Rightarrow a=14
$$

Hence numbers are $14-3 d, 14-d, 14+d, 14+3 d$
Now, according to question, we have

$$
\begin{aligned}
\frac{(14-3 d)(14+3 d)}{(14-d)(14+d)} & =\frac{5}{6} \\
\frac{196-9 d^{2}}{196-d^{2}} & =\frac{5}{6} \\
6\left(196-9 d^{2}\right) & =5\left(196-d^{2}\right) \\
6 \times 196-54 d^{2} & =5 \times 196-5 d^{2} \\
(6-5) \times 196 & =49 d^{2} \\
d^{2} & =\frac{196}{49}=4 \\
d & = \pm 2
\end{aligned}
$$

Thus numbers are $a-3 d=14-3 \times 2=8$

$$
\begin{aligned}
& a-d=14-2=12 \\
& a+d=14+2=16
\end{aligned}
$$

$$
a+3 d=14+3 \times 2=20
$$

Thus required AP is $8,12,16,20$.

151.

are a, b and c respectively, Show that $a(q-r)+b(r-p)+c(p-q)=0$.
Ans:
[Board Term-2 Foreign 2016]
Let the first term be A and the common difference be D.

$$
\begin{aligned}
& a=A+(p-1) D \\
& b=A+(q-1) D \\
& c=A+(r-1) D
\end{aligned}
$$

角 frith $\boldsymbol{q}^{\text {th }}$

Now

$$
a(q-r)+b(r-p)+c(p-q)
$$

152. The sum of n terms of an AP is $3 n^{2}+5 n$. Find the AP Hence find its $15^{t h}$ term.
Ans:
[Board Term-2 2013, 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}

Now

$$
\begin{aligned}
S_{n} & =3 n^{2}+5 n \\
S_{n-1} & =3(n-1)^{2}+5(n-1)
\end{aligned}
$$

$$
\begin{aligned}
& =[A+(p-1) D][q-r]+ \\
& +[A+(q-1) D][r-p]+ \\
& +[A+(r-1) D][p-q]+ \\
& =A[p-q+q-p+q-r]+ \\
& +D(p-1)(q-r)+ \\
& +D(q-1)(r-p)+ \\
& +D(r-1)(p-q) \\
& =A[0]+ \\
& +D[p(q-r)-(q-r)] \\
& +D[q(r-p)-(r-p)] \\
& +D[r(p-q)-(p-q)] \\
& =D[p(q-r)+q(r-p)+r(p-q)]+ \\
& -D[(q-r)+(r-p)+(p-q)] \\
& =D[p q-p r+q r-q p+r p-r q]+0 \\
& =D[0]=0
\end{aligned}
$$

$$
\begin{aligned}
& a(q-r)=[A+(p-1) D][q-r] \\
& b(r-p)=[A+(q-1) D][r-p]
\end{aligned}
$$

$$
\begin{aligned}
& =3\left(n^{2}+1-2 n\right)+5 n-5 \\
& =3 n^{2}+3-6 n+5 n-5 \\
& =3 n^{2}-n-2 \\
a_{n} & =S_{n}-S_{n-1} \\
& =3 n^{2}+5 n-\left(3 n^{2}-n-2\right) \\
& =6 n+2
\end{aligned}
$$

Thus AP is $8,14,20, \ldots \ldots$.
Now $\quad a_{15}=a+14 d=8+14(6)=92$
153. For what value of n, are the $n^{\text {th }}$ terms of two APs 63 , $65,67, \ldots$ and $3,10,17, \ldots$ equal?
Ans :
Let a, d and A, D be the $1^{\text {st }}$ term and common difference of the 2 APs respectively.
n is same
For 1st AP,

$$
a=63, d=2
$$

For 2nd AP,
$A=3, D=7$

Since nth term is same,

$$
\begin{aligned}
a_{n} & =A_{n} \\
a+(n-1) d & =A+(n-1) D \\
63+(n-1) 2 & =3+(n-1) 7 \\
63+2 n-2 & =3+7 n-7 \\
61+2 n & =7 n-4 \\
65 & =5 n \Rightarrow n=13
\end{aligned}
$$

When n is 13 , the $n^{\text {th }}$ terms are equal i.e., $a_{13}=A_{13}$
154.In an AP the sum of first n terms is $\frac{3 n^{2}}{2}+\frac{13 n}{2}$. Find the $25^{\text {th }}$ term.
Ans :
[Board Term-2 SQP 2015]

$$
\text { We have } \begin{aligned}
& S_{n}=\frac{3 n^{2}+13 n}{2} \\
& \qquad \begin{aligned}
a_{n} & =S_{n}-S_{n-1} \\
a_{25} & =S_{25}-S_{24} \\
& =\frac{3(25)^{2}+13(25)}{2}-\frac{3(24)^{2}+13(24)}{2} \\
& =\frac{1}{2}\left\{3\left(25^{2}-24^{2}\right)+13(25-24)\right\} \\
& =\frac{1}{2}(3 \times 49+13)=80
\end{aligned}
\end{aligned}
$$

155. The sum of first n terms of three arithmetic progressions are S_{1}, S_{2} and S_{3} respectively. The first term of each AP is 1 and common differences are 1,2 and 3 respectively. Prove that $S_{1}+S_{3}=2 S_{2}$.
Ans :
[Board Term-2 OD 2016]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
We have $S_{1}=1+2+3+\ldots . n$

$$
S_{2}=1+3+5+\ldots . . \text { up to } n \text { terms }
$$

$S_{3}=1+4+7+\ldots$. upto n terms
Now $\quad S_{n}=\frac{n(n+1)}{2}$

$$
S_{2}=\frac{n}{2}[2+(n-1) 2]=\frac{n}{2}[2 n]=n^{2}
$$

and

$$
S_{3}=\frac{n}{2}[2+(n-1) 3]=\frac{n(3 n-1)}{2}
$$

Now, $S_{1}+S_{3}=\frac{n(n+1)}{2}+\frac{n(3 n-1)}{2}$

$$
\begin{array}{ll}
=\frac{n[n+1+3 n-1]}{2}=\frac{n[4 n]}{2} \\
=2 n^{2}=2 s_{2} & \text { Hence Proved }
\end{array}
$$

156.If S_{n} denotes, the sum of the first n terms of an AP prove that $S_{12}=3\left(S_{8}-S_{4}\right)$.
Ans :
[Board Term-2 Delhi 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{12} & =6[2 a+11 d]=12 a+66 d \\
S_{8} & =4[2 a+7 d]=8 a+28 d \\
S_{4} & =2[2 a+3 d]=4 a+6 d \\
3\left(S_{8}-S_{4}\right) & =3[(8 a+28 d)-(4 a+6 d)] \\
& =3[4 a+22 d]=12 a+66 d \\
& =6[2 a+11 d]=S_{12} \quad \text { Hence Proved }
\end{aligned}
$$

157. The $14^{\text {th }}$ term of an AP is twice its $8^{\text {th }}$ term. If the $6^{\text {th }}$ term is -8 , then find the sum of its first 20 terms.
Ans :
[Board Term-2 OD 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
Here, $a_{14}=2 a_{8}$ and $a_{6}=-8$
Now

$$
a+13 d=2(a+7 d)
$$

$$
\begin{align*}
a+13 d & =2 a+14 d \\
a & =-d \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
a_{6} & =-8 \\
a+5 d & =-8 \tag{2}
\end{align*}
$$

Solving (1) and (2), we get

$$
a=2, d=-2
$$

Now

$$
\begin{aligned}
S_{20} & =\frac{20}{2}[2 \times 2+(20-1)(-2)] \\
& =10[4+19 \times(-2)] \\
& =10(4-38) \\
& =10 \times(-34)=-340
\end{aligned}
$$

158.If the ratio of the sums of first n terms of two AP's is $(7 n+1):(4 n+27)$, find the ratio of their $m^{t h}$ terms. Ans :
[Board Term-2 OD 2016]
Let a, and A be the first term and d and D be the common difference of two AP's, then we have

$$
\begin{aligned}
\frac{S_{n}}{S_{n}^{\prime}} & =\frac{7 n+1}{4 n+27} \\
\frac{\frac{n}{2}[2 a+(n-1) d]}{\frac{n}{2}[2 A+(n-1) D]} & =\frac{7 n+1}{4 n+27} \\
\frac{2 a+(n-1) d}{2 A+(n-1) D} & =\frac{7 n+1}{4 n+27} \\
\frac{a+\left(\frac{n-1}{2}\right) d}{A+\left(\frac{n-1}{2}\right) D} & =\frac{7 n+1}{4 n+27}
\end{aligned}
$$

Substituting $\frac{n-1}{2}=m-1$ or $n=2 m-1$ we get

$$
\frac{a+(m-1) d}{A+(m-1) D}=\frac{7(2 m-1)+1}{4(2 m-1)+27}=\frac{14 m-6}{8 m+23}
$$

Hence,

$$
\frac{a_{m}}{A_{m}}=\frac{14 m-6}{8 m+23}
$$

159.If the sum of the first n terms of an AP is $\frac{1}{2}\left[3 n^{2}+7 n\right]$, then find its $n^{\text {th }}$ term. Hence write its $20^{\text {th }}$ term.
Ans :
[Board Term-2 Delhi 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

Sum of n term, $\quad S_{n}=\frac{1}{2}\left[3 n^{2}+7 n\right]$

Sum of 1 term, $\quad S_{1}=\frac{1}{2}\left[3 \times(1)^{2}+7(1)\right]$

$$
=\frac{1}{2}[3+7]=\frac{1}{2} \times 10=5
$$

Sum of 2 term, $\quad S_{2}=\frac{1}{2}\left[3(2)^{2}+7 \times 2\right]$

$$
=\frac{1}{2}[12+14]=\frac{1}{2} \times 26=13
$$

Now

$$
\begin{aligned}
a_{1} & =S_{1}=5 \\
a_{2} & =S_{2}-S_{1}=13-5=8 \\
d & =a_{2}-a_{1}=8-5=3
\end{aligned}
$$

Now, AP is $5,8,11, \ldots$.

$$
\begin{aligned}
& n^{\text {th }} \text { term, }, \quad a_{n} \\
&=a+(n-1) d \\
&=5+(n-1) 3 \\
&=5+(20-1)(3) \\
&=5+57 \\
&=62
\end{aligned}
$$

$$
\text { Hence, } \quad a_{2}=62
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.
160.In an AP, if the $12^{\text {th }}$ term is -13 and the sum of its first four terms is 24 , find the sum of its first ten terms.

Ans :

[Board Term-2 Foreign 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

$$
\begin{align*}
a_{12} & =a+11 d=-13 \tag{1}\\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{4} & =2[2 a+3 d]=24 \tag{2}\\
2 a+3 d & =12
\end{align*}
$$

$$
\text { Now } \quad S_{4}=2[2 a+3 d]=24
$$

Multiplying (1) by 2 and subtracting (2) from it we get

$$
\begin{aligned}
(2 a+22 d)-(2 a+3 d) & =-26-12 \\
19 d & =-38 \\
d & =-2
\end{aligned}
$$

Substituting the value of d in (1) we get

$$
a+11 \times-2=-13
$$

$$
\begin{aligned}
& a=-13+22 \\
& a=9
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{10} & =\frac{10}{2}(2 \times 9+9 \times-2) \\
& =5 \times(18-18)=0
\end{aligned}
$$

Hence, $S_{10}=0$
161.The tenth term of an AP, is -37 and the sum of its first six terms is -27 . Find the sum of its first eight terms.
Ans:
[Board Term-2 Foreign 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

$$
\begin{align*}
a_{n} & =a+(n-1) d \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
a+9 d & =-37 \tag{1}\\
3(2 a+5 d) & =-27 \\
2 a+5 d & =-9 \tag{2}
\end{align*}
$$

Multiplying (1) by 2 and subtracting (2) from it, we get

$$
\begin{aligned}
(2 a+18 d)-(2 a+5 d) & =-74+9 \\
13 d & =-65 \\
d & =-5
\end{aligned}
$$

Substituting the value of d in (1) we get

$$
\begin{aligned}
a+9 \times-5 & =-37 \\
a & =-37+45 \\
a & =8 \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{8}{2}[2 \times 8+(8-1)(-5)] \\
& =4[16-35] \\
& =4 \times-19=-76
\end{aligned}
$$

Now

Hence, $S_{n}=-76$
162.Find the sum of first seventeen terms of AP whose $4^{\text {th }}$ and $9^{t h}$ terms are -15 and -30 respectively.
Ans :
[Board Term-2 2014]

Let the first term be a, common difference be d and nth term be a_{n}.
Now

$$
\begin{align*}
& a_{4}=a+3 d=-15 \\
& a_{9}=a+8 d=-30
\end{align*}
$$

Subtracting eqn (1) from eqn (2), we obtain

$$
\begin{aligned}
(a+8 d)-(a+3 d) & =-30-(-15) \\
5 d & =-15 \Rightarrow d=\frac{-15}{5}=-3
\end{aligned}
$$

Substituting the value of d in (1) we get

$$
\begin{aligned}
a+3 d & =-15 \\
a+3(-3) & =-15
\end{aligned}
$$

$$
a=-15+9=-6
$$

Now

$$
\begin{aligned}
S_{17} & =\frac{17}{2}[2 \times(-6)+(17-1)(-3)] \\
& =\frac{17}{2}[--12+16 \times(-3)] \\
& =\frac{17}{2}[-12-48] \\
& =\frac{17}{2}[-60]=17 \times(-30) \\
& =-510
\end{aligned}
$$

Thus $S_{17}=-510$
163.The common difference of an AP is -2 . Find its sum, if first term is 100 and last term is -10 .
Ans :
[Board Term-2 2014]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

We have

$$
a=100, d=-2, t_{n}=-10
$$

Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
-10 & =100+(n-1)(-2) \\
-10 & =100-2 n+2 \\
2 n & =112 \\
n & =56
\end{aligned}
$$

Thus $56^{\text {th }}$ term is -10 and number of terms in AP are 56 .

Now

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+1) \\
S_{56} & =\frac{56}{2}(100-10)
\end{aligned}
$$

$$
=\frac{56}{2}(90)=56 \times 45=2520
$$

Thus $S_{n}=2520$
164. The $16^{\text {th }}$ term of an AP is five times its third term. If its $10^{\text {th }}$ term is 41 , then find the sum of its first fifteen terms.
Ans :
[Board Term-2 OD 2015]
Let the first term be a, common difference be α term be a_{n} and sum of n term be S_{n}.

We have,

$$
\begin{align*}
a_{16} & =5 a_{3} \\
a+15 d & =5(a+2 d) \\
4 a & =5 d \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
a_{10} & =41 \\
a+9 d & =41 \tag{2}
\end{align*}
$$

Solving (1) and (2), we get $a=5, d=4$
Now

$$
\begin{aligned}
S_{15} & =\frac{15}{2}[2 \times 5+(15-1) \times 4] \\
& =\frac{15}{2}[10+56] \\
& =\frac{15}{2} \times 66=15 \times 33=495
\end{aligned}
$$

Thus $S_{15}=495$
165.The $13^{\text {th }}$ term of an AP is four times its $3^{\text {rd }}$ term. If the fifth term is 16 , then find the sum of its first ten terms.
Ans :
[Board Term-2 OD 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
Here $a_{13}=4 a_{3}$

$$
\begin{align*}
a+12 d & =4(a+2 d) \\
3 a & =4 d \tag{1}\\
a_{5} & =16 \tag{2}\\
a+4 d & =16
\end{align*}
$$

and $\quad a_{5}=16$

Substituting the value of $a=\frac{4}{3} d$ in (2) we have

$$
\begin{aligned}
\frac{4}{3} d+4 d & =16 \\
16 d & =48 \Rightarrow d=3
\end{aligned}
$$

Thus $a=4$ and $d=3$
Now

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
\begin{aligned}
S_{10} & =\frac{10}{2}[2 \times 4+(10-1) 3] \\
& =5[8+27]=5 \times 35=175
\end{aligned}
$$

Thus $S_{10}=175$
166.The $n^{\text {th }}$ term of an AP is given by $(-4 n+15)$. Find the sum of first 20 terms of this AP.
Ans :
[Board Term-2 2013]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
We have

$$
\begin{aligned}
a_{n} & =-4 n+15 \\
a_{1} & =-4 \times 1+15=11 \\
a_{2} & =-4 \times 2+15=7 \\
a_{3} & =-4 \times 3+15=3 \\
d & =a_{2}-a_{1}=7-11=-4
\end{aligned}
$$

Now, we have $a=11, d=-4$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{20} & =\frac{20}{2}[2 \times 11+(20-1) \times(-4)] \\
& =10[22-76] \\
& =10 \times(-54)=-540
\end{aligned}
$$

Thus $S_{20}=-540$
167.The sum of first 7 terms of an AP is 63 and sum of its next 7 terms is 161 . Find $28^{\text {th }}$ term of AP Ans :
[Board Term-2 Foreign 2014]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

$$
\begin{align*}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
\text { Now, } \quad S_{7} & =63 \\
\frac{7}{2}[2 a+6 d] & =63 \\
2 a+6 d & =18
\end{align*}
$$

Also, sum of next 7 terms,

$$
\begin{align*}
S_{14} & =S_{\text {first7 }}+S_{\text {next7 }}=63+161 \\
\frac{14}{2}[2 a+13 d] & =224 \\
2 a+13 d & =32 \tag{2}
\end{align*}
$$

Subtracting equation (1) form (2) we get

$$
7 d=14 \Rightarrow d=2
$$

Substituting the value of d in (1) we get

$$
\begin{aligned}
& =11 \times 108 \\
& =1188
\end{aligned}
$$

170. Find the sum of the following series.
$5+(-41)+9+(-39)+13+(-37)+17+\ldots+$ $(-5)+81+(-3)$
Ans :
[Board Term-2 Foreign 2017]
The given series can be written as sum of two series $(5+9+13+\ldots .+81)+$

$$
+(-41)+(-39)+(-37)+(-35) \ldots(-5)+(-3)
$$

For the series $(5+9+13 \ldots . .81)$

$$
a=5, d=4 \text { and } a_{n}=81
$$

Now

$$
a_{n}=a+(n-1) d
$$

$$
81=5+(n-1) 4
$$

$$
81=5+(n-1) 4
$$

$$
\begin{aligned}
(n-1) 4 & =76 \Rightarrow n=20 \\
S_{n} & =\frac{20}{2}(5+81)=860
\end{aligned}
$$

For series $(-41)+(-39)+(-37)+\ldots+(-5)+(-3)$

$$
\begin{aligned}
a_{n} & =-3, a=-41 \text { and } d=2 \\
a_{n} & =-41+(n-1)(2) \\
-3 & =-41+2 n-2 \Rightarrow n=20
\end{aligned}
$$

Now

$$
S_{n}=\frac{20}{2}[-41+-3]=-440
$$

Sum of the series $=860-440=420$
171.Find the sum of n terms of the series
$\left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots \ldots$.
Ans :
[Board Term-2 Delhi 2017]
Let sum of n term be S_{n}
$s_{n}=\left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots \ldots$. up to n term

$$
\begin{aligned}
&=(4+4+4+\ldots . . \text { up to } n \text { terms })+ \\
& \quad+\left(-\frac{1}{n}-\frac{2}{n}-\frac{3}{n}-\ldots . . \text { up to } n \text { terms }\right) \\
&=(4+4+4+\ldots . \text { up to } n \text { terms })+ \\
& \quad-\frac{1}{n}(1+2+3+\ldots . . \text { up to } n \text { terms }) \\
&= 4 n-\frac{1}{n} \times \frac{n(n+1)}{2}
\end{aligned}
$$

$$
=4 n-\frac{n+1}{2}=\frac{7 n-1}{2}
$$

Hence, sum of n terms $=\frac{7 n-1}{2}$
172.Find the number of multiple of 9 lying between 300 and 700 .
Ans :
[Board Term-2 OD Compt. 2017]
The numbers, multiple of 9 between 300 and 700 are $306,315,324, \ldots .693$.
Let the first term be a, common difference be d and nth term be $a_{n}=693$

$$
\begin{aligned}
a_{n} & =306+(n-1)^{9} \\
693 & =306+(n-1)^{9} \\
(n-1) 9 & =693-306=387 \\
n-1 & =\frac{387}{9}=43 \\
n & =43+1=44
\end{aligned}
$$

e201

$$
\begin{aligned}
a+16 d-(a+12 d) & =20 \\
4 d & =20 \\
d & =5
\end{aligned}
$$

e203

Substituting this valued d in (1), we get

$$
a=7
$$

Hence AP is $7,12,17,22, \ldots$

If Video Links are not Working, Please download updated file of this PDF from following link.

Click Here For Updated PDF of this Book
175. Find the sum of all odd number between 0 and 50 . Ans :
[Board Term-2 Delhi Compt 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
Given AP is $1+3+5+7+\ldots .+49$
Let total number of terms be n. Here $a=1, d=2$ and $a_{n}=49$.

$$
\begin{aligned}
a_{n} & =1+(n-1) \times 2 \\
49 & =1+2 n-2 \\
50 & =2 n \Rightarrow n=25 \\
S_{25} & =\frac{n}{2}\left(a+a_{n}\right) \\
& =\frac{25}{2}(1+49) \\
& =25 \times 25=625
\end{aligned}
$$

Hence, Sum of odd number is 625
176. Find the sum of first 15 multiples of 8 .

Ans :
[Board Term-2 Delhi Compt 2017]
Let the first term be $a=8$, common difference be $d=8, n$th term be a_{n} and sum of n term be S_{n}.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{15} & =\frac{15}{2}[2 \times 8+(15-1) 8] \\
& =\frac{15}{2}[16+112] \\
=\frac{15}{2} \times 128 & =996
\end{aligned}
$$

Hence, the sum of 15 terms is 960 .
177.If $m^{t h}$ term of an AP is $\frac{1}{n}$ and $n^{t h}$ term is $\frac{1}{m}$ find the
sum of first $m n$ terms.
Ans :
[Board Term-2 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

Now

$$
\begin{align*}
& a_{m}=a+(m-1) d=\frac{1}{n} \tag{1}\\
& a_{n}=a+(n-1) d=\frac{1}{m} \tag{2}
\end{align*}
$$

Subtracting (2) from (1) we get

$$
\begin{aligned}
(m-n) d & =\frac{1}{n}-\frac{1}{m}=\frac{m-n}{m n} \\
d & =\frac{1}{m n}
\end{aligned}
$$

Substituting this value of d in equation (1), we get

$$
a=\frac{1}{m n}
$$

Now,

$$
\begin{aligned}
S_{m n} & =\frac{m n}{2}\left(\frac{2}{m n}+(m n-1) \frac{1}{m n}\right) \\
& =1+\frac{m n}{2}-\frac{1}{2}=\frac{1}{2}+\frac{m n}{2} \\
& =\frac{1}{2}[m n+1]
\end{aligned}
$$

Hence, the sum of $m n$ term is $\frac{1}{2}[m n+1]$.
178. How many terms of an AP $9,17,25, \ldots$ must be taken to give a sum of 636 ?
Ans :
[Board Term-2 Delhi Compt 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
We have $a=9, d=8, S_{n}=636$
Now

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
636 & =\frac{n}{2}[18+(n-1) 8] \\
636 & =n[9+(n-1) 4] \\
636 & =n(9+4 n-4) \\
636 & =n(5+4 n) \\
636 & =5 n+4 n^{2} \\
4 n^{2}+5 n-636 & =0 \\
4 n^{2}-48 n+53 n-636 & =0 \\
4 n(n-12)+53(n-12) & =0 \\
(4 n+53)(n-12) & =0
\end{aligned}
$$

Thus

$$
n=\frac{-53}{4} \text { or } 12
$$

As n is a natural number $n=12$. Hence 12 terms are required to give sum 636 .
179.Find the number of natural numbers between 101 and 999 which are divisible by both 2 and 5 .
Ans :
[Board Term-2 OD 2014]
The sequence goes like $110,120,130$, \qquad 990
Since they have a common difference of 10 , they form an AP. Let the first term be a, common difference be d, nth term be a_{n}.
Here $a=110, a_{n}=990, d=10$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
990 & =110+(n-1) \times 10 \\
990-110 & =10(n-1) \\
880 & =10(n-1) \\
88 & =n-1 \\
n & =88+1=89
\end{aligned}
$$

Hence, there are 89 terms between 101 and 999 divisible by both 2 and 5 .
180. How many three digit natural numbers are divisible by 7 ?
Ans :
[Board Term-2 2013]
Let AP is $105,112,119$ \qquad 994 which is divisible by 7 .
Let the first term be a, common difference be d, n th term be a_{n}.
Here, $a=105, d=112-105=7, a_{n}=994$ then

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
994 & =105+(n-1) \times 7 \\
889 & =(n-1) \times 7 \\
n-1 & =\frac{889}{7}=127 \\
n & =127+1=128
\end{aligned}
$$

Hence, there are 128 terms divisible by 7 in AP.
181.How many two digit numbers are divisible by 7 ?

Ans :
[Board Term-2 SQP 2016]
Two digit numbers which are divisible by 7 are 14, 21, 28, \qquad . 98. It forms an AP
Let the first term be a, common difference th term be a_{n}.

Here $a=14, d=7, a_{n}=98$

$$
\text { Now } \begin{aligned}
a_{n} & =a+(n-1) d \\
98 & =14+(n-1) 7 \\
98-14 & =7 n-7 \\
84+7 & =7 n \\
7 n & =91 \Rightarrow n=13
\end{aligned}
$$

182.If the ratio of the $11^{\text {th }}$ term of an AP to its $18^{\text {th }}$ term is $2: 3$, find the ratio of the sum of the first five term of the sum of its first 10 terms.
Ans :
[Board Term-2 Delhi Compt. 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}

Now

$$
\begin{align*}
\frac{a_{11}}{a_{18}} & =\frac{a+10 d}{a+17 d}=\frac{2}{3} \\
2(a+17 d) & =3(a+10 d) \\
a & =4 d \tag{1}
\end{align*}
$$

Now, $\quad \frac{S_{5}}{S_{10}}=\frac{\frac{5}{2}(2 a+4 d)}{\frac{10}{2}[2 a+9 d]}=\frac{(a+2 d)}{[2 a+9 d]}$
Substituting the value $a=4 d$ we have
or, $\quad \frac{S_{5}}{S_{10}}=\frac{4 d+2 d}{8 d+9 d}=\frac{6}{17}$

Hence $S_{5}: S_{10}=6: 17$
183.How many three digit numbers are such that when divided by 7 , leave a remainder 3 in each case?
Ans :
[Board Term-2 2012]
When a three digit number divided by 7 and leave 3 as remainder are 101, 108, 115, \qquad 997
These are in AP. Let the first term be a, common difference be d, nth term be a_{n}.

Here $a=101, d=7, a_{n}=997$
Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
997 & =101+(n-1) 7 \\
997-101 & =896=(n-1) 7 \\
\frac{896}{7} & =n-1 \\
n & =128+1=129
\end{aligned}
$$

Hence, 129 numbers are divided by 7 which leaves remainder is 3 .
184. How many multiples of 4 lie between 11 and 266 ?

Ans :
[Board Term-2 2012]

First multiple of 4 is 12 and last multiple of 4 is 264 .
It forms a AP. Let multiples of 4 be n.
Let the first term be a, common difference be d, n th term be a_{n}.
Here, $a=12, a_{n}=264, d=4$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
264 & =12+(n-1) 4 \\
n & =\frac{264-12}{4}+1
\end{aligned}
$$

Hence, there are 64 multiples of 4 that lie between 11 and 266.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

185. Prove that the $n^{\text {th }}$ term of an AP can not be $n^{2}+1$. Justify your answer.
Ans :
[Board Term-2 2015]
Let $n^{\text {th }}$ term of AP,

$$
a_{n}=n^{2}+1
$$

Substituting the value of $n=1,2,3, \ldots \ldots$ we get

$$
\begin{aligned}
& a_{1}=1^{2}+1=2 \\
& a_{2}=2^{2}+1=5 \\
& a_{3}=3^{2}+1=10
\end{aligned}
$$

The obtained sequence is $2,5,10,17, \ldots \ldots$
Its common difference

$$
\begin{aligned}
a_{2}-a_{1} & =a_{3}-a_{2}=a_{4}-a_{3} \\
5-2 & \neq 10-5 \neq 17-10 \\
3 & \neq 5 \neq 7
\end{aligned}
$$

Since the sequence has no. common difference, $n^{2}+1$ is not a form of $n^{\text {th }}$ term of an AP
186.If the $p^{\text {th }}$ term of an AP is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p}$. Prove that the sum of first $p q$ term of the AP is $\left[\frac{p q+1}{2}\right]$.
Ans :
[Board Term-2 Delhi 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}

$$
\begin{equation*}
a_{p}=a+(p-1) d=\frac{1}{q} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{q}=a+(q-1) d=\frac{1}{p} \tag{2}
\end{equation*}
$$

Solving (1) and (2) we get

$$
\begin{aligned}
a & =\frac{1}{p q} \text { and } d=\frac{1}{p} \\
S_{p q} & =\frac{p q}{2}\left[2 \times \frac{1}{p q}+(p q-1) \frac{1}{p q}\right]=\frac{p q+1}{2}
\end{aligned}
$$

187. Find the sum of all two digits odd positive numbers.

Ans :

[Board Term-2 2014]
The list of 2 digits odd positive numbers are 11, 13 99. It forms an AP.
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}
Here $a=11, d=2, l=99$
Now

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
99 & =11+(n-1)^{2} \\
88 & =(n-1)^{2} \\
n & =44+1=45 \\
S_{n} & =\frac{n}{2}\left[a+a_{n}\right] \\
& =\frac{45}{2}[11+99] \\
S_{n} & =\frac{45 \times 110}{2}=2475
\end{aligned}
$$

e233

Now

$$
\begin{aligned}
198 & =102+(n-1) 6 \\
96 & =(n-1) 6 \\
\frac{96}{6} & =n-1 \\
n & =17 \\
S_{17} & =\frac{n}{2}\left(a+a_{n}\right) \\
& =\frac{17}{2}[102+198] \\
& =\frac{17}{2} \times 300=17 \times 150=2550
\end{aligned}
$$

Hence the sum of given AP is 2550 .

FOUR MARKS QUESTIONS

190.If the sum of first four terms of an AP is 40 and that of first 14 terms is 280 . Find the sum of its first n terms.
Ans :
[Board 2019 Delhi]
Let a be the first term and d be the common difference. Sum of n terms of an AP,

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Now $S_{4}=40$ and $S_{14}=280$

$$
\frac{4}{2}[2 a+(4-1) d]=40
$$

$$
\begin{align*}
2[2 a+3 d] & =40 \\
2 a+3 d & =20 \tag{1}
\end{align*}
$$

and

$$
\begin{gather*}
\frac{14}{2}[2 a+(14-1) d]=280 \\
7[2 a+13 d]=280 \\
2 a+13 d=40 \tag{2}
\end{gather*}
$$

Solving equations (1) and (2), we get

$$
a=7 \text { and } d=2
$$

Now

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 \times 7+(n-1) 2] \\
& =\frac{n}{2}[14+2 n-2] \\
& =\frac{n}{2}(12+2 n)=6 n+n^{2}
\end{aligned}
$$

Hence, sum of n terms is $6 n+n^{2}$.

Don't Take Printout of This PDF. Buy Hard Book at

Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

191.The first term of an AP is 3 , the last term is 83 and the sum of all its terms is 903 . Find the number of terms and the common difference of the AP.
Ans:
[Board 2019 Delhi]
First term, $\quad a=3$
Last term, $\quad a_{n}=83$
Sum of n terms, $\quad S_{n}=903$
Since,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a+a_{n}\right) \\
903 & =\frac{n}{2}(3+83) \\
1806 & =86 n \\
n & =\frac{1806}{86} \Rightarrow n=21 \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
903 & =\frac{21}{2}[2 \times 3+(21-1) d] \\
1806 & =21(6+20 d) \\
6+20 d & =86 \\
20 d & =80 \Rightarrow d=4
\end{aligned}
$$

Now

Hence, the common difference is 4 .
192.Find the common difference of the Arithmetic Progression (AP) $\frac{1}{a}, \frac{3-a}{3 a}, \frac{3-2 a}{3 a}, \ldots(a \neq 0)$
Ans :
[Board 2019 OD]
Given AP is $\frac{1}{a}, \frac{3-a}{3 a}, \frac{3-2 a}{3 a}, \ldots \ldots(a \neq 0)$

Here, first term, $\quad a_{1}=\frac{1}{a}$
Second term, $\quad a_{2}=\frac{3-a}{3 a}$
Third term, $\quad a_{3}=\frac{3-2 a}{3 a}$
Common difference,

$$
\begin{aligned}
d & =a_{2}-a_{1} \\
& =\frac{3-a}{3 a}-\frac{1}{a}=\frac{3-a-3}{3 a} \\
& =\frac{-a}{3 a}=\frac{-1}{3}
\end{aligned}
$$

Here, common difference d of given AP is $\frac{-1}{3}$.
193. Which term of the Arithmetic Progression $-7,-12,-17,-22, \ldots$ will be -82 ? Is -100 any term of the AP ? Given reason for your answer.
Ans :
[Board 2019 OD]
Given AP is $-7,-12,-17,-22, \ldots$
Here,
First term, $\quad a_{1}=-7$
Second term $\quad a_{2}=-12$
e321
Third term, $\quad a_{3}=-17$
Common difference,

$$
\begin{aligned}
d & =a_{2}-a_{1}=-12-(-7) \\
& =-12+7=-5 \\
d & =-5
\end{aligned}
$$

Let a_{n} be the $n^{\text {th }}$ term of AP and it will be -82 .
Since,

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
-82 & =-7+(n-1)(-5) \\
-82 & =-7-5(n-1) \\
82 & =5 n+2 \\
5 n & =80 \Rightarrow n=16
\end{aligned}
$$

Hence, $16^{\text {th }}$ term of AP is -82 . Since, these numbers are not factor of 5 , hence -100 will not be a term in the given AP.
194. How many terms of the Arithmetic Progression 45, $39,33, \ldots$ must be taken so that their sum is 180 ? Explain the double answer.
Ans :
[Board 2019 OD]
Given AP is $45,39,33, \ldots$

Here, $\quad a=45, d=39-45=-6$ and $S_{n}=180$
Now

$$
\begin{gathered}
S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
180=\frac{n}{2}[2 \times 45+(n-1)(-6)] \\
360=n(90-6 n+6) \\
360=n(96-6 n) \\
60=n(16-n) \\
n^{2}-16 n+60=0 \\
n^{2}-6 n-10 n+60=0 \\
n(n-6)-10(n-6)=0 \\
(n-10)(n-6)=0 \\
n=10 \text { or } n=6
\end{gathered}
$$

Hence, 10 terms or 6 terms can be taken to get the sum of AP as 180.
Now, sum of 6 terms,

$$
\begin{aligned}
S_{6} & =\frac{6}{2}[2 \times 45+(6-1)(-6)] \\
& =3(90-30) \\
& =3 \times 60=180 \quad \text { Hence, verified. }
\end{aligned}
$$

and sum of 10 terms,

$$
\begin{aligned}
S_{10} & =\frac{10}{2}[2 \times 45+(10-1)(-6)] \\
& =5(90-54) \\
& =5 \times 36=180 \quad \text { Hence, verified. }
\end{aligned}
$$

Here we have two values of n because d is negative. There will be negative terms after some positive terms. Thus first 6 term will give sum 180 and after 10 term it will be again 180 because negative term cancel positive term.
Series will be : $45,39,33,27,21,15,9,3,-3,-9 \ldots$ Here it may be easily seen that sum of initial 6 terms is 180 . Sum of next 4 terms is zero. Thus sum of 10 terms is also 180 .
195. The sum of three numbers in AP is 12 and sum of their cubes is 288 . Find the numbers.
Ans :
[Board Term-2 Delhi 2016]
Let the three numbers in AP be $a-d, a, a+d$.

$$
\begin{aligned}
a-d+a+a+d & =12 \\
3 a & =12 \\
a & =4
\end{aligned}
$$

Also, $(4-d)^{3}+4^{3}+(4+d)^{3}=288$

$$
\begin{aligned}
64-48 d+12 d^{2}-d^{3}+ & 64+64+48 d+12 d^{2}+d^{3} \\
& =288 \\
24 d^{2}+192 & =288 \\
d^{2} & =4 \\
d & = \pm 2
\end{aligned}
$$

The numbers are $2,4,6$ or $6,4,2$
196. Find the value of a, b and c such that the numbers $a, 7, b, 23$ and c are in AP
Ans :
[Board Term-2 2015]
Let the common difference be d.
Since $a, 7, b, 23$ and c are in AP, we have

$$
\begin{equation*}
a+d=7 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a+3 d=23 \tag{2}
\end{equation*}
$$

Form equation (1) and (2), we get

$$
\begin{aligned}
& a=-1, d=8 \\
& b=a+2 d=-1+2 \times 8=-1+16=15 \\
& c=a+4 d=-1+4 \times 8=-1+32=31
\end{aligned}
$$

Thus $\quad a=-1, b=15, c=31$
197.If S_{n} denotes the sum of first n terms of an AP, prove that, $S_{30}=3\left(S_{20}-S_{10}\right)$
Ans:
[Board Term-2 Delhi 2015, Foreign 2014]
Let the first term be a, and common difference be d.

$$
\text { Now } \begin{align*}
S_{30} & =\frac{30}{2}(2 a+29 d) \\
& =15(2 a+29 d) \tag{1}\\
3\left(S_{20}-S_{10}\right) & =3[10(2 a+19 d)-5(2 a+9 d)] \\
& =3[20 a+190 d-10 a-45 d] \\
& =3[10 a+145 d] \\
& =15[2 a+29 d]
\end{align*}
$$

Hence

$$
S_{30}=3\left(S_{20}-S_{10}\right)
$$

198. The sum of first 20 terms of an AP is 400 and sum of first 40 terms is 1600 . Find the sum of its first 10 terms.
Ans :
[Board Term-2 2015]
Let the first term be a, common difference be d, nth
term be a_{n} and sum of n term be S_{n}.
We know

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Now

$$
S_{20}=\frac{20}{2}(2 a+19 d)
$$

$$
400=\frac{20}{2}(2 a+19 d)
$$

$$
400=10[2 a+19 d]
$$

$$
\begin{equation*}
2 a+19 d=40 \tag{1}
\end{equation*}
$$

Also,

$$
\begin{align*}
S_{40} & =\frac{40}{2}(2 a+39 d) \\
1600 & =20[2 a+39 d] \\
2 a+39 d & =80 \tag{2}
\end{align*}
$$

Solving equation (1) and (2), we get $a=1$ and $d=2$.
Now

$$
\begin{aligned}
S_{10} & =\frac{10}{2}[2 \times 1+(10-1)(2)] \\
& =5[2+9 \times 2] \\
& =5[2+18] \\
& =5 \times 20=100
\end{aligned}
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.
$\underset{\text { terms. }}{\text { 199. Find }}\left(4-\frac{1}{n}\right)+\left(7-\frac{2}{n}\right)+\left(10-\frac{3}{n}\right)+\ldots$. upto n Ans :
[Board Term-2 2015]
Let sum of n term be S_{n}, then we have
$s_{n}=\left(4-\frac{1}{n}\right)+\left(7-\frac{2}{n}\right)+\left(40-\frac{3}{n}\right)+\ldots$. upto n terms. $=(4+7+10+\ldots . .+n$ terms $)-\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n} \ldots .+1\right)$
$=(4+7+10+\ldots .+n$ terms $)-\frac{1}{n}(1+2+3+\ldots n)$
$=\frac{n}{2}[2 \times 4+(n-1)(3)]-\frac{1}{n} \times \frac{n}{2}[2 \times 1+(n-1)(1)]$
$=\frac{n}{2}[8+3 n-3]-\frac{1}{2}[2+n-1]$
$=\frac{n}{2}(3 n+5)-\frac{1}{2}(n+1)$

$=\frac{3 n^{2}+5 n-n-1}{2}=\frac{3 n^{2}+4 n-1}{2}$
200.Find the $60^{\text {th }}$ term of the AP $8,10,12, \ldots$, if it has a total of 60 terms and hence find the sum of its last 10 terms.
Ans :
[Board Term-2 OD 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}
We have $a=8, d=10-8=2$

$$
a_{n}=a+(n-1) d
$$

Now $\quad a_{60}=8+(60-1)^{2}=8+59 \times 2=126$
and $\quad a_{51}=8+50 \times 2=8+100=108$
Sum of last 10 terms,

$$
\begin{aligned}
S_{51-60} & =\frac{n}{2}\left(a_{51}+a_{60}\right) \\
& =\frac{10}{2}(108+126) \\
& =5 \times 234=1170
\end{aligned}
$$

Hence sum of last 10 terms is 1170 .
201. An arithmetic progression $5,12,19, \ldots$. has 50 terms. Find its last term. Hence find the sum of its last 15 terms.
Ans :
[Board Term-2 OD 2015]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
We have $a=5, d=12-5=7$ and $n=50$

$$
\begin{aligned}
a_{50} & =5+(50-1) 7 \\
& =5+49 \times 7=348
\end{aligned}
$$

Also the first term of the AP of last 15 terms be a_{36}

$$
\begin{aligned}
a_{36} & =5+35 \times 7 \\
& =5+245=250
\end{aligned}
$$

Now, sum of last 15 terms,

$$
\begin{aligned}
S_{36-50} & =\frac{15}{2}\left[a_{36}+a_{50}\right] \\
& =\frac{15}{2}[250+348] \\
& =\frac{15}{2} \times 598=4485
\end{aligned}
$$

Hence, sum of last 15 terms is 4485 .
202.If the sum of first n term of an an AP is given by
$S_{n}=3 n^{2}+4 n$. Determine the AP and the $n^{\text {th }}$ term.
Ans:
[Board Term-2 2014]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

We have

$$
\begin{aligned}
S_{n} & =3 n^{2}+4 n . \\
a_{1} & =3(1)^{2}+4(1)=7 \\
a_{1}+a_{2} & =S_{2}=3(2)^{2}+4(2) \\
& =12+8=20 \\
a_{2} & =S_{2}-S_{1}=20-7=13 \\
a+d & =13
\end{aligned}
$$

or,

$$
7+d=13
$$

Thus

$$
d=13-7=6
$$

Hence AP is $7,13,19, \ldots \ldots$.
Now,

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
& =7+(n-1)(6) \\
& =7+6 n-6 \\
& =6 n+1 \\
a_{n} & =6 n+1
\end{aligned}
$$

203. The sum of the $3^{r d}$ and $7^{\text {th }}$ terms of an AP is 6 and their product is 8 . Find the sum of first 20 terms of the AP.
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}
We have $\quad a_{3}+a_{7}=6$

$$
\begin{array}{r}
a+2 d+a+6 d=6 \\
a+4 d=3 \tag{1}
\end{array}
$$

and $\quad a_{3} \times a_{7}=8$

$$
\begin{equation*}
(a+2 d)(a+6 d)=8 \tag{2}
\end{equation*}
$$

Substituting the value $a=(3-4 d)$ in (2) we get

$$
\begin{aligned}
(3-4 d+2 d)(3-4 d+6 d) & =8 \\
(3+2 d)(3-2 d) & =8 \\
9-4 d^{2} & =8 \\
4 d^{2}=1 \Rightarrow d^{2} & =\frac{1}{4} \Rightarrow d= \pm \frac{1}{2}
\end{aligned}
$$

CASE 1 : Substituting $d=\frac{1}{2}$ in equation (1), $a=1$.

$$
\begin{aligned}
S_{20} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{20}{2}\left[2+\frac{19}{2}\right]=115
\end{aligned}
$$

Thus $d=\frac{1}{2}, a=1$ and $S_{20}=115$
CASE 2 : Substituting $d=-\frac{1}{2}$ in equation (1) $a=5$

$$
\begin{aligned}
S_{20} & =\frac{20}{2}\left[2 \times 5+19 \times\left(-\frac{1}{2}\right)\right] \\
& =10\left[10-\frac{19}{2}\right]=15
\end{aligned}
$$

Thus $d=-\frac{1}{2}, a=5$ and $S_{20}=15$
204.If the sum of first m terms of an AP is same as the sum of its first n terms $(m \neq n)$, show that the sum of its first $(m+n)$ terms is zero.
Ans :
[Board Term-2 2012]
Let the first term be a, common difference be d, nth term be a_{n}, and sum of n term be S_{n}
Now

$$
S_{m}=S_{n}
$$

$$
\begin{gathered}
\frac{m}{2}[2 a+(m-1) d]=\frac{n}{2}[2 a+(n-1) d] \\
2 m a+m(m-1) d=2 n a+n(n-1) d \\
2 a(m-n)+\left[\left(m^{2}-n^{2}\right)-m+n\right] d=0 \\
2 a(m-n)+[(m-n)(m+n)-(m-n)] d=0 \\
\begin{array}{c}
(m-n)[2 a+(m+n-1) d]=0 \\
2 a+(m+n-1) d=0 \quad[m-n \neq 0]
\end{array} \\
S_{m+n}=\frac{m+n}{2}[2 a+(m+n-1) d] \\
=\frac{m+n}{2} \times 0=0
\end{gathered}
$$

205.If $1+4+7+10 \ldots .+n=287$, Find the value of n.

Ans :
[Board 2020 Std, Board Term-2 Foreign 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.
We have $a=1, d=3$ and $S_{n}=287$.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
\frac{n}{2}[2 \times 1+(n-1) 3] & =287 \\
\frac{n}{2}[2+(3 n-3)] & =287
\end{aligned}
$$

$$
\begin{aligned}
3 n^{2}-n & =574 \\
3 n^{2}-n-574 & =0 \\
3 n^{2}-42 n+41 n-574 & =0 \\
3 n(n-14)+41(n-14) & =0 \\
(n-14)(3 n+41) & =0
\end{aligned}
$$

Since negative value is not possible, $n=14$

$$
\begin{aligned}
a_{14} & =a+(n-1) d \\
& =1+13 \times 3=40
\end{aligned}
$$

206. Find the sum of first 24 terms of an AP whose $n^{\text {th }}$ term is given by $a_{n}=3+2 n$.
Ans :
[Board Term-2 OD Comptt. 2017]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}

$$
\begin{aligned}
& \text { We have } \quad \begin{aligned}
a_{n} & =3+2 n \\
a_{1} & =3+2 \times 1=5 \\
a_{2} & =3+2 \times 2=7 \\
a_{3} & =3+2 \times 3=9
\end{aligned}
\end{aligned}
$$

Thus the series is $5,7,9, \ldots$. in which

Now

$$
\begin{aligned}
a & =5 \text { and } d=2 \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{24} & =\frac{24}{2}(2 \times 5+23 \times 2) \\
& =12 \times 56
\end{aligned}
$$

Hence, $S_{24}=672$.
207. Find the number of terms of the AP $-12,-9,-6, \ldots \ldots ., 21$. If 1 is added to each term of this AP, then find the sum of all the terms of the AP thus obtained.
Ans :
[Board Term-2 2013]
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}

We have

$$
\begin{aligned}
a & =-12, d=-9-(-12)=3 \\
a_{n} & =a+(n-1) d \\
21 & =-12+(n-1) \times 3 \\
21+12 & =(n-1) \times 3 \\
33 & =(n-1) \times 3 \\
n-1 & =11
\end{aligned}
$$

$$
n=11+1=12
$$

Now, if 1 is added to each term we have a new AP with $-12+1,-a+1,-6+1 \ldots . .21+1$
Now we have $a=-11, d=3$ and $a_{n}=22$ and $n=12$
Sum of this obtained AP,

$$
\begin{aligned}
S_{12} & =\frac{12}{2}[-11+22] \\
& =6 \times 11=66
\end{aligned}
$$

Hence the sum of new AP is 66 .

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

208. How many terms of the AP $-6, \frac{11}{2},-5, \ldots$. are needed to given the sum -25 ? Explain the double answer.
Ans :
[Board Term-2 2012]
AP is $-6,-\frac{11}{2},-5 \ldots \ldots$.
Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}
Here we have $\quad a=-6$

$$
\begin{aligned}
d & =-\frac{11}{2}+\frac{6}{1}=\frac{1}{2} \\
S_{n} & =-25 \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
-25 & =\frac{n}{2}\left[-12+(n-1) \times \frac{1}{2}\right] \\
-50 & =n\left[\frac{-24+(n-1)}{2}\right] \\
-100 & =n[n-25] \\
n^{2}-25 n+100 & =0 \\
(n-20)(n-5) & =0 \\
n=20,5 &
\end{aligned}
$$

or,

$$
S_{20}=S_{5}
$$

Here we have got two answers because two value of n sum of AP is same. Since a is negative and d is positive; the sum of the terms from $6^{\text {th }}$ to $20^{\text {th }}$ is zero.
209.If S_{1}, S_{2}, S_{3} be the sum of $n, 2 n, 3 n$ terms respectively of an AP, prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.
Ans :
[Board Term-2 2012]

Let the first term be a, and common difference be d.
Now

$$
\begin{aligned}
& S_{1}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{2}=\frac{2 n}{2}[2 a+(2 n-1) d]
\end{aligned}
$$

$$
S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]
$$

$$
3\left(S_{2}-S_{1}\right)=3\left[\frac{2 n}{2}[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d]\right]
$$

$$
=3\left[\frac{n}{2}[4 a+2(2 n-1) d]-[2 a+(n-1) d]\right]
$$

$$
=3\left[\frac{n}{2}(4 a+4 n d-2 d-2 a-n d+d)\right]
$$

$$
=3\left[\frac{n}{2}(2 a+3 n d-d)\right]
$$

$$
=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}
$$

210.An AP consists of 37 terms. The sum of the three middle most terms is 225 and the sum of the past three terms is 429. Find the AP.
Ans :
[Board Term-2 SQP 2017]
Let the middle most terms of the AP be $(x-d), x$ and $(x+d)$.
We have $\quad x-d+x+x+d=225$

$$
3 x=225 \Rightarrow x=75
$$

and the middle term $=\frac{37+1}{2}=19^{\text {th }}$ term
Thus AP is
$(x-18 d), \ldots .(x-2 d),(x-d), x,(x+d),(x+2 d), \ldots \ldots$. $(x-18 d)$

Sum of last three terms,

$$
\begin{aligned}
(x+18 d)+(x+17 d)+(x+16 d) & =429 \\
3 x+51 d & =429 \\
225+51 d & =429 \Rightarrow d=4
\end{aligned}
$$

First term $a_{1}=x-18 d=75-18 \times 4=3$

$$
a_{2}=3+4=7
$$

Hence $\mathrm{AP}=3,7,11, \ldots \ldots, 1$ 147.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes $Q R$ code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

CHAPTER 6

TRIANGLES

ONE MARK QUESTIONS

Multiple Choice Questions

1. In the given figure, $D E \| B C$. The value of $E C$ is

(a) 1.5 cm
(b) 3 cm
(c) 2 cm
(d) 1 cm

Ans :
Since,

$$
D E \| B C
$$

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{1.5}{3} & =\frac{1}{E C} \Rightarrow E C=2 \mathrm{~cm}
\end{aligned}
$$

Thus (c) is correct option.
2. In the given figure, x is

(a) $\frac{a b}{a+b}$
(b) $\frac{a c}{b+c}$
(c) $\frac{b c}{b+c}$
(d) $\frac{a c}{a+c}$

Ans :
In $\triangle K P N$ and $\triangle K L M, \angle K$ is common and we have

$$
\angle K N P=\angle K M L=46^{\circ}
$$

Thus by $A-A$ criterion of similarity,

$$
\begin{aligned}
\triangle K N P & \sim \Delta K M L \\
\frac{K N}{K M} & =\frac{N P}{M L} \\
\frac{c}{b+c} & =\frac{x}{a} \Rightarrow x=\frac{a c}{b+c}
\end{aligned}
$$

Thus

Thus (b) is correct option.
3. $\triangle A B C$ is an equilateral triangle with each side of length $2 p$. If $A D \perp B C$ then the value of $A D$ is
(a) $\sqrt{3}$
(b) $\sqrt{3} p$
(c) $2 p$
(d) $4 p$

Ans :
We have

$$
A B=B C=C A=2 p
$$

and

$$
A D \perp B C
$$

In $\triangle A D B$,

$$
\begin{aligned}
A B^{2} & =A D^{2}+B D^{2} \\
(2 p)^{2} & =A D^{2}+p^{2} \\
A D^{2} & =\sqrt{3} p
\end{aligned}
$$

Thus (b) is correct option.
4. Which of the following statement is false?
(a) All isosceles triangles are similar.
(b) All quadrilateral are similar.
(c) All circles are similar.
(d) None of the above

Ans :
Isosceles triangle is a triangle in which two side of equal length. Thus two isosceles triangles may not be similar. Hence statement given in option (a) is false.
Thus (a) is correct option.
5. Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m , then distance between their tops is
(a) 12 m
(b) 14 m
(c) 13 m
(d) 11 m

Ans :
Let $A B$ and $C D$ be the vertical poles as shown below.

We have

$$
A B=6 \mathrm{~m}, C D=11 \mathrm{~m}
$$

and

$$
\begin{aligned}
A C & =12 \mathrm{~m} \\
D E & =C D-C E \\
& =(11-6) \mathrm{m}=5 \mathrm{~m}
\end{aligned}
$$

In right angled, $\triangle B E D$,

$$
\begin{aligned}
B D^{2} & =B E^{2}+D E^{2}=12^{2}+5^{2}=169 \\
B D & =\sqrt{169} \mathrm{~m}=13 \mathrm{~m}
\end{aligned}
$$

Hence, distance between their tops is 13 m .
Thus (c) is correct option.
6. In a right angled $\triangle A B C$ right angled at B, if P and Q are points on the sides $A B$ and $B C$ respectively, then
(a) $A Q^{2}+C P^{2}=2\left(A C^{2}+P Q^{2}\right)$
(b) $2\left(A Q^{2}+C P^{2}\right)=A C^{2}+P Q^{2}$
(c) $A Q^{2}+C P^{2}=A C^{2}+P Q^{2}$
(d) $A Q+C P=\frac{1}{2}(A C+P Q)$

Ans :
In right angled $\triangle A B Q$ and $\triangle C P B$,

$$
C P^{2}=C B^{2}+B P^{2}
$$

and

$$
A Q^{2}=A B^{2}+B Q^{2}
$$

$$
\begin{aligned}
C P^{2}+A Q^{2} & =C B^{2}+B P^{2}+A B^{2}+B Q^{2} \\
& =C B^{2}+A B^{2}+B P^{2}+B Q^{2} \\
& =A C^{2}+P Q^{2}
\end{aligned}
$$

Thus (c) is correct option.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

7. It is given that, $\triangle A B C \sim \triangle E D F$ such that $A B=5 \mathrm{~cm}, A C=7 \mathrm{~cm}, D F=15 \mathrm{~cm}$ and $D E=12 \mathrm{~cm}$ then the sum of the remaining sides of the triangles is
(a) 23.05 cm
(b) 16.8 cm
(c) 6.25 cm
(d) 24 cm

Ans :
We have $\quad \triangle A B C \sim \triangle E D F$

Now

$$
\frac{5}{12}=\frac{7}{E F}=\frac{B C}{15}
$$

Taking first and second ratios, we get

$$
\begin{aligned}
\frac{5}{12} & =\frac{7}{E F} \Rightarrow E F=\frac{7 \times 12}{5} \\
& =16.8 \mathrm{~cm}
\end{aligned}
$$

Taking first and third ratios, we get

$$
\begin{aligned}
\frac{5}{12} & =\frac{B C}{15} \Rightarrow B C=\frac{5 \times 15}{12} \\
& =6.25 \mathrm{~cm}
\end{aligned}
$$

Now, sum of the remaining sides of triangle,

$$
E F+B C=16.8+6.25=23.05 \mathrm{~cm}
$$

Thus (a) is correct option.
8. The area of a right angled triangle is 40 sq cm and its perimeter is 40 cm . The length of its hypotenuse is
(a) 16 cm
(b) 18 cm
(c) 17 cm
(d) data insufficient

Ans: (b) 18 cm
Let c be the hypotenuse of the triangle, a and b be other sides.

Now $\quad c=\sqrt{a^{2}+b^{2}}$
We have, $\quad a+b+c=40$ and $\frac{1}{2} a b=40 \Rightarrow a b=80$

$$
c=40-(a+b) \text { and } a b=80
$$

Squaring $c=40-(a+b)$ we have

$$
\begin{aligned}
c^{2} & =[40-(a+b)]^{2} \\
a^{2}+b^{2} & =1600-2 \times 40(a+b)+(a+b)^{2} \\
a^{2}+b^{2} & =1600-2 \times 40(a+b)+a^{2}+2 a b+b^{2} \\
0 & =1600-2 \times 40(a+b)+2 \times 80 \\
0 & =20-(a+b)+2 \\
a+b & =22 \\
c & =40-(a+b)=40-22=18 \mathrm{~cm}
\end{aligned}
$$

Thus (b) is correct option.
9. Assertion : In the $\triangle A B C, A B=24 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $A C=26 \mathrm{~cm}$, then $\triangle A B C$ is a right angle triangle.
Reason : If in two triangles, their corresponding angles are equal, then the triangles are similar.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
We have,

$$
\begin{aligned}
A B^{2}+B C^{2} & =(24)^{2}+(10)^{2} \\
& =576+100=676=A C^{2}
\end{aligned}
$$

Thus $A B^{2}+B C^{2}=A C^{2}$ and $A B C$ is a right angled triangle.
Also, two triangle are similar if their corresponding angles are equal.
Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). Thus (b) is correct option.

> No Need to Buy any Question Bank or Sample Chapter From
> Market. Download Free PDF of all Study Material from
> www.cbse.online

Fill in the Blank Questions

10. A line drawn through the mid-point of one side of a triangle parallel to another side bisects the side.
Ans :
third
11. theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Ans :
Pythagoras
f211
12. Line joining the mid-points of any two sides of a triangle is \qquad to the third side.
Ans :
parallel

13. All squares are \qquad
Ans :
similar

14. Two triangles are said to be if corresponding angles of two triangles are equal. Ans :
equiangular

15. All similar figures need not be \qquad
Ans :
congruent
16. All circles are \qquad
Ans :
similar
17. If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the \qquad side.
Ans :
third

18. If a line divides any two sides of a triangle in the same ratio, then the line is \qquad to the third side.
Ans :
parallel
19. All congruent figures are similar but the similar figures need \qquad be congruent.
Ans :
not

20. Two figures are said to be \qquad if they have same shape but not necessarily the same size.
Ans :
similar

21. \qquad theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
Ans :
Basic proportionality
22. All \qquad triangles are similar.
Ans :
equilateral
23. Two figures having the same shape and size are said to be \qquad
Ans :
congruent
f224
24. Two triangles are similar if their corresponding sides are \qquad

Ans :

in the same ratio.

25. $\triangle A B C$ is an equilateral triangle of side $2 a$, then length of one of its altitude is \qquad .
Ans :
[Board 2020 Delhi Standard]
$\triangle A B C$ is an equilateral triangle as shown below, in which $A D \perp B C$.

Using Pythagoras theorem we have

$$
\begin{aligned}
A B^{2} & =(A D)^{2}+(B D)^{2} \\
(2 a)^{2} & =(A D)^{2}+(a)^{2} \\
4 a^{2}-a^{2} & =(A D)^{2} \\
(A D)^{2} & =3 a^{2} \\
A D & =a \sqrt{3}
\end{aligned}
$$

Hence, the length of attitude is $a \sqrt{3}$.
26. $\triangle A B C$ and $\triangle B D E$ are two equilateral triangle such that D is the mid-point of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is \qquad .
Ans :
[Board 2020 Delhi Standard]
From the given information we have drawn the figure as below.

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)} & =\frac{\frac{\sqrt{3}}{4}(B C)^{2}}{\frac{\sqrt{3}}{4}(B D)^{2}}=\frac{(B C)^{2}}{\left(\frac{1}{2} B C\right)^{2}} \\
& =\frac{4 B C^{2}}{B C^{2}}=\frac{4}{1}=4: 1
\end{aligned}
$$

27. A ladder 10 m long reaches a window 8 m above the ground. The distance of the foot of the ladder from the base of the wall is \qquad m.

Ans :
[Board 2020 Delhi Standard]
Let $A B$ be the height of the window above the ground and $B C$ be a ladder.

Here,

$$
A B=8 \mathrm{~m}
$$

and

$$
A C=10 \mathrm{~m}
$$

In right angled triangle $A B C$,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
10^{2} & =8^{2}+B C^{2} \\
B C^{2} & =100-64=36 \\
B C & =6 \mathrm{~m}
\end{aligned}
$$

28. In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, \quad A C=12 \mathrm{~cm} \quad$ and $B C=6 \mathrm{~cm}$, then $\angle B=$ \qquad
Ans:
[Board 2020 OD Standard]

We have

$$
\begin{aligned}
& A B=6 \sqrt{3} \mathrm{~cm} \\
& A C=12 \mathrm{~cm} \text { and } \\
& B C=6 \mathrm{~cm}
\end{aligned}
$$

Now

$$
A B^{2}=36 \times 3=108
$$

$$
A C^{2}=144
$$

and

$$
B C^{2}=36
$$

In can be easily observed that above values satisfy Pythagoras theorem,

Thus

$$
\begin{aligned}
A B^{2}+B C^{2} & =A C^{2} \\
108+36 & =144 \mathrm{~cm}
\end{aligned}
$$

$$
\angle B=90^{\circ}
$$

29. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of the first triangle is 9 cm , then the corresponding side of second triangle is
Ans:
[Board 2020 Delhi Basic]
Ratio of the perimeter of two similar triangles is equal to the ratio of corresponding sides.

Thus

$$
\begin{aligned}
\frac{25}{15} & =\frac{9}{\text { side }} \\
\text { side } & =\frac{9 \times 15}{25}=5.4 \mathrm{~cm}
\end{aligned}
$$

Very Short Answer Questions

30. $\triangle A B C$ is isosceles with $A C=B C$. If $A B^{2}=2 A C^{2}$, then find the measure of $\angle C$.

Ans :
[Board 2020 Delhi Basic]
We have

$$
\begin{aligned}
& A B^{2}=2 A C^{2} \\
& A B^{2}=A C^{2}+A C^{2} \\
& A B^{2}=B C^{2}+A C^{2}
\end{aligned}
$$

($B C=A C$)
It satisfies the Pythagoras theorem. Thus according to converse of Pythagoras theorem, $\triangle A B C$ is a right angle triangle and $\angle C=90^{\circ}$.

Download 20 Set Sample Papers Free PDFs for all Subject from

 www.cbse.online31. In Figure, $D E \| B C$. Find the length of side $A D$, given that $A E=1.8 \mathrm{~cm}, B D=7.2 \mathrm{~cm}$ and $C E=5.4 \mathrm{~cm}$.

Ans:
[Board 2019 OD]
Since $D E \| B C$ we have

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Substituting the values, we get

$$
\begin{aligned}
\frac{A D}{7.2} & =\frac{1.8}{5.4} \\
A D & =\frac{1.8 \times 7.2}{5.4}=\frac{12.96}{5.4}=2.4 \mathrm{~cm}
\end{aligned}
$$

32. In $\triangle A B C, D E \| B C$, find the value of x.

Ans:
[Board Term-1 2016]
In the given figure $D E \| B C$, thus

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{x}{x+1} & =\frac{x+3}{x+5} \\
x^{2}+5 x & =x^{2}+4 x+3 \\
x & =3
\end{aligned}
$$

33. In the given figure, if $\angle A=90^{\circ}, \angle B=90^{\circ}, O B=4.5$ $\mathrm{cm} O A=6 \mathrm{~cm}$ and $A P=4 \mathrm{~cm}$ then find $Q B$.

Ans:

[Board Term-1, 2015]
In $\triangle P A O$ and $\triangle Q B O$ we have

$$
\angle A=\angle B=90^{\circ}
$$

Vertically opposite angle,

$$
\angle P O A=\angle Q O B
$$

Thus

$$
\begin{aligned}
\triangle P A O & \sim \triangle Q B O \\
\frac{O A}{O B} & =\frac{P A}{Q B} \\
\frac{6}{4.5} & =\frac{4}{Q B}
\end{aligned}
$$

$$
Q B=\frac{4 \times 4.5}{6}=3 \mathrm{~cm}
$$

Thus $Q B=3 \mathrm{~cm}$
34. In $\triangle A B C$, if X and Y are points on $A B$ and $A C$ respectively such that $\frac{A X}{X B}=\frac{3}{4}, A Y=5$ and $Y C=9$, then state whether $X Y$ and $B C$ parallel or not.
Ans :
[Board Term-1 2016, 2015]
As per question we have drawn figure given below.

In this figure we have

	$\frac{A X}{X B}=\frac{3}{4}, A Y=5$ and $Y C=9$	
Now	$\frac{A X}{X B}=\frac{3}{4} \text { and } \frac{A Y}{Y C}=\frac{5}{9}$	
Since	$\frac{A X}{X B} \neq \frac{A Y}{Y C}$	$f 103$

Hence $X Y$ is not parallel to $B C$.
35. In the figure, $P Q$ is parallel to $M N$. If $\frac{K P}{P M}=\frac{4}{13}$ and $K N=20.4 \mathrm{~cm}$ then find $K Q$.

Ans :

In the given figure $P Q \| M N$, thus

$$
\frac{K P}{P M}=\frac{K Q}{Q N}
$$

(By BPT)

$$
\begin{aligned}
\frac{K P}{P M} & =\frac{K Q}{K N-K Q} \\
\frac{4}{13} & =\frac{K Q}{20.4-K Q} \\
-4 K Q & =13 K Q \\
17 K Q & =4 \times 20.4 \\
K Q & =\frac{20.4 \times 4}{17}=4.8 \mathrm{~cm}
\end{aligned}
$$

$$
4 \times 20.4-4 K Q=13 K Q
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality
We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

36. In given figure $D E \| B C$. If $A D=3 c, D B=4 c \mathrm{~cm}$ and $A E=6 \mathrm{~cm}$ then find $E C$.

Ans:

[Board Term-1 2016]
In the given figure $D E \| B C$, thus

$$
\begin{aligned}
\frac{A D}{B D} & =\frac{A E}{E C} \\
\frac{3}{4} & =\frac{6}{E C} \\
E C & =8 \mathrm{~cm}
\end{aligned}
$$

37. If triangle $A B C$ is similar to triangle $D E F$ such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$ then find $E F$.
Ans:
As per given condition we have drawn the figure below.

Here we have $2 A B=D E$ and $B C=8 \mathrm{~cm}$ Since $\triangle A B C \sim \triangle D E F$, we have

$$
\begin{aligned}
\frac{A B}{B C} & =\frac{D E}{E F} \\
\frac{A B}{8} & =\frac{2 A B}{E F} \\
E F & =2 \times 8=16 \mathrm{~cm}
\end{aligned}
$$

38. Are two triangles with equal corresponding sides always similar?
Ans:
[Board Term-1 2015]
Yes, Two triangles having equal corresponding sides are are congruent and all congruent Δs have equal angles, hence they are similar too.

TWO MARKS QUESTIONS

39. In Figure $\angle D=\angle E$ and $\frac{A D}{D B}=\frac{A E}{E C}$, prove that $\triangle B A C$ is an isosceles triangle.

Ans :
[Board 2020 Delhi Standard]
We have,

$$
\angle D=\angle E
$$

and

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

By converse of BPT, $D E \| B C$
Due to corresponding angles we have

$$
\angle A D E=\angle A B C \text { and }
$$

$$
\angle A E D=\angle A C B
$$

Given

$$
\angle A D E=\angle A E D
$$

Thus

$$
\angle A B C=\angle A C B
$$

Therefore $B A C$ is an isosceles triangle.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

40. In Figure, $A B C$ is an isosceles triangle right angled at C with $A C=4 \mathrm{~cm}$, Find the length of $A B$.

Ans :
[Board 2019 OD]
Since $A B C$ is an isosceles triangle right angled at C,

$$
\begin{aligned}
& A C=B C=4 \mathrm{~cm} \\
& \angle C=90^{\circ}
\end{aligned}
$$

Using Pythagoras theorem in $\triangle A B C$ we have,

$$
\begin{aligned}
A B^{2} & =B C^{2}+A C^{2} \\
& =4^{2}+4^{2}=16+16=32 \\
A B & =4 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

41. In the figure of $\triangle A B C$, the points D and E are on
the sides $C A, C B$ respectively such that $D E \| A B$, $A D=2 x, D C=x+3, B E=2 x-1 \quad$ and $\quad C E=x$. Then, find x.

OR
In the figure of $\triangle A B C, D E \| A B$. If $A D=2 x$, $D C=x+3, B E=2 x-1$ and $C E=x$, then find the value of x.

Ans:
[Board Term-1 2015, 2016]
We have

$$
\begin{aligned}
\frac{C D}{A D} & =\frac{C E}{B E} \\
\frac{x+3}{2 x} & =\frac{x}{2 x-1} \\
5 x & =3 \text { or, } x=\frac{3}{5}
\end{aligned}
$$

Alternative Method :

In $A B C, D E \| A B$, thus

$$
\frac{C D}{C A}=\frac{C E}{C B}
$$

$$
\begin{aligned}
\frac{C D}{C A-C D} & =\frac{C E}{C B-C E} \\
\frac{C D}{A D} & =\frac{C E}{B E}
\end{aligned}
$$

$$
\frac{x+3}{2 x}=\frac{x}{2 x-1}
$$

$$
5 x=3 \text { or, } x=\frac{3}{5}
$$

42. In an equilateral triangle of side $3 \sqrt{3} \mathrm{~cm}$ find the length of the altitude.
Ans :
[Board Term-1 2016]
Let $\triangle A B C$ be an equilateral triangle of side $3 \sqrt{3}$ cm and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

Now

$$
\begin{aligned}
(3 \sqrt{3})^{2} & =h^{2}+\left(\frac{3 \sqrt{3}}{2}\right)^{2} \\
27 & =h^{2}+\frac{27}{4} \\
h^{2} & =27-\frac{27}{4}=\frac{81}{4} \\
h & =\frac{9}{2}=4.5 \mathrm{~cm}
\end{aligned}
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality
We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

43. In the given figure, $\triangle A B C \sim \triangle P Q R$. Find the value of $y+z$.

Ans :
[Board Term-1 2010]
In the given figure $\triangle A B C \sim \triangle P Q R$,
Thus

$$
\begin{aligned}
\frac{A B}{P Q} & =\frac{B C}{Q R}=\frac{A C}{P R} \\
\frac{z}{3} & =\frac{8}{6}=\frac{4 \sqrt{3}}{y} \\
\frac{z}{3} & =\frac{8}{6} \text { and } \frac{8}{6}=\frac{4 \sqrt{3}}{y} \\
z & =\frac{8 \times 3}{6} \text { and } y=\frac{4 \sqrt{3} \times 6}{8} \\
z & =4 \text { and } y=3 \sqrt{3}
\end{aligned}
$$

Thus

$$
y+z=3 \sqrt{3}+4
$$

44. In an equilateral triangle of side 24 cm , find the length of the altitude.
Ans :
[Board Term-1 2015]
Let $\triangle A B C$ be an equilateral triangle of side 24 cm and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

Now
$B D=\frac{B C}{2}=\frac{24}{2}=12 \mathrm{~cm}$
$A B=24 \mathrm{~cm}$

$$
\begin{aligned}
A D & =\sqrt{A B^{2}-B D^{2}} \\
& =\sqrt{(24)^{2}-(12)^{2}} \\
& =\sqrt{576-144} \\
& =\sqrt{432}=12 \sqrt{3}
\end{aligned}
$$

Thus $A D=12 \sqrt{3} \mathrm{~cm}$.
45. In $\triangle A B C, A D \perp B C$, such that $A D^{2}=B D \times C D$. Prove that $\triangle A B C$ is right angled at A.
Ans :
[Board Term-1 2015]
As per given condition we have drawn the figure
below.

We have

$$
\begin{aligned}
A D^{2} & =B D \times C D \\
\frac{A D}{C D} & =\frac{B D}{A D}
\end{aligned}
$$

Since $\angle D=90^{\circ}$, by SAS we have

$$
\Delta A D C \sim \Delta B D A
$$

and

$$
\angle B A D=\angle A C D
$$

Since corresponding angles of similar triangles are equal

$$
\begin{aligned}
& \angle D A C=\angle D B A \\
& \angle B A D+\angle A C D+\angle D A C+\angle D B A=180^{\circ} \\
& 2 \angle B A D+2 \angle D A C=180^{\circ} \\
& \angle B A D+\angle D A C=90^{\circ} \\
& \angle A=90^{\circ}
\end{aligned}
$$

Thus $\triangle A B C$ is right angled at A.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

46. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
[Board 2020 SQP Standard] or
Find the altitude of an equilateral triangle when each of its side is $a \mathrm{~cm}$.
Ans :
[Board Term-1 2016]
Let $\triangle A B C$ be an equilateral triangle of side a and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

In $\triangle A B D$,

$$
a^{2}=\left(\frac{a}{2}\right)^{2}+h^{2}
$$

$$
h^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3 a^{2}}{4}
$$

Thus

$$
h=\frac{\sqrt{3 a}}{2}
$$

Thus

$$
4 h^{2}=3 a^{2}
$$

Hence Proved
47. In the given triangle $P Q R, \angle Q P R=90^{\circ}, P Q=24 \mathrm{~cm}$ and $Q R=26 \mathrm{~cm}$ and in $\triangle P K R, \angle P K R=90^{\circ}$ and $K R=8 \mathrm{~cm}$, find $P K$.

Ans :
[Board Term-1 2012]
In the given triangle we have

$$
\angle Q P R=90^{\circ}
$$

Thus

$$
Q R^{2}=Q P^{2}+P R^{2}
$$

f118

$$
\begin{aligned}
P R & =\sqrt{26^{2}-24^{2}} \\
& =\sqrt{100}=10 \mathrm{~cm}
\end{aligned}
$$

Now $\quad \angle P K R=90^{\circ}$
Thus

$$
\begin{aligned}
P K & =\sqrt{10^{2}-8^{2}}=\sqrt{100-64} \\
& =\sqrt{36}=6 \mathrm{~cm}
\end{aligned}
$$

48. In the given figure, G is the mid-point of the side $P Q$ of $\triangle P Q R$ and $G H \| Q R$. Prove that H is the midpoint of the side $P R$ or the triangle $P Q R$.

Ans:
Since G is the mid-point of $P Q$ we have

$$
\begin{aligned}
P G & =G Q \\
\frac{P G}{G Q} & =1
\end{aligned}
$$

We also have $G H \| Q R$, thus by BPT we get

$$
\begin{aligned}
\frac{P G}{G Q} & =\frac{P H}{H R} \\
1 & =\frac{P H}{H R} \\
P H & =H R
\end{aligned}
$$

Hence proved.
Hence, H is the mid-point of $P R$.
49. In the given figure, in a triangle $P Q R, S T \| Q R$ and $\frac{P S}{S Q}=\frac{3}{5}$ and $P R=28 \mathrm{~cm}$, find $P T$.

Ans:
[Board Term-1 2011]
We have $\quad \frac{P S}{S Q}=\frac{3}{5}$

$$
\begin{aligned}
\frac{P S}{P S+S Q} & =\frac{3}{3+5} \\
\frac{P S}{P Q} & =\frac{3}{8}
\end{aligned}
$$

We also have, $S T \| Q R$, thus by BPT we get

$$
\begin{aligned}
\frac{P S}{P Q} & =\frac{P T}{P R} \\
P T & =\frac{P S}{P Q} \times P R \\
& =\frac{3 \times 28}{8}=10.5 \mathrm{~cm}
\end{aligned}
$$

50. In the given figure, $\angle A=\angle B$ and $A D=B E$. Show that $D E \| A B$.

Ans :

[Board Term-1, 2012, set-63]
In $\triangle C A B$, we have

$$
\begin{equation*}
\angle A=\angle B \tag{1}
\end{equation*}
$$

By isosceles triangle property we have

$$
A C=C B
$$

But, we have been given

$$
\begin{equation*}
A D=B E \tag{2}
\end{equation*}
$$

Dividing equation (2) by (1) we get,

$$
\frac{C D}{A D}=\frac{C E}{B E}
$$

By converse of $B P T$,

$$
D E \| A B
$$

Hence Proved
51. In the given figure, if $A B C D$ is a trapezium in which
$A B\|C D\| E F$, then prove that $\frac{A E}{E D}=\frac{B F}{F C}$

Ans :

[Board Term-1 2012]
We draw, $A C$ intersecting $E F$ at G as shown below.

In $\triangle C A B, G F \| A B$, thus by BPT we have

$$
\begin{equation*}
\frac{A G}{C G}=\frac{B F}{F C} \tag{1}
\end{equation*}
$$

In $\triangle A D C, E G \| D C$, thus by BPT we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{A G}{C G} \tag{2}
\end{equation*}
$$

From equations (1) and (2),

$$
\frac{A E}{E D}=\frac{B F}{F C}
$$

Hence Proved.
52. In a rectangle $A B C D, E$ is a point on $A B$ such that $A E=\frac{2}{3} A B$. If $A B=6 \mathrm{~km}$ and $A D=3 \mathrm{~km}$, then find $D E$.
Ans :
[Board Term-1 2016]
As per given condition we have drawn the figure below.

We have

$$
A E=\frac{2}{3} A B=\frac{2}{3} \times 6=4 \mathrm{~km}
$$

In right triangle $A D E$,

$$
D E^{2}=(3)^{2}+(4)^{2}=25
$$

Thus

$$
D E=5 \mathrm{~km}
$$

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of QR code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

53. $A B C D$ is a trapezium in which $A B \| C D$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.
Ans :
[Board Term-1 2012]
As per given condition we have drawn the figure below.

In $\triangle A O B$ and $\triangle C O D, A B \| C D$,
Thus due to alternate angles

$$
\angle O A B=\angle D C O
$$

and

$$
\angle O B A=\angle O D C
$$

By $A A$ similarity we have

$$
\triangle A O B \sim \triangle C O D
$$

For corresponding sides of similar triangles we have

$$
\begin{array}{ll}
\frac{A O}{C O}=\frac{B O}{D O} \\
\frac{A O}{B O}=\frac{C O}{D O} . & \text { Hence Proved }
\end{array}
$$

54. In the given figures, find the measure of $\angle X$.

Ans:
[Board Term-1 2012]
From given figures,

$$
\begin{aligned}
& \frac{P Q}{Z Y}=\frac{4.2}{8.4}=\frac{1}{2} \\
& \frac{P R}{Z X}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2}
\end{aligned}
$$

and

$$
\frac{Q R}{Y X}=\frac{7}{14}=\frac{1}{2}
$$

Thus

$$
\frac{Q P}{Z Y}=\frac{P R}{Z X}=\frac{Q R}{Y X}
$$

By SSS criterion we have

$$
\Delta P Q R \sim \Delta Z Y X
$$

Thus

$$
\begin{aligned}
\angle X & =\angle R \\
& =180^{\circ}-\left(60^{\circ}+70^{\circ}\right)=50^{\circ}
\end{aligned}
$$

Thus $\angle X=50^{\circ}$
55. In the given figure, $P Q R$ is a triangle right angled at Q and $X Y \| Q R$. If $P Q=6 \mathrm{~cm}, P Y=4 \mathrm{~cm}$ and
$P X: X Q=1: 2$. Calculate the length of $P R$ and $Q R$.

Ans :

Since $X Y \| O R$, by BPT we have

$$
\begin{aligned}
\frac{P X}{X Q} & =\frac{P Y}{Y R} \\
\frac{1}{2} & =\frac{P Y}{P R-P Y} \\
& =\frac{4}{P R-4} \\
P R-4 & =8 \Rightarrow P R=12 \mathrm{~cm}
\end{aligned}
$$

In right $\triangle P Q R$ we have

$$
\begin{aligned}
Q R^{2} & =P R^{2}-P Q^{2} \\
& =12^{2}-6^{2}=144-36=108
\end{aligned}
$$

Thus $Q R=6 \sqrt{3} \mathrm{~cm}$
56. $A B C$ is a right triangle right angled at C. Let $B C=a$, $C A=b, A B=c P Q R, S T \| Q R$ and p be the length of perpendicular from C to $A B$. Prove that $c p=a b$.

Ans :

[Board Term-1 2012]
In the given figure $C D \perp A B$, and $C D=p$
Area,
$\triangle A B C=\frac{1}{2} \times$ base \times height

Chap 6
Triangles
Page 165

$$
=\frac{1}{2} \times A B \times C D=\frac{1}{2} c p
$$

Also,Area of $\triangle A B C=\frac{1}{2} \times B C \times A C=\frac{1}{2} a b$

Thus

$$
\begin{aligned}
\frac{1}{2} c p & =\frac{1}{2} a b \\
c p & =a b
\end{aligned}
$$

Proved
57. In an equilateral triangle $A B C, A D$ is drawn perpendicular to $B C$ meeting $B C$ in D. Prove that $A D^{2}=3 B D^{2}$.
Ans :
[Board Term-1 2012]
In $\triangle A B D$, from Pythagoras theorem,

$$
A B^{2}=A D^{2}+B D^{2}
$$

Since $A B=B C=C A$, we get

$$
B C^{2}=A D^{2}+B D^{2}
$$

Since \perp is the median in an equilateral $\Delta, B C=2 B D$

$$
\begin{aligned}
(2 B D)^{2} & =A D^{2}+B D^{2} \\
4 B D^{2}-B D^{2} & =A D^{2} \\
3 B D^{2} & =A D^{2}
\end{aligned}
$$

58. In the figure, $P Q R S$ is a trapezium in which $P Q \| R S$. On $P Q$ and $R S$, there are points E and F respectively such that $E F$ intersects $S Q$ at G. Prove that $E Q \times G S=G Q \times F S$.

Ans:
[Board Term-1 2016]
In $\triangle G E Q$ and $\triangle G F S$,

Due to vertical opposite angle,

$$
\angle E G Q=\angle F G S
$$

Due to alternate angle,

$$
\angle E Q G=\angle F S G
$$

Thus by AA similarity we have

$$
\begin{aligned}
\Delta G E Q & \sim G F S \\
\frac{E Q}{F S} & =\frac{G Q}{G S} \\
E Q \times G S & =G Q \times F S
\end{aligned}
$$

59. A man steadily goes 10 m due east and then 24 m due north.
(1) Find the distance from the starting point.
(2) Which mathematical concept is used in this problem?
Ans:
(1) Let the initial position of the man be at O and his final position be B. The man goes to 10 m due east and then 24 m due north. Therefore, $\triangle A O B$ is a right triangle right angled at A such that $O A=10$ m and $A B=24 \mathrm{~m}$. We have shown this condition in figure below.

By Pythagoras theorem,

$$
\begin{aligned}
O B^{2} & =O A^{2}+A B^{2} \\
& =(10)^{2}+(24)^{2} \\
& =100+576=676
\end{aligned}
$$

or,

$$
O B=\sqrt{676}=26 \mathrm{~m}
$$

Hence, the man is at a distance of 26 m from the starting point.
(2) Pythagoras Theorem
60. In the given figure, $O A \times O B=O C \times O D$, show that
$\angle A=\angle C$ and $\angle B=\angle D$.

Ans :
[Board Term-1 2012]
We have $O A \times O B=O C \times O D$

$$
\frac{O A}{O D}=\frac{O C}{O B}
$$

Due to the vertically opposite angles,

$$
\angle A O D=\angle C O B
$$

Thus by SAS similarity we have

$$
\triangle A O D \sim \triangle C O B
$$

Thus $\angle A=\angle C$ and $\angle B=\angle D$. because of corresponding angles of similar triangles.
61. In the given figure, if $A B \| D C$, find the value of x.

Ans:
[Board Term-1 2012]
We know that diagonals of a trapezium divide each other proportionally. Therefore

$$
\begin{aligned}
\frac{O A}{O C} & =\frac{B O}{O D} \\
\frac{x+5}{x+3} & =\frac{x-1}{x-2} \\
(x+5)(x-2) & =(x-1)(x+3) \\
x^{2}-2 x+5 x-10 & =x^{2}+3 x-x-3 \\
x^{2}+3 x-10 & =x^{2}+2 x-3
\end{aligned}
$$

$$
\begin{aligned}
& 3 x-10=2 x-3 \\
& 3 x-2 x=10-3 \Rightarrow x=7
\end{aligned}
$$

Thus $x=7$.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK
62. In the given figure, $C B \| Q R$ and $C A \| P R$. If $A Q=12 \mathrm{~cm}, \quad A R=20 \mathrm{~cm}, \quad P B=C Q=15 \mathrm{~cm}$, calculate $P C$ and $B R$.

Ans :
[Board Term-1 2012]
In $\triangle P Q R, \quad C A \| P R$
By BPT similarity we have

$$
\begin{aligned}
\frac{P C}{C Q} & =\frac{R A}{A Q} \\
\frac{P C}{15} & =\frac{20}{12} \\
P C & =\frac{15 \times 20}{12}=25 \mathrm{~cm}
\end{aligned}
$$

Chap 6

In $\triangle P Q R, \quad C B \| Q R$
Thus

$$
\begin{aligned}
\frac{P C}{C Q} & =\frac{P R}{B R} \\
\frac{25}{15} & =\frac{15}{B R} \\
B R & =\frac{15 \times 15}{25}=9 \mathrm{~cm}
\end{aligned}
$$

THREE MARKS QUESTIONS

63. In Figure, in $\triangle A B C, D E \| B C$ such that $A D=2.4 \mathrm{~cm}$, $A B=3.2 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$, then what is the length of $A E$?

Ans:
[Board 2020 Delhi Basic]
We have
$D E \| B C$
By BPT,

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

$$
\begin{aligned}
\frac{2.4}{A B-A D} & =\frac{A E}{A C-A E} \\
\frac{2.4}{3.2-2.4} & =\frac{A E}{8-A E} \\
\frac{2.4}{0.8} & =\frac{A E}{8-A E} \\
3 & =\frac{A E}{8-A E} \\
\frac{3}{1+3} & =\frac{A E}{8-A E+A E} \\
\frac{3}{4} & =\frac{A E}{8} \Rightarrow A E=6 \mathrm{~cm}
\end{aligned}
$$

64. Two right triangles $A B C$ and $D B C$ are drawn on the same hypotenuse $B C$ and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that $A P \times P C=B P \times D P$.
Ans:
[Board 2019 OD]
Let $\triangle A B C$, and $\triangle D B C$ be right angled at A and D respectively.
As per given information in question we have drawn

Triangles
Page 167
the figure given below.

In $\triangle B A P$ and $\triangle C D P$ we have

$$
\angle B A P=\angle C D P=90^{\circ}
$$

and due to vertical opposite angle

$$
\angle B P A=\angle C P D
$$

By AA similarity we have

$$
\triangle B A P \sim \triangle C D P
$$

Therefore

$$
\frac{B P}{P C}=\frac{A P}{P D}
$$

$$
A P \times P C=B P \times P D \quad \text { Hence Proved }
$$

65. In the given figure, if $\angle A C B=\angle C D A, A C=6 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$, then find the length of $A B$.

Ans:
In $\triangle A B C$ and $\triangle A C D$ we have

$$
\begin{array}{rlr}
\angle A C B & =\angle C D A & {[\text { given }]} \\
\angle C A B & =\angle C A D & {[\text { common }]}
\end{array}
$$

By AA similarity criterion we get

$$
\triangle A B C \sim \triangle A C D
$$

Thus

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{B C}{C D}=\frac{A C}{A D} \\
\frac{A B}{A C} & =\frac{A C}{A D} \\
A C^{2} & =A B \times A D \\
6^{2} & =A B \times 3 \\
A B & =\frac{36}{3}=12 \mathrm{~cm}
\end{aligned}
$$

66. If P and Q are the points on side $C A$ and $C B$
respectively of $\triangle A B C$, right angled at C, prove that $\left(A Q^{2}+B P^{2}\right)=\left(A B^{2}+P Q^{2}\right)$

Ans :

[Board 2019 Delhi]

In right angled triangles $A C Q$ and $P C B$

$$
\begin{equation*}
A Q^{2}=A C^{2}+C Q^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
B P^{2}=P C^{2}+C B^{2} \tag{2}
\end{equation*}
$$

Adding eq (1) and eq (2), we get

$$
\begin{aligned}
A Q^{2}+B P^{2} & =\left(A C^{2}+C Q^{2}\right)+\left(P C^{2}+C B^{2}\right) \\
& =\left(A C^{2}+C B^{2}\right)+\left(P C^{2}+C Q^{2}\right)
\end{aligned}
$$

Thus $\quad A Q^{2}+B P^{2}=A B^{2}+P Q^{2} \quad$ Hence Proved
67. A ladder 25 m long just reaches the top of a building 24 m high from the ground. What is the distance of the foot of ladder from the base of the building?
Ans :
[Board 2020 OD Basic]
Let $A B$ be the building and $C B$ be the ladder. As per information given we have drawn figure below.

Here

$$
\begin{aligned}
A B & =24 \mathrm{~m} \\
C B & =25 \mathrm{~m}
\end{aligned}
$$

and

$$
\angle C A B=90^{\circ}
$$

By Pythagoras Theorem,

$$
\begin{aligned}
C B^{2} & =A B^{2}+C A^{2} \\
\text { or, } \quad C A^{2} & =C B^{2}-A B^{2} \\
& =23^{2}-24^{2}
\end{aligned}
$$

$$
=625-576=49
$$

Thus $\quad C A=7 \mathrm{~m}$
Hence, the distance of the foot of ladder from the building is 7 m .

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

THREE MARKS QUESTIONS

68. In Figure, in $\triangle A B C, D E \| B C$ such that $A D=2.4 \mathrm{~cm}$, $A B=3.2 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$, then what is the length of $A E$?

Ans :
[Board 2020 Delhi Basic]
We have

$$
D E \| B C
$$

By BPT,

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{2.4}{A B-A D} & =\frac{A E}{A C-A E} \\
\frac{2.4}{3.2-2.4} & =\frac{A E}{8-A E} \\
\frac{2.4}{0.8} & =\frac{A E}{8-A E} \\
3 & =\frac{A E}{8-A E} \\
\frac{3}{1+3} & =\frac{A E}{8-A E+A E} \\
\frac{3}{4} & =\frac{A E}{8} \Rightarrow A E=6 \mathrm{~cm}
\end{aligned}
$$

69. Two right triangles $A B C$ and $D B C$ are drawn on the same hypotenuse $B C$ and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that
$A P \times P C=B P \times D P$.
Ans:
[Board 2019 OD]
Let $\triangle A B C$, and $\triangle D B C$ be right angled at A and D respectively.
As per given information in question we have drawn the figure given below.

In $\triangle B A P$ and $\triangle C D P$ we have

$$
\angle B A P=\angle C D P=90^{\circ}
$$

and due to vertical opposite angle

$$
\angle B P A=\angle C P D
$$

By AA similarity we have

$$
\triangle B A P \sim \triangle C D P
$$

Therefore $\quad \frac{B P}{P C}=\frac{A P}{P D}$

$$
A P \times P C=B P \times P D
$$

Hence Proved
70. In the given figure, if $\angle A C B=\angle C D A, A C=6 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$, then find the length of $A B$.

Ans :
[Board 2020 SQP Standard]
In $\triangle A B C$ and $\triangle A C D$ we have

$$
\begin{aligned}
& \angle A C B=\angle C D A \\
& \angle C A B=\angle C A D
\end{aligned}
$$

By AA similarity criterion we get

$$
\triangle A B C \sim \triangle A C D
$$

Thus

$$
\frac{A B}{A C}=\frac{B C}{C D}=\frac{A C}{A D}
$$

Now

$$
\begin{aligned}
& \frac{A B}{A C}=\frac{A C}{A D} \\
& A C^{Q}=A B \times A D
\end{aligned}
$$

$$
\begin{aligned}
6^{2} & =A B \times 3 \\
A B & =\frac{36}{3}=12 \mathrm{~cm}
\end{aligned}
$$

71. If P and Q are the points on side $C A$ and $C B$ respectively of $\triangle A B C$, right angled at C, prove that $\left(A Q^{2}+B P^{2}\right)=\left(A B^{2}+P Q^{2}\right)$

Ans :
[Board 2019 Delhi]
In right angled triangles $A C Q$ and $P C B$

$$
\begin{align*}
& A Q^{2}=A C^{2}+C Q^{2} \tag{1}\\
& B P^{2}=P C^{2}+C B^{2} \tag{2}
\end{align*}
$$

and
Adding eq (1) and eq (2), we get

$$
\begin{aligned}
A Q^{2}+B P^{2} & =\left(A C^{2}+C Q^{2}\right)+\left(P C^{2}+C B^{2}\right) \\
& =\left(A C^{2}+C B^{2}\right)+\left(P C^{2}+C Q^{2}\right)
\end{aligned}
$$

Thus $\quad A Q^{2}+B P^{2}=A B^{2}+P Q^{2} \quad$ Hence Proved
72. A ladder 25 m long just reaches the top of a building 24 m high from the ground. What is the distance of the foot of ladder from the base of the building?
Ans :
[Board 2020 OD Basic]
Let $A B$ be the building and $C B$ be the ladder. As per information given we have drawn figure below.

Here

$$
\begin{aligned}
A B & =24 \mathrm{~m} \\
C B & =25 \mathrm{~m}
\end{aligned}
$$

and

$$
\angle C A B=90^{\circ}
$$

By Pythagoras Theorem,

$$
\begin{aligned}
C B^{2} & =A B^{2}+C A^{2} \\
\text { or, } \quad C A^{2} & =C B^{2}-A B^{2} \\
& =25^{2}-24^{2} \\
& =625-576=49
\end{aligned}
$$

Thus

$$
C A=7 \mathrm{~m}
$$

Hence, the distance of the foot of ladder from the building is 7 m .
73. Prove that area of the equilateral triangle described on the side of a square is half of this area of the equilateral triangle described on its diagonal.
Ans :
[Board 2018, 2015]
As per given condition we have drawn the figure below. Let a be the side of square.

By Pythagoras theorem,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =a^{2}+a^{2}=2 a^{2} \\
A C & =\sqrt{2} a
\end{aligned}
$$

Area of equilateral triangle $\triangle B C E$,

$$
\operatorname{area}(\triangle B C E)=\frac{\sqrt{3}}{4} a^{2}
$$

Area of equilateral triangle $\triangle A C F$,

$$
\operatorname{area}(\triangle A C F)=\frac{\sqrt{3}}{4}(\sqrt{2} a)^{2}=\frac{\sqrt{3}}{2} a^{2}
$$

Now, $\frac{\operatorname{area}(\triangle A C F)}{\operatorname{area}(\triangle B C E)}=2$
$\operatorname{area}(\triangle A C F)=2 \operatorname{area}(\triangle B E C)$
$\operatorname{area}(\triangle B E C)=\frac{1}{2} \operatorname{area}(\triangle A C F)$ Hence Proved.
74.
75. $\triangle A B C$ is right angled at C. If p is the length of the perpendicular from C to $A B$ and a, b, c are the lengths of the sides opposite $\angle A, \angle B$ and $\angle C$ respectively,
then prove that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.
Ans :
[Board Term-1 2016]
As per given condition we have drawn the figure below.

In $\triangle A C B$ and $\triangle C D B, \angle B$ is common and

$$
\angle A B C=\angle C D B=90^{\circ}
$$

Because of AA similarity we have

$$
\Delta A B C \sim \triangle C D B
$$

Now

$$
\begin{array}{ll}
\frac{b}{p}=\frac{c}{a} \\
\frac{1}{p}=\frac{c}{a b} \\
\frac{1}{p^{2}}=\frac{c^{2}}{a^{2} b^{2}} \\
\frac{1}{p^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}} & \\
\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}} & \left(c^{2}=a^{2}+b^{2}\right) \\
\text { Hence Proved }
\end{array}
$$

76. In $\quad \triangle A B C, D E \| B C$. If $A D=x+2, D B=3 x+16$, $A E=x$ and $E C=3 x+5$, them find x.
Ans:
[Board Term-1 2015]
As per given condition we have drawn the figure below.

In the give figure

$$
D E \| B C
$$

By BPT we have

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{x+2}{3 x+16} & =\frac{x}{x 3+5} \\
(x+2)(3 x+5) & =x(3 x+16) \\
3 x^{2}+5 x+6 x+10 & =3 x^{2}+16 x \\
11 x+10 & =16 x \\
11 x+10 & =10 \\
5 x & =10 \Rightarrow x=2
\end{aligned}
$$

77. If in $\triangle A B C, A D$ is median and $A E \perp B C$, then prove that $A B^{2}+A C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$.
Ans :
[Board Term-1 2015]
As per given condition we have drawn the figure below.

In $\triangle A B E$, using Pythagoras theorem we have

$$
\begin{align*}
A B^{2} & =A E^{2}+B E^{2} \\
& =A D^{2}-D E^{2}+(B D-D E)^{2} \\
& =A D^{2}-D E^{2}+B D^{2}+D E^{2}-2 B D \times D E \\
& =A D^{2}+B D^{2}-2 B D \times D E \tag{1}
\end{align*}
$$

In $\triangle A E C$, we have

$$
\begin{align*}
A C^{2} & =A E^{2}+E C^{2} \\
& =\left(A D^{2}-E D^{2}\right)+(E D+D C)^{2} \\
& =A D^{2}-E D^{2}+E D^{2}+D C^{2}+2 E D \times D C \\
& =A D^{2}+C D^{2}+2 E D \times C D \\
& =A D^{2}+D C^{2}+2 D C \times D E \tag{2}
\end{align*}
$$

Adding equation (1) and (2) we have

$$
\begin{aligned}
A B^{2}+A C^{2} & =2\left(A D^{2}+B D^{2}\right) & & (B D=D C) \\
& =2 A D^{2}+2\left(\frac{1}{2} B C\right)^{2} & & \left(B D=\frac{1}{2} B C\right) \\
& =2 A D^{2}+\frac{1}{2} B C^{2} & & \text { Hence Proves }
\end{aligned}
$$

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission

78. From an airport, two aeroplanes start at the same time. If speed of first aeroplane due North is $500 \mathrm{~km} / \mathrm{h}$ and that of other due East is $650 \mathrm{~km} / \mathrm{h}$ then find the distance between the two aeroplanes after 2 hours.
Ans :
[Board Term-1 2015]
As per given condition we have drawn the figure below.

Distance covered by first aeroplane due North after two hours,

$$
y=500 \times 2=1,000 \mathrm{~km}
$$

Distance covered by second aeroplane due East after two hours,

$$
x=650 \times 2=1,300 \mathrm{~km}
$$

Distance between two aeroplane after 2 hours

$$
\begin{aligned}
N E & =\sqrt{O N^{2}+O E^{2}} \\
& =\sqrt{(1000)^{2}+(1300)^{2}} \\
& =\sqrt{1000000+1690000} \\
& =\sqrt{2690000} \\
& =1640.12 \mathrm{~km}
\end{aligned}
$$

79. In the given figure, $A B C$ is a right angled triangle, $\angle B=90^{\circ}$. D is the mid-point of $B C$. Show that
$A C^{2}=A D^{2}+3 C D^{2}$.

Ans:
[Board Term-1 2016]
We have

$$
\begin{aligned}
& B D=C D=\frac{B C}{2} \\
& B C=2 B D
\end{aligned}
$$

Using Pythagoras theorem in the right $\triangle A B C$, we have

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =A B^{2}+(2 B D)^{2} \\
& =A B^{2}+4 B D^{2} \\
& =\left(A B^{2}+B D^{2}\right)+3 B D^{2} \\
A C^{2} & =A D^{2}+3 C D^{2}
\end{aligned}
$$

80. If the diagonals of a quadrilateral divide each other proportionally, prove that it is a trapezium.
Ans :
[Board Term-1 2011]
As per given condition we have drawn quadrilateral $A B C D$, as shown below.

We have drawn $E O \| A B$ on $D A$.
In quadrilateral $A B C D$, we have

$$
\begin{align*}
& \frac{A O}{B O}=\frac{C O}{D O} \\
& \frac{A O}{C O}=\frac{B O}{D O} \tag{1}
\end{align*}
$$

In $\triangle A B D, \quad E O \| A B$
By BPT we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{B O}{D O} \tag{2}
\end{equation*}
$$

From equation (1) and (2), we get

$$
\frac{A E}{E D}=\frac{A O}{C O}
$$

In $\triangle A D C, \quad \frac{A E}{E D}=\frac{A O}{C O}$

$$
E O \| D C
$$

(Converse of BPT)

$$
E O \| A B
$$

(Construction)
$A B \| D C$
Thus in quadrilateral $A B C D$ we have

$$
A B \quad A B \| C D
$$

Thus $A B C D$ is a trapezium.
Hence Proved
81. In the given figure, P and Q are the points on the sides $A B$ and $A C$ respectively of $\triangle A B C$, such that $A P=3.5 \mathrm{~cm}, P B=7 \mathrm{~cm}, A Q=3 \mathrm{~cm}$ and $Q C=6 \mathrm{~cm}$. If $P Q=4.5 \mathrm{~cm}$, find $B C$.

Ans :

[Board Term-1 2011]
We have redrawn the given figure as below.

We have

$$
\frac{A P}{A B}=\frac{3.5}{10.5}=\frac{1}{3}
$$

Chap 6

In $\triangle A B C, \quad \frac{A P}{A B}=\frac{A Q}{A C}$ and $\angle A$ is common.
Thus due to SAS we have

$$
\begin{aligned}
\triangle A P Q & \sim \triangle A B C \\
\frac{A P}{A B} & =\frac{P Q}{B C} \\
\frac{1}{3} & =\frac{4.5}{B C} \\
B C & =13.5 \mathrm{~cm} .
\end{aligned}
$$

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.
CLICK TO BUY HARD BOOK
82. In given figure $\triangle A B C \sim \triangle D E F$. $A P$ bisects $\angle C A B$ and $D Q$ bisects $\angle F D E$.

Prove that:
(1) $\frac{A P}{D Q}=\frac{A B}{D E}$
(2) $\triangle C A P \sim \triangle F D Q$.

Ans :
[Board Term-1 2016]

As per given condition we have redrawn the figure below.

(1) Since $\triangle A B C \sim \triangle D E F$

$$
\angle A=\angle D \quad \text { (Corresponding angles) }
$$

$$
2 \angle 1=2 \angle 2
$$

Also

$$
\angle B=\angle E \quad \text { (Corresponding angles) }
$$

$$
\frac{A P}{D Q}=\frac{A B}{D E}
$$

Hence Proved
(2) Since $\triangle A B C \sim \triangle D E F$

$$
\begin{aligned}
\angle A & =\angle D \\
\angle C & =\angle F \\
2 \angle 3 & =2 \angle 4 \\
\angle 3 & =\angle 4
\end{aligned}
$$

By AA similarity we have

$$
\Delta C A P \sim \Delta F D Q
$$

83. In the given figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$. Prove that $\frac{B E}{D E}=\frac{A C}{B C}$.

Ans:
[Board Term-1 2011]
As per given condition we have redrawn the figure below.

We have $D B \perp B C, D E \perp A B$ and $A C \perp B C$.
In $\triangle A B C, \angle C=90^{\circ}$, thus

$$
\angle 1+\angle 2=90^{\circ}
$$

But we have been given,

$$
\angle 2+\angle 3=90^{\circ}
$$

Hence

$$
\angle 1=\angle 3
$$

In $\triangle A B C$ and $\triangle B D E$,

$$
\angle 1=\angle 3
$$

and

$$
\angle A C B=\angle D E B=90^{\circ}
$$

Thus by $A A$ similarity we have

Thus

$$
\triangle A B C \sim \Delta B D E
$$

$$
\frac{A C}{B C}=\frac{B E}{D E}
$$

Hence Proved
84. In the given figure, $\triangle A B C$ and $\triangle A B C$ and $\triangle D B C$ are on the same base $B C . A D$ and $B C$ intersect at O. Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$.

Ans:
[Board 2020 OD Std, 2016, 2011]
As per given condition we have redrawn the figure below. Here we have drawn $A M \perp B C$ and $D N \perp B C$.

In $\triangle A O M$ and $\triangle D O N$,

$$
\angle A O M=\angle D O N
$$

(Vertically opposite angles) $\angle A M O=\angle D N O=90^{\circ}$ (Construction)
or, $\triangle A O M \sim \triangle D O N$ (By $A A$ similarity)

Thus

$$
\begin{equation*}
\frac{A O}{D O}=\frac{A M}{D N} \tag{1}
\end{equation*}
$$

$$
\text { Now, } \quad \begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)} & =\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times B C \times D N} \\
& =\frac{A M}{D N}=\frac{A O}{D O} \text { From equation (1) }
\end{aligned}
$$

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

85. In the given figure, two triangles $A B C$ and $D B C$ lie on the same side of $B C$ such that $P Q \| B A$ and $P R \| B D$. Prove that $Q R \| A D$.

$f 151$

Ans :
[Board Term-1 2011]
In $\triangle A B C$, we have $P Q \| A B$ and $P R \| B D$.
By BPT we have

$$
\begin{equation*}
\frac{B P}{P C}=\frac{A Q}{Q C} \tag{1}
\end{equation*}
$$

Again in $\triangle B C D$, we have

$$
P R \| B D
$$

By BPT we have

$$
\begin{align*}
& \frac{B P}{P C}=\frac{D R}{R C} \tag{byBPT}\\
& \frac{A Q}{Q C}=\frac{D R}{R C}
\end{align*}
$$

By converse of BPT,

$$
P R \| A D
$$

Hence proved
86. The perpendicular $A D$ on the base $B C$ of a $\triangle A B C$ intersects $B C$ at D so that $D B=3 C D$. Prove that $2(A B)^{2}=2(A C)^{2}+B C^{2}$.
Ans :
[Board Term-1 2011, 2012, 2016]
As per given condition we have drawn the figure below.

Here

$$
\begin{aligned}
D B & =3 C D \\
B D & =\frac{3}{4} B C \\
D C & =\frac{1}{4} B C
\end{aligned}
$$

In $\triangle A D B$, we have

$$
\begin{equation*}
A B^{2}=A D^{2}+B D^{2} \tag{1}
\end{equation*}
$$

In $\triangle A D C, \quad A C^{2}=A D^{2}+C D^{2}$
Subtracting equation (2) from (1), we get

$$
A B^{2}-A C^{2}=B D^{2}-C D^{2}
$$

Since $D B=3 C D$ we get

$$
\begin{aligned}
A B^{2}-A C^{2} & =\left(\frac{3}{4} B C\right)^{2}-\left(\frac{1}{4} B C\right)^{2} \\
& =\frac{9}{16} B C^{2}-\frac{1}{16} B C^{2}=\frac{B C^{2}}{2} \\
2\left(A B^{2}-A C^{2}\right) & =B C^{2} \\
2(A B)^{2} & =2 A C^{2}+B C^{2} \quad \text { Hence Proved }
\end{aligned}
$$

87. Prove that the sum of squares on the sides of a
rhombus is equal to sum of squares of its diagonals.
Ans :
[Board Term-1 2011]
Let, $A B C D$ is a rhombus and we know that diagonals of a rhombus bisect each other at 90°.

Now

$$
\begin{aligned}
& A O=O C \Rightarrow A O^{2}=O C^{2} \\
& B O=O D \Rightarrow B O^{2}=O D^{2}
\end{aligned}
$$

and

$$
A B^{2}=O A^{2}+B O^{2}=x^{2}+y^{2}
$$

Similarly,

$$
\angle A O B=90^{\circ}
$$

$$
A D^{2}=O A^{2}+O D^{2}=x^{2}+y^{2}
$$

$$
\begin{array}{r}
C D^{2}=O C^{2}+O D^{2}=x^{2}+y^{2} \\
C B^{2}=O C^{2}+O B^{2}=x^{2}+y^{2} \\
A B^{2}+B C^{2}+C D^{2}+D A^{2}=4 x^{2}+4 y^{2} \\
=(2 x)^{2}+(2 y)^{2} \\
A B^{2}+B C^{2}+C D^{2}+A D^{2}=A C^{2}+B D^{2}
\end{array}
$$

Hence Proved
88. In the given figure, $B L$ and $C M$ are medians of $\triangle A B C$, right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$.

Ans:
[Board TE

We have a right angled triangle $\triangle A B C$ at A where $B L$ and $C M$ are medians.

In $\triangle A B L$,

$$
\begin{aligned}
B L^{2} & =A B^{2}+A L^{2} \\
& =A B^{2}+\left(\frac{A C}{2}\right)^{2}(B L \text { is median })
\end{aligned}
$$

In $\triangle A C M$,

$$
\begin{aligned}
C M^{2} & =A C^{2}+A M^{2} \\
& =A C^{2}+\left(\frac{A B}{2}\right)^{2}(C M \text { is median })
\end{aligned}
$$

Now $\quad B L^{2}+C M^{2}=A B^{2}+A C^{2}+\frac{A C^{2}}{4}+\frac{A B^{2}}{4}$

$$
\begin{aligned}
4\left(B L^{2}+C M^{2}\right) & =5 A B^{2}+5 A C^{2} \\
& =5\left(A B^{2}+A C^{2}\right) \\
& =5 B C^{2}
\end{aligned}
$$

Hence Proved
89. In a $\triangle A B C$, let P and Q be points on $A B$ and $A C$ respectively such that $P Q \| B C$. Prove that the median $A D$ bisects $P Q$.

Ans:

[Board Term-1 2011]
As per given condition we have drawn the figure below.

The median $A D$ intersects $P Q$ at E.
We have,

$$
P Q \| \mathrm{BE}
$$

$$
\angle A p E=\angle B \quad \text { and } \quad \angle A Q E
$$

$=\angle C$
(Corresponding angles)
Thus in $\triangle A P E$ and $\triangle A B D$ we have

$$
\begin{aligned}
& \angle A P E=\angle A B D \\
& \angle P A E=\angle B A D
\end{aligned}
$$

(common)
Thus

$$
\triangle A P E \sim \triangle A B D
$$

$$
\begin{equation*}
\frac{P E}{B D}=\frac{A E}{A D} \tag{1}
\end{equation*}
$$

Similarly, $\quad \triangle A Q E \sim \triangle A C D$
or, $\quad \frac{Q E}{C D}=\frac{A E}{A D}$
From equation (1) and (2) we have

$$
\frac{P E}{B D}=\frac{Q E}{C D}
$$

As $C D=B D$, we get

$$
\begin{aligned}
\frac{P E}{B D} & =\frac{Q E}{B D} \\
P E & =Q E
\end{aligned}
$$

Hence, $A D$ bisects $P Q$.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

90. In the given figure A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Prove that $B C \| Q R$.

Ans :

[Board Term-1 2012]
In $\triangle P O Q, \quad A B \| P Q$
By BPT $\quad \frac{A O}{A P}=\frac{O B}{B Q}$
In $\triangle O P R, \quad A C \| P R$,
By BPT $\quad \frac{O A}{A P}=\frac{O C}{C R}$
From equations (1) and (2), we have

$$
\frac{O B}{B Q}=\frac{O C}{C R}
$$

By converse of BPT we have
$B C \| Q R$
Hence Proved
91. In the given figure, $D E \| A C$ and $D F \| A E$. Prove that $\frac{B E}{F E}=\frac{B E}{E C}$.

Ans:
[Board 2020 Delhi Std, 2012]
In $\triangle A B C, \quad D E \| A C$,
By BPT $\quad \frac{B D}{D A}=\frac{B E}{E C}$
(Given)

In $\triangle A B E, \quad D F \| A E$,
(Given)
By BPT

$$
\begin{equation*}
\frac{B D}{D A}=\frac{B F}{F E} \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\frac{B F}{F E}=\frac{B E}{E C}
$$

92. In the given figure, $B C \| P Q$ and $B C=8 \mathrm{~cm}$, $P Q=4 \mathrm{~cm}, B A=6.5 \mathrm{~cm} A P=2.8 \mathrm{~cm}$ Find $C A$ and $A Q$.

Ans:

[Board Term-1 2012]
In $\triangle A B C$ and $\triangle A P Q, A B=6.5 \mathrm{~cm}, B C=8 \mathrm{~cm}$,
$P Q=4 \mathrm{~cm}$ and $A P=2.8 \mathrm{~cm}$.
We have $\quad B C \| P Q$
Due to alternate angles

$$
\angle C B A=\angle A Q P
$$

Due to vertically opposite angles,

$$
\angle B A C=\angle P A Q
$$

Due to $A A$ similarity,

$$
\begin{aligned}
\Delta A B C & \sim \Delta A Q P \\
\frac{A B}{A Q} & =\frac{B C}{Q P}=\frac{A C}{A P} \\
\frac{6.5}{A Q} & =\frac{8}{4}=\frac{A C}{A P} \\
A Q & =\frac{6.5}{2}=3.25 \mathrm{~cm} \\
A C & =2 \times 2.5=5.6 \mathrm{~cm}
\end{aligned}
$$

93. In the given figure, find the value of x in terms of a, b and c.

Ans:
[Board Term-1 2012]
In triangles $L M K$ and $P N K, \angle K$ is common and

$$
\angle M=\angle N=50^{\circ}
$$

Due to $A A$ similarity,

$$
\begin{aligned}
\Delta L M K & \sim \Delta P N K \\
\frac{L M}{P N} & =\frac{K M}{K N} \\
\frac{a}{x} & =\frac{b+c}{c} \\
x & =\frac{a c}{b+c}
\end{aligned}
$$

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

94. In the given figure, if $A D \perp B C$, prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.

Ans:
[Board 2020 OD Standard]
In right $\triangle A D C$,

$$
\begin{equation*}
A C^{2}=A D^{2}+C D^{2} \tag{1}
\end{equation*}
$$

In right $\triangle A D B$,

$$
\begin{equation*}
A B^{2}=A D^{2}+B D^{2} \tag{2}
\end{equation*}
$$

Subtracting equation (1) from (2) we have

$$
\begin{aligned}
& A B^{2}-A C^{2}=B D^{2}-C D^{2} \\
& A B^{2}+C D^{2}=A C^{2}+B D^{2}
\end{aligned}
$$

95. In the given figure, $C D \| L A$ and $D E \| A C$. Find the length of $C L$, if $B E=4 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$.

Ans :

[Board Term-1 2012]
In $\triangle A B C, D E \| A C, B E=4 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$
By BPT

$$
\begin{equation*}
\frac{B D}{D A}=\frac{B E}{E C} \tag{1}
\end{equation*}
$$

In $\triangle A B L$,

$$
\begin{equation*}
D C \| A L \tag{2}
\end{equation*}
$$

By BPT $\quad \frac{B D}{D A}=\frac{B C}{C L}$
From equations (1) and (2),

$$
\frac{4}{2}=\frac{6}{C L} \Rightarrow C L=3 \mathrm{~cm}
$$

96. In the given figure, $A B=A C . E$ is a point on $C B$ produced. If $A D$ is perpendicular to $B C$ and $E F$ perpendicular to $A C$, prove that $\triangle A B D$ is similar to $\triangle C E F$.

Ans :
[Board Term-1 2012]
In $\triangle A B D$ and $\triangle C E F$, we have

$$
A B=A C
$$

Thus

$$
\begin{aligned}
& \angle A B C=\angle A C B \\
& \angle A B D=\angle E C F \\
& \angle A D B=\angle E F C
\end{aligned}
$$

(each 90°)
Due to $A A$ similarity

$\triangle A B D \sim \triangle E C F$
 Hence proved

FOUR MARKS QUESTIONS

97. In a rectangle $A B C D, P$ is any interior point. Then prove that $P A^{2}+P C^{2}=P B^{2}+P D^{2}$.
Ans:
[Board 2020 OD Basic]
As per information given we have drawn figure below.

Here P is any point in the interior of rectangle $A B C D$. We have drawn a line $M N$ through point P and parallel to $A B$ and $C D$.

We have to prove $P A^{2}+P C^{2}=P B^{2}+P D^{2}$

Since $A B\|M N, A M\| B N$ and $\angle A=90^{\circ}$, thus $A B N M$ is rectangle. $M N C D$ is also a rectangle.
Here, $P M \perp A D$ and $P N \perp B C$,

$$
\begin{equation*}
A M=B N \text { and } M D=N C \tag{1}
\end{equation*}
$$

Now, in $\triangle A M P$,

$$
\begin{equation*}
P A^{2}=A M^{2}+M P^{2} \tag{2}
\end{equation*}
$$

In $\triangle P M D$,

$$
\begin{equation*}
P D^{2}=M P^{2}+M D^{2} \tag{3}
\end{equation*}
$$

In $\triangle P N B$,

$$
\begin{equation*}
P B^{2}=P N^{2}+B N^{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
P C^{2}=P N^{2}+N C^{2} \tag{5}
\end{equation*}
$$

In $\triangle P N C$,
From equation (2) and (5) we obtain,

$$
P A^{2}+P C^{2}=A M^{2}+M P^{2}+P N^{2}+N C^{2}
$$

Using equation (1) we have

$$
\begin{aligned}
P A^{2}+P C^{2} & =B N^{2}+M P^{2}+P N^{2}+M D^{2} \\
& =\left(B N^{2}+P N^{2}\right)+\left(M P^{2}+M D^{2}\right)
\end{aligned}
$$

Using equation (3) and (4) we have

$$
P A^{2}+P C^{2}=P B^{2}+P D^{2}
$$

98. In the given figure, $D E F G$ is a square and $\angle B A C=90^{\circ}$. Show that $F G^{2}=B G \times F C$.

Ans:
[Board 2020 SQP Standard]
We have redrawn the given figure as shown below.

In $\triangle A D E$ and $\triangle G B D$, we have

$$
\angle D A E=\angle B G D
$$

[each 90°]
Due to corresponding angles we have

$$
\angle A D E=\angle G D B
$$

Thus by AA similarity criterion,

$$
\triangle A D E \sim \triangle G B D
$$

Now, in $\triangle A D E$ and $\triangle F E C$,

$$
\angle E A D=\angle C F E
$$

[each 90°]
Due to corresponding angles we have

$$
\angle A E D=\angle F C E
$$

Thus by AA similarity criterion,

$$
\triangle A D E \sim \triangle F E C
$$

Since $\triangle A D E \sim \triangle G B D$ and $\triangle A D E \sim \triangle F E C$ we have

Thus

$$
\triangle G B D \sim \Delta F E C
$$

$$
\frac{G B}{F E}=\frac{G D}{F C}
$$

Since $D E F G$ is square, we obtain,

$$
\frac{B G}{F G}=\frac{F G}{F C}
$$

Therefore $\quad F G^{2}=B G \times F C \quad$ Hence Proved
99. In Figure $D E F G$ is a square in a triangle $A B C$ right angled at A. Prove that
(i) $\triangle A G F \sim \triangle D B G$
(ii) $\triangle A G F \sim \triangle E F C$

Ans :
[Board 2020 Delhi, OD Basic]
We have redrawn the given figure as shown below.

Here $A B C$ is a triangle in which $\angle B A C=90^{\circ}$ and $D E F G$ is a square.
(i) In $\triangle A G F$ and $\triangle D B G$

$$
\angle G A F=\angle B D G
$$

(each $\left.90^{\circ}\right)$
Due to corresponding angles,

$$
\angle A G F=\angle G B D
$$

Thus by AA similarity criterion,

$$
\triangle A G F \sim \triangle D B G
$$

Hence Proved
(ii) In $\triangle A G F$ and $\triangle E F C$,

$$
\angle G A F=\angle C E F
$$

(each 90°)
Due to corresponding angles,

$$
\angle A F G=\angle F C E
$$

Thus by AA similarity criterion,

$$
\Delta A G F \sim \Delta E F C
$$

Hence Proved
lengths (in cm) are marked along them, then find the lengths of sides of each triangle.

Ans:

[Board 2020 OD Standard]

Since $\triangle A B C \sim \triangle D E F$, we have

$$
\begin{aligned}
\frac{A B}{B C} & =\frac{D E}{E F} \\
\frac{2 x-1}{2 x+2} & =\frac{18}{3 x+9} \\
(2 x-1)(3 x+9) & =18(2 x+2) \\
(2 x-1)(x+3) & =6(2 x+2) \\
2 x^{2}-x+6 x-3 & =12 x+12 \\
2 x^{2}+5 x-12 x-15 & =0 \\
2 x^{2}-7 x-15 & =0 \\
2 x^{2}-10 x+3 x-15 & =0 \\
2 x(x-5)+3(x-5) & =0 \\
(x-5)(2 x+3) & =0 \Rightarrow x=5 \text { or } x=\frac{-3}{2}
\end{aligned}
$$

But $x=\frac{-3}{2}$ is not possible, thus $x=5$.
Now in $\triangle A B C$, we get

$$
\begin{aligned}
& A B=2 x-1=2 \times 5-1=9 \\
& B C=2 x+2=2 \times 5+2=12 \\
& A C=3 x=3 \times 5=15
\end{aligned}
$$

and in $\triangle D E F$, we get

$$
\begin{aligned}
& D E=18 \\
& E F=3 x+9=3 \times 5+9=24 \\
& D E=6 x=6 \times 5=30 .
\end{aligned}
$$

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission
101.In Figure,$\angle A C B=90^{\circ}$ and $C D \perp A B$, prove that $C D^{2}=B D \times A D$.

Ans :
[Board 2019 Delhi]
In $\triangle A C B$ we have

$$
\angle A C B=90^{\circ}
$$

and

$$
C D \perp A B
$$

Thus

$$
\begin{equation*}
A B^{2}=C A^{2}+C B^{2} \tag{1}
\end{equation*}
$$

In $\triangle C A D, \angle A D C=90^{\circ}$, thus we have

$$
\begin{equation*}
C A^{2}=C D^{2}+A D^{2} \tag{2}
\end{equation*}
$$

and in $\triangle C D B, \angle C D B=90^{\circ}$, thus we have

$$
\begin{equation*}
C B^{2}=C D^{2}+B D^{2} \tag{3}
\end{equation*}
$$

Adding equation (2) and (3), we get

$$
C A^{2}+C B^{2}=2 C D^{2}+A D^{2}+B D^{2}
$$

Substituting $A B^{2}$ from equation (1) we have

$$
\begin{gathered}
A B^{2}=2 C D^{2}+A D^{2}+B D^{2} \\
A B^{2}-A D^{2}=B D^{2}+2 C D^{2} \\
(A B+A D)(A B-A D)=B D^{2}+2 C D^{2} \\
(A B+A D) B D-B D^{2}=2 C D^{2} \\
B D[(A B+A D)-B D]=2 C D^{2} \\
B D[A D+(A B-B D)]=2 C D^{2} \\
B D[A D+A D]=2 C D^{2}
\end{gathered}
$$

$$
\begin{aligned}
B D \times 2 A D & =2 C D^{2} \\
C D^{2} & =B D \times A D \quad \text { Hence Proved }
\end{aligned}
$$

102. $\triangle P Q R$ is right angled at $Q . Q X \perp P R, X Y \perp R Q$ and $X Z \perp P Q$ are drawn. Prove that $X Z^{2}=P Z \times Z Q$.

Ans:

[Board Term-1 2015]
We have redrawn the given figure as below.

It may be easily seen that $R Q \perp P Q$ and $X Z \perp P Q$ or $X Z \| Y Q$.

Similarly $\quad X Y \| \mathrm{ZQ}$
Since $\angle P Q R=90^{\circ}$, thus $X Y Q Z$ is a rectangle.
In $\triangle X Z Q$,

$$
\begin{equation*}
\angle 1+\angle 2=90^{\circ} \tag{1}
\end{equation*}
$$

and in $\triangle P Z X, \quad \angle 3+\angle 4=90^{\circ}$
$X Q \perp P R$ or, $\quad \angle 2+\angle 3=90^{\circ}$
From eq. (1) and (3), $\angle 1=\angle 3$
From eq. (2) and (3), $\quad \angle 2=\angle 4$
Due to $A A$ similarity,

$$
\begin{aligned}
\Delta P Z X & \sim \Delta X Z Q \\
\frac{P Z}{X Z} & =\frac{X Z}{Z Q} \\
X Z^{2} & =P Z \times Z Q
\end{aligned}
$$

Hence proved

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK
103.In $\triangle A B C$, the mid-points of sides $B C, C A$ and $A B$ are D, E and F respectively. Find ratio of $\operatorname{ar}(\triangle D E F)$ to $\operatorname{ar}(\triangle A B C$.)
Ans :
[Board Term-1 2015]
As per given condition we have given the figure below. Here F, E and D are the mid-points of $A B, A C$ and $B C$ respectively.

Hence, $F E\|B C, D E\| A B$ and $D F \| A C$
By mid-point theorem,
If
$D E \| B A$ then $D E \| B F$
and if $\quad F E \| B C$ then $F E \| B D$
Therefore $F E D B$ is a parallelogram in which $D F$ is diagonal and a diagonal of parallelogram divides it into two equal Areas.
Hence $\quad \operatorname{ar}(\triangle B D F)=\operatorname{ar}(\triangle D E F)$
Similarly $\operatorname{ar}(\triangle C D E)=\operatorname{ar}(\triangle D E F)$

$$
\begin{align*}
& (\triangle A F E)=\operatorname{ar}(\triangle D E F) \tag{3}\\
& (\triangle D E F)=\operatorname{ar}(\triangle D E F)
\end{align*}
$$

Adding equation (1), (2), (3) and (4), we have

$$
\begin{aligned}
& \operatorname{ar}(\triangle B D F)+\operatorname{ar}(\triangle C D E)+\operatorname{ar}(\triangle A F E)+\operatorname{ar}(\triangle D E F) \\
&=4 \operatorname{ar}(\triangle D E F) \\
& \operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle D E F) \\
& \frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{4}
\end{aligned}
$$

104.In the figure, $\angle B E D=\angle B D E$ and E is the midpoint of $B C$. Prove that $\frac{A F}{C F}=\frac{A D}{B E}$.

Ans:

We have redrawn the given figure as below. Here $C G \| F D$.

We have $\quad \angle B E D=\angle B D E$
Since E is mid-point of $B C$,

$$
\begin{equation*}
B E=B D=E C \tag{1}
\end{equation*}
$$

In $\triangle B C G, \quad D E \| F G$
From (1) we have

$$
\begin{aligned}
\frac{B D}{D G} & =\frac{B E}{E C}=1 \\
B D & =D G=E C=B E
\end{aligned}
$$

In $\triangle A D F$,
$C G \| F D$
By BPT

$$
\frac{A G}{G D}=\frac{A C}{C F}
$$

$$
\begin{aligned}
\frac{A G+G D}{G D} & =\frac{A F+C F}{C F} \\
\frac{A D}{G D} & =\frac{A F}{C F} \\
\frac{A F}{C F} & =\frac{A D}{B E}
\end{aligned}
$$

105. In the right triangle, B is a point on $A C$ such that $A B+A D=B C+C D$. If $A B=x, B C=h$ and $C D=d$, then find x (in term of h and d).
Ans :
[Board Term-1 2015]

We have redrawn the given figure as below.

We have $A B+A D=B C+C D$

$$
\begin{aligned}
& A D=B C+C D-A B \\
& A D=h+d-x
\end{aligned}
$$

In right $\triangle A C D$, we have

$$
\begin{aligned}
& A D^{2}=A C^{2}+D C^{2} \\
&(h+d-x)^{2}=(x+h)^{2}+d^{2} \\
&(h+d-x)^{2}-(x+h)^{2}=d^{2} \\
&(h+d-x-x-h)(h+d-x+x+h)=d^{2} \\
&(d-2 x)(2 h+d)=d^{2} \\
& 2 h d+d^{2}-4 h x-2 x d=d^{2} \\
& 2 h d=4 h x+2 x d \\
&=2(2 h+d) x
\end{aligned}
$$

or,

$$
x=\frac{h d}{2 h+d}
$$

106.In $\triangle A B C, A D$ is a median and O is any point on $A D$. $B O$ and $C O$ on producing meet $A C$ and $A B$ at E and F respectively. Now $A D$ is produced to X such that $O D=D X$ as shown in figure.
Prove that :
(1) $E F \| B C$
(2) $A O: A X=A F: A B$

Ans:

[Board Term-1 2015]
Since $B C$ and $O X$ bisect each other, $B X C O$ is a parallelogram. Therefore $B E \| X C$ and $B X \| C F$.
In $\triangle A B X$, by BPT we get,

$$
\begin{equation*}
\frac{A F}{F B}=\frac{A O}{O X} \tag{1}
\end{equation*}
$$

In $\triangle A X C, \quad \frac{A E}{E C}=\frac{A O}{O X}$
From (1) and (2) we get

$$
\frac{A F}{F B}=\frac{A E}{E C}
$$

By converse of BPT we have

$$
E F \| B C
$$

From (1) we get $\frac{O X}{O A}=\frac{F B}{A F}$

$$
\begin{aligned}
\frac{O X+O A}{O A} & =\frac{F B+A F}{A F} \\
\frac{A X}{O A} & =\frac{A B}{A F} \\
\frac{A O}{A X} & =\frac{A F}{A B}
\end{aligned}
$$

Thus $A O: A X=A F: A B$
Hence Proved

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

107. $A B C D$ is a rhombus whose diagonal $A C$ makes an angle α with $A B$. If $\cos \alpha=\frac{2}{3}$ and $O B=3 \mathrm{~cm}$, find the length of its diagonals $A C$ and $B D$.

Ans :
[Board Term-1 2013]
We have

$$
\cos \alpha=\frac{2}{3} \text { and } O B=3 \mathrm{~cm}
$$

In $\triangle A O B, \quad \cos \alpha=\frac{2}{3}=\frac{A O}{A B}$
Let $O A=2 x$ then $A B=3 x$
f171

Now in right angled triangle $\triangle A O B$ we have

$$
\begin{aligned}
A B^{2} & =A O^{2}+O B^{2} \\
(3 x)^{2} & =(2 x)^{2}+(3)^{2} \\
9 x^{2} & =4 x^{2}+9 \\
5 x^{2} & =9
\end{aligned}
$$

$$
x=\sqrt{\frac{9}{5}}=\frac{3}{\sqrt{5}}
$$

Hence,

$$
O A=2 x=2\left(\frac{3}{\sqrt{5}}\right)=\frac{6}{\sqrt{5}} \mathrm{~cm}
$$

and

$$
A B=3 x=3\left(\frac{3}{\sqrt{5}}\right)=\frac{9}{\sqrt{5}} \mathrm{~cm}
$$

Diagonal

$$
B D=2 \times O B=2 \times 3=6 \mathrm{~cm}
$$

and

$$
\begin{aligned}
A C & =2 A O \\
& =2 \times \frac{6}{\sqrt{5}}=\frac{12}{\sqrt{5}} \mathrm{~cm}
\end{aligned}
$$

108. In $\triangle A B C, A D$ is the median to $B C$ and in $\triangle P Q R, P M$ is the median to $Q R$. If $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P M}$. Prove that $\triangle A B C \sim \triangle P Q R$.
Ans :
[Board Term-1 2012, 2013]
As per given condition we have drawn the figure below.

In $\triangle A B C A D$ is the median, therefore

$$
B C=2 B D
$$

and in $\triangle P Q R, P M$ is the median,

Given,

$$
Q R=2 Q M
$$

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{B C}{Q R}
$$

or,

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 B D}{2 Q M}
$$

In triangles $A B D$ and $P Q M$,

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{B D}{Q M}
$$

By SSS similarity we have

$$
\triangle A B D \sim \triangle P Q M
$$

By CPST we have

$$
\angle B=\angle Q,
$$

In $\triangle A B C$ and $\triangle P Q R$,

$$
\frac{A B}{P Q}=\frac{B C}{Q R}
$$

By SAS similarity we have

$$
\angle B=\angle Q
$$

Thus $\quad \triangle A B C \sim \triangle P Q R$. Hence Proved.
109.In $\triangle A B C$, if $\angle A D E=\angle B$, then prove that $\triangle A D E \sim \triangle A B C$.
Also, if $A D=7.6 \mathrm{~cm}, A E=7.2 \mathrm{~cm}, B E=4.2 \mathrm{~cm}$ and $B C=8.4 \mathrm{~cm}$, then find $D E$.

Ans :
[Board Term-1 2015]
In $\triangle A D E$ and $\triangle A B C, \angle A$ is common.
and we have $\angle A D E=\angle A B C$
Due to $A A$ similarity,

$$
\begin{aligned}
\Delta A D E & \sim \Delta A B C \\
\frac{A D}{A B} & =\frac{D E}{B C} \\
\frac{A D}{A E+B E} & =\frac{D E}{B C} \\
\frac{7.6}{4.2+4.2} & =\frac{D E}{8.4} \\
D E & =\frac{7.6 \times 8.4}{11.4}=5.6 \mathrm{~cm}
\end{aligned}
$$

110.In the following figure, $\triangle F E C \cong \triangle G B D$ and $\angle 1=\angle 2$. Prove that $\triangle A D E \cong \triangle A B C$.

Ans :
[Board Term-1 2012]
Since

$$
\triangle F E C \cong \triangle G B D
$$

$$
\begin{equation*}
E C=B D \tag{1}
\end{equation*}
$$

Since $\angle 1=\angle 2$, using isosceles triangle property

$$
\begin{equation*}
A E=A D \tag{2}
\end{equation*}
$$

From equation (1) and (2), we have

$$
\begin{aligned}
& \frac{A E}{E C}=\frac{A D}{B D} \\
& D E \| B C
\end{aligned}
$$

(Converse of BPT)
Due to corresponding angles we have

$$
\angle 1=\angle 3 \text { and } \angle 2=\angle 4
$$

Thus in $\triangle A D E$ and $\triangle A B C$,

$$
\begin{aligned}
\angle A & =\angle A \\
\angle 1 & =\angle 3 \\
\angle 2 & =\angle 4
\end{aligned}
$$

Sy by $A A A$ criterion of similarity,

$$
\triangle A D E \sim \triangle A B C
$$

Hence proved

No Need to Buy any Question Bank or Sample Chapter From

Market. Download Free PDF of all Study Material from
www.cbse.online
111. In the given figure, D and E trisect $B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

Ans:
[Board Term-1 2013]
As per given condition we have drawn the figure below.

Since D and E trisect $B C$, let $B D=D E=E C$ be x.
Then

$$
B E=2 x \text { and } B C=3 x
$$

In $\triangle A B E$,

$$
\begin{equation*}
A E^{2}=A B^{2}+B E^{2}=A B^{2}+4 x^{2} \tag{1}
\end{equation*}
$$

In $\triangle A B C$, $A C^{2}=A B^{2}+B C^{2}=A B^{2}+9 x^{2}$
In $\triangle A D B, \quad A D^{2}=A B^{2}+B D^{2}=A B^{2}+x^{2}$
Multiplying (2) by 3 and (3) by 5 and adding we have

$$
\begin{aligned}
3 A C^{2}+5 A D^{2} & =3\left(A B^{2}+9 x^{2}\right)+\left(A B^{2}+x^{2}\right) \\
& =3 A B^{2}+27 x^{2}+5 A B^{2}+5 x^{2} \\
& =8 A B^{2}+32 x^{2} \\
& =8\left(A B^{2}+4 x^{2}\right)=8 A E^{2}
\end{aligned}
$$

Thus $3 A C^{2}+5 A D^{2}=8 A E^{2}$
Hence Proved
112. Let $A B C$ be a triangle D and E be two points on side $A B$ such that $A D=B E$. If $D P \| B C$ and $E Q \| A C$, then prove that $P Q \| A B$.
Ans:
[Board Term-1 2012]
As per given condition we have drawn the figure below.

$$
\begin{array}{ll}
\text { In } \triangle A B C, & D P \| B C \\
\text { By BPT we have } & \frac{A D}{D B}=\frac{A P}{P C}, \tag{F}\\
\text { Similarly, in } \triangle A B C, & E Q \| A C
\end{array}
$$

$$
\begin{equation*}
\frac{B Q}{Q C}=\frac{B E}{E A} \tag{2}
\end{equation*}
$$

From figure, $\quad E A=A D+D E$

$$
\begin{aligned}
& =B E+E D \\
& =B D
\end{aligned}
$$

$$
(B E=A D)
$$

Therefore equation (2) becomes,

$$
\begin{equation*}
\frac{B Q}{Q C}=\frac{A D}{B D} \tag{3}
\end{equation*}
$$

From (1) and (3), we have

$$
\frac{A P}{P C}=\frac{B Q}{Q C}
$$

By converse of $B P T$,

$$
P Q \| A B
$$

Hence Proved
113. Prove that in a right triangle, the square of the hypotenuse is equal to sum of squares of other two sides. [Board 2020 Delhi Basic, 2019 Delhi, 2018] or
Prove that in a right triangle, the square of the hypotenuse is equal to sum of squares of other two sides. Using the above result, prove that, in rhombus $A B C D, 4 A B^{2}=A C^{2}+B D^{2}$.
Ans :
[Board Term -2 SQP 2017, 2015]
(1) As per given condition we have drawn the figure below. Here $A B \perp B C$.

We have drawn $B E \perp A C$

In $\triangle A E B$ and $\triangle A B C \angle A$ common and

$$
\angle E=\angle B
$$

(each 90°)
By $A A$ similarity we have

$$
\begin{aligned}
\Delta A E B & \sim \triangle A B C \\
\frac{A E}{A B} & =\frac{A B}{A C} \\
A B^{2} & =A E \times A C
\end{aligned}
$$

Now, in $\triangle C E B$ and $\triangle C B A, \angle C$ is common and

$$
\begin{equation*}
\angle E=\angle B \tag{each}
\end{equation*}
$$

By $A A$ similarity we have

$$
\begin{align*}
\triangle A E B & \sim \Delta C B A \\
\frac{C E}{B C} & =\frac{B C}{A C} \\
B C^{2} & =C E \times A C \tag{2}
\end{align*}
$$

Adding equation (1) and (2) we have

$$
\begin{aligned}
A B^{2}+B C^{2} & =A E \times A C+C E \times A C \\
& =A C(A E+C E) \\
& =A C \times A C
\end{aligned}
$$

Thus $\quad A B^{2}+B C^{2}=A C^{2} \quad$ Hence proved
(2) As per given condition we have drawn the figure below. Here $A B C D$ is a rhombus.

We have drawn diagonal $A C$ and $B D$.
and

$$
\begin{aligned}
& A O=O C=\frac{1}{2} A C \\
& B O=O D=\frac{1}{2} B D \\
& A C \perp B D
\end{aligned}
$$

Since diagonal of rhombus bisect each other at right angle,

$$
\begin{aligned}
\angle A O B & =90^{\circ} \\
A B^{2} & =O A^{2}+O B^{2} \\
& =\left(\frac{A C}{2}\right)^{2}+\left(\frac{B D}{2}\right)^{2} \\
& =\frac{A C^{2}}{4}+\frac{B D^{2}}{4}
\end{aligned}
$$

or

$$
4 A B^{2}=A C^{2}+B D^{2} \quad \text { Hence proved }
$$

114. Vertical angles of two isosceles triangles are equal. If their areas are in the ratio $16: 25$, then find the ratio
of their altitudes drawn from vertex to the opposite side.

Ans :

[Board Term-1 2015]
As per given condition we have drawn the figure below.

Here $\quad \angle A=\angle P \angle B=\angle C$ and $\angle Q=\angle R$
Let $\angle A=\angle P$ be x.
In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$

$$
\begin{align*}
& x+\angle B+\angle B=180^{\circ} \quad(\angle B=\angle C) \\
& 2 \angle B=180^{\circ}-x \\
& \angle B=\frac{180^{\circ}-x}{2} \tag{1}
\end{align*}
$$

Now, in $\triangle P Q R$,

$$
\begin{aligned}
\angle P+\angle Q+\angle R & =180^{\circ} \quad(\angle Q=\angle R) \\
x^{2}+\angle Q+\angle Q & =180^{\circ} \\
2 \angle Q & =180^{\circ}-x \\
\angle Q & =\frac{180^{\circ}-x}{2}
\end{aligned}
$$

In $\triangle A B C$ and $\triangle P Q R$,

$$
\begin{array}{lr}
\angle A=\angle P & \quad[\text { Given] } \\
\angle B=\angle Q & \text { [From eq. (1) and (2)] }
\end{array}
$$

Due to $A A$ similarity,

$$
\Delta A B C \sim \Delta P Q R
$$

Now $\quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P E^{2}}$

$$
\begin{aligned}
\frac{16}{25} & =\frac{A D^{2}}{P E^{2}} \\
\frac{4}{5} & =\frac{A D}{P E}
\end{aligned}
$$

Thus

$$
\frac{A D}{P E}=\frac{4}{5}
$$

115.In the figure, $A B C$ is a right triangle, right angled at B. $A D$ and $C E$ are two medians drawn from A and C respectively. If $A C=5 \mathrm{~cm}$ and $A D=\frac{3 \sqrt{5}}{2} \mathrm{~cm}$, find the length of $C E$.

Ans:
[Board Term-1 2013]
We have redrawn the given figure as below.

Here in $\triangle A B C, \angle B=90^{\circ}, A D$ and $C E$ are two medians.

Also we have $\quad A C=5 \mathrm{~cm}$ and $A D=\frac{3 \sqrt{5}}{2}$.
By Pythagoras theorem we get

$$
\begin{equation*}
A C^{2}=A B^{2}+B C^{2}=(5)^{2}=25 \tag{1}
\end{equation*}
$$

In $\triangle A B D, \quad A D^{2}=A B^{2}+B D^{2}$

$$
\begin{align*}
\left(\frac{3 \sqrt{5}}{2}\right)^{2} & =A B^{2}+\frac{B C^{2}}{4} \\
\frac{45}{4} & =A B^{2}+\frac{B C^{2}}{4} \tag{2}
\end{align*}
$$

In $\triangle E B C, \quad C E^{2}=B C^{2}+\frac{A B^{2}}{4}$
Subtracting equation (2) from equation (1),

$$
\frac{3 B C^{2}}{4}=25-\frac{45}{4}=\frac{55}{4}
$$

$$
\begin{equation*}
B C^{2}=\frac{55}{3} \tag{4}
\end{equation*}
$$

From equation (2) we have

$$
\begin{aligned}
A B^{2}+\frac{55}{12} & =\frac{45}{4} \\
A B^{2} & =\frac{45}{4}-\frac{55}{12}=\frac{20}{3}
\end{aligned}
$$

From equation (3) we get

Thus

$$
C E^{2}=\frac{55}{3}+\frac{20}{3 \times 4}=\frac{240}{12}=20
$$

$$
C E=\sqrt{20}=2 \sqrt{5} \mathrm{~cm}
$$

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission

116.If a line drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. Prove it.
Ans :
[Board 2019 OD, SQP 2020 STD, 2012]
A triangle $A B C$ is given in which $D E \| B C$. We have drawn $D N \perp A E$ and $E M \perp A D$ as shown below. We have joined $B E$ and $C D$.

In $\triangle A D E$,

$$
\begin{equation*}
\operatorname{area}(\triangle A D E)=\frac{1}{2} \times A E \times D N \tag{1}
\end{equation*}
$$

In $\triangle D E C$,

$$
\begin{equation*}
\operatorname{area}(\triangle D C E)=\frac{1}{2} \times C E \times D N \tag{2}
\end{equation*}
$$

Dividing equation (1) by (2) we have,

$$
\begin{align*}
\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E C)} & =\frac{\frac{1}{2} \times A E \times D N}{\frac{1}{2} \times C E \times D N} \\
\text { or, } \quad \frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E C)} & =\frac{A E}{C E} \tag{3}
\end{align*}
$$

Now in $\triangle A D E$,

$$
\begin{equation*}
\operatorname{area}(\triangle A D E)=\frac{1}{2} \times A D \times E M \tag{4}
\end{equation*}
$$

and in $\triangle D E B$,

$$
\begin{equation*}
\operatorname{area}(\triangle D E B)=\frac{1}{2} \times E M \times B D \tag{5}
\end{equation*}
$$

Dividing eqn. (4) by eqn. (5),

$$
\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E B)}=\frac{\frac{1}{2} \times A D \times E M}{\frac{1}{2} \times B D \times E M}
$$

or, $\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E B)}=\frac{A D}{B D}$
Since $\triangle D E B$ and $\triangle D E C$ lie on the same base $D E$ and between two parallel lines $D E$ and $B C$.

$$
\operatorname{area}(\triangle D E B)=\operatorname{area}(\triangle D E C)
$$

From equation (3) we have

$$
\begin{equation*}
\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle D E B)}=\frac{A E}{C E} \tag{7}
\end{equation*}
$$

From equations (6) and (7) we get

$$
\frac{A E}{C E}=\frac{A D}{B D} . \quad \text { Hence proved. }
$$

117. In a trapezium $A B C D, A B \| D C$ and $D C=2 A B$. $E F=A B$, where E and F lies on $B C$ and $A D$ respectively such that $\frac{B E}{E C}=\frac{4}{3}$ diagonal $D B$ intersects $E F$ at G. Prove that, $7 E F=11 A B$.
Ans :
[Board Term-1 2012]
As per given condition we have drawn the figure below.

In trapezium $A B C D$,

$$
A B \| D C \text { and } D C=2 A B
$$

Also,
$\frac{B E}{E C}=\frac{4}{3}$
Thus

$$
E F\|A B\| C D
$$

$$
\frac{A F}{F D}=\frac{B E}{E C}=\frac{4}{3}
$$

In $\triangle B G E$ and $\triangle B D C, \angle B$ is common and due to corresponding angles,

$$
\angle B E G=\angle B C D
$$

Due to $A A$ similarity we get

$$
\begin{align*}
\Delta B G E & \sim \Delta B D C \\
\frac{E G}{C D} & =\frac{B E}{B C} \tag{1}\\
\frac{B E}{E C} & =\frac{4}{3} \\
\frac{B E}{B E+E C} & =\frac{4}{4+3}=\frac{4}{7} \\
\frac{B E}{B C} & =\frac{4}{7}
\end{align*}
$$

From (1) and (2) we have

$$
\begin{align*}
\frac{E G}{C D} & =\frac{4}{7} \\
E G & =\frac{4}{7} C D \tag{3}
\end{align*}
$$

Similarly, $\quad \triangle D G F \sim \triangle D B A$

$$
\begin{aligned}
& \frac{D F}{D A}=\frac{F G}{A B} \\
& \frac{F G}{A B}=\frac{3}{7} \\
& F G=\frac{3}{7} A B \\
& {\left[\frac{A F}{A D}=\frac{4}{7}=\frac{B E}{B C} \Rightarrow \frac{E C}{B C}=\frac{3}{7}=\frac{D E}{D A}\right]}
\end{aligned}
$$

Adding equation (3) and (4) we have

$$
\begin{aligned}
E G+F G & =\frac{4}{7} D C+\frac{3}{7} A B \\
E F & =\frac{4}{7} \times(2 A B)+\frac{3}{7} A B \\
& =\frac{8}{7} A B+\frac{3}{7} A B=\frac{11}{7} A B \\
7 E F & =11 A B \quad \text { Hence proved. }
\end{aligned}
$$

118. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Ans :

[Board Term-1 2012]
It is given that in $\triangle A B C$ and $\triangle P Q R, A D$ and $P M$
are their medians,
such that $\quad \frac{A B}{P Q}=\frac{A D}{P M}=\frac{A C}{P R}$
We have produce $A D$ to E such that $A D=D E$ and produce $P M$ to N such that $P M=M N$. We join $C E$ and $R N$. As per given condition we have drawn the figure below.

In $\triangle A B D$ and $\triangle E D C$,

$$
\begin{align*}
A D & =D E & (\text { By construction }) \\
\angle A D B & =\angle E D C & (\mathrm{VOA}) \tag{VOA}\\
B D & =D C & (A D \text { is a median })
\end{align*}
$$

By SAS congruency

$$
\begin{align*}
\triangle A B D & \cong \triangle E D C \\
A B & =C E \tag{ByCPCT}
\end{align*}
$$

Similarly, $\quad P Q=R N$ and $\angle A=\angle 2$

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{A C}{P R}
$$

$$
\begin{aligned}
& \frac{C E}{R N}=\frac{2 A D}{2 P M}=\frac{A C}{P R} \\
& \frac{C E}{R N}=\frac{A E}{P N}=\frac{A C}{P R}
\end{aligned}
$$

By SSS similarity, we have

$$
\begin{aligned}
\triangle A E C & \sim \triangle P N R \\
\angle 3 & =\angle 4 \\
\angle 1 & =\angle 2 \\
\angle 1+\angle 3 & =\angle 2+\angle 4
\end{aligned}
$$

By SAS similarity, we have
$\triangle A B C \sim \triangle P Q R$
Hence Proved
119.In $\triangle A B C, A D \perp B C$ and point D lies on $B C$ such that $2 D B=3 C D$. Prove that $5 A B^{2}=5 A C^{2}+B C^{2}$.
Ans:
[Board Term-1 2015]
It is given in a triangle $\triangle A B C, A D \perp B C$ and point D lies on $B C$ such that $2 D B=3 C D$.
As per given condition we have drawn the figure below.

Since

$$
2 D B=3 C D
$$

$$
\frac{D B}{C D}=\frac{3}{2}
$$

Let $D B$ be $3 x$, then $C D$ will be $2 x$ so $B C=5 x$.
Since $\angle D=90^{\circ}$ in $\triangle A D B$, we have

$$
\begin{align*}
A B^{2} & =A D^{2}+D B^{2}=A D^{2}+(3 x)^{2} \\
& =A D^{2}+9 x^{2} \\
5 A B^{2} & =5 A D^{2}+45 x^{2} \\
5 A D^{2} & =5 A B^{2}-45 x^{2} \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
A C^{2} & =A D^{2}+C D^{2}=A D^{2}+(2 x)^{2} \\
& =A D^{2}+4 x^{2} \\
5 A C^{2} & =5 A D^{2}+20 x^{2} \\
5 A D^{2} & =5 A C^{2}-20 x^{2} \tag{2}
\end{align*}
$$

Comparing equation (1) and (2) we have

$$
\begin{aligned}
5 A B^{2}-45 x^{2} & =5 A C^{2}-20 x^{2} \\
5 A B^{2} & =5 A C^{2}-20 x^{2}+45 x^{2} \\
& =5 A C^{2}+25 x^{2} \\
& =5 A C^{2}+(5 x)^{2} \\
& =5 A C^{2}+B C^{2} \quad[B C=5 x]
\end{aligned}
$$

Therefore

$$
5 A B^{2}=5 A C^{2}+B C^{2} \quad \text { Hence proved }
$$

120.In a right triangle $A B C$, right angled at $C . P$ and Q are points of the sides $C A$ and $C B$ respectively, which
divide these sides in the ratio $2: 1$.
Prove that: $\quad 9 A Q^{2}=9 A C^{2}+4 B C^{2}$

$$
\begin{aligned}
9 B P^{2} & =9 B C^{2}+4 A C^{2} \\
9\left(A Q^{2}+B P^{2}\right) & =13 A B^{2}
\end{aligned}
$$

Ans :
As per given condition we have drawn the figure below.

Since P divides $A C$ in the ratio $2: 1$

$$
C P=\frac{2}{3} A C
$$

and Q divides $C B$ in the ratio $2: 1$

$$
\begin{align*}
Q C & =\frac{2}{3} B C \\
A Q^{2} & =Q C^{2}+A C^{2} \\
& =\frac{4}{9} B C^{2}+A C^{2} \tag{1}
\end{align*}
$$

or, $\quad 9 A Q^{2}=4 B C^{2}+9 A C^{2}$
Similarly, we get

$$
\begin{equation*}
9 B P^{2}=9 B C^{2}+4 A C^{2} \tag{2}
\end{equation*}
$$

Adding equation (1) and (2), we get

$$
9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}
$$

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.
 CLICK TO BUY HARD BOOK

121.Find the length of the second diagonal of a rhombus, whose side is 5 cm and one of the diagonals is 6 cm .
Ans :
As per given condition we have drawn the figure
below.

We have $A B=B C=C D=A D=5 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$
Since $A O=O C, \quad A O=3 \mathrm{~cm}$
Here $\triangle A O B$ is right angled triangle as diagonals of rhombus intersect at right angle.
By Pythagoras theorem,

$$
O B=4 \mathrm{~cm}
$$

Since $D O=O B, B D=8 \mathrm{~cm}$, length of the other diagonal $=2(B O)$ where $B O=4 \mathrm{~cm}$

Hence

$$
B D=2 \times B O=2 \times 4=8 \mathrm{~cm}
$$

122. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

Ans :

As per given condition we have drawn the figure below.

In triangle sum of squares of any two sides is equal to twice the square of half of the third side, together with twice the square of median bisecting it.
If $A D$ is the median,

$$
A B^{2}+A C^{2}=2\left\{A D^{2}+\frac{B C^{2}}{4}\right\}
$$

$$
\begin{equation*}
2\left(A B^{2}+A C^{2}\right)=4 A D^{2}+B C^{2} \tag{1}
\end{equation*}
$$

Similarly by taking $B E$ and $C F$ as medians,

$$
\begin{align*}
2\left(A B^{2}+B C^{2}\right) & =4 B E^{2}+A C^{2} \tag{2}\\
\text { and } \quad 2\left(A C^{2}+B C^{2}\right) & =4 C F^{2}+A B^{2} \tag{3}
\end{align*}
$$

Adding, (1), (2) and (iii), we get
$3\left(A B^{2}+B C^{2}+A C^{2}\right)=4\left(A D^{2}+B E^{2}+C F^{2}\right)$
Hence proved
123. $A B C$ is an isosceles triangle in which $A B=A C=$ $10 \mathrm{~cm} B C=12 \mathrm{~cm} P Q R S$ is a rectangle inside the isosceles triangle. Given $P Q=S R=y, P S=P R=2 x$. Prove that $x=6-\frac{3 y}{4}$.
Ans:
As per given condition we have drawn the figure below.

Here we have drawn $A L \perp B C$.
Since it is isosceles triangle, $A L$ is median of $B C$,

$$
B L=L C=6 \mathrm{~cm}
$$

In right $\Delta A L B$, by Pythagoras theorem,

$$
\begin{aligned}
A L^{2} & =A B^{2}-B L^{2} \\
& =10^{2}-6^{2}=64=8^{2}
\end{aligned}
$$

Thus $A L=8 \mathrm{~cm}$.
In $\triangle B P Q$ and $\triangle B L A$, angle $\angle B$ is common and

$$
\angle B P Q=\angle B L A=90^{\circ}
$$

Thus by $A A$ similarity we get

$$
\begin{aligned}
\Delta B P Q & \sim \angle B L A \\
\frac{P B}{P Q} & =\frac{B L}{A L} \\
\frac{6-x}{y} & =\frac{6}{8}
\end{aligned}
$$

$$
x=6-\frac{3 y}{4} \quad \text { Hence proved. }
$$

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

124.If $\triangle A B C$ is an obtuse angled triangle, obtuse angled at B and if $A D \perp C B$. Prove that:
$A C^{2}=A B^{2}+B C^{2}+2 B C \times B D$
Ans:
[Board 2020 Delhi Basic]
As per given condition we have drawn the figure below.

In $\triangle A D B$, by Pythagoras theorem

$$
\begin{equation*}
A B^{2}=A D^{2}+B D^{2} \tag{1}
\end{equation*}
$$

In $\triangle A D C$, By Pythagoras theorem,

$$
\begin{aligned}
A C^{2} & =A D^{2}+C D^{2} \\
& =A D^{2}+(B C+B D)^{2} \\
& =A D^{2}+B C^{2}+2 B C \times B D+B D^{2} \\
& =\left(A D^{2}+B D^{2}\right)+2 B C \times B D
\end{aligned}
$$

Substituting $\left(A D^{2}+B D^{2}\right)=A B^{2}$ we have

$$
A C^{2}=A B^{2}+B C^{2}+2 B C \times B D
$$

125.If A be the area of a right triangle and b be one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A b}{\sqrt{b^{4}+4 A^{2}}}$.
Ans :

As per given condition we have drawn the figure below.

Let $Q R=b$, then we have

$$
\begin{align*}
A & =a r(\triangle P Q R) \\
& =\frac{1}{2} \times b \times P Q \\
P Q & =\frac{2 \cdot A}{b} \tag{1}
\end{align*}
$$

Due to $A A$ similarity we have

$$
\begin{gather*}
\triangle P N Q \sim \Delta P Q R \\
\frac{P Q}{P R}=\frac{N Q}{Q R} \tag{2}
\end{gather*}
$$

From $\triangle P Q R$

$$
\begin{aligned}
P Q^{2}+Q R^{2} & =P R^{2} \\
\frac{4 A^{2}}{b^{2}}+b^{2} & =P R^{2} \\
P R & =\sqrt{\frac{4 A^{2}+b^{4}}{b^{2}}}
\end{aligned}
$$

Equation (2) becomes

$$
\begin{array}{r}
\frac{2 A}{b \times P R}=\frac{N Q}{b} \\
N Q=\frac{2 A}{P R}
\end{array}
$$

Altitude, $\quad N Q=\frac{2 A b}{\sqrt{4 A^{2}+b^{4}}} \quad$ Hence Proved.
126. In given figure $\angle 1=\angle 2$ and $\triangle N S Q \sim \Delta M T R$, then prove that $\triangle P T S \sim \triangle P R O$.

Ans :
[Board Term-1 SQP 2017]
We have $\quad \triangle N S Q \cong \triangle M T R$
By CPCT we have

$$
\angle S Q N=\angle T R M
$$

From angle sum property we get

$$
\begin{gathered}
\angle P+\angle 1+\angle 2=\angle P+\angle P Q R+\angle P R Q \\
\angle 1+\angle 2=\angle P Q R+\angle P R Q
\end{gathered}
$$

Since $\angle 1=\angle 2$ and $\angle P Q R=\angle P R Q$ we get

$$
\begin{aligned}
2 \angle 1 & =2 \angle P Q R \\
\angle 1 & =\angle P Q R
\end{aligned}
$$

Also

$$
\angle 2=\angle Q P R
$$

(common)
Thus by $A A A$ similarity,

$$
\triangle P T S \sim \Delta P R Q
$$

127. In an equilateral triangle $A B C, D$ is a point on the side $B C$ such the $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
Ans :
[Board 2018, SQP 2017]
As per given condition we have shown the figure below. Here we have drawn $A P \perp B C$.

Here $A B=B C=C A$ and $B D=\frac{1}{3} B C$.
In $\triangle A D P$,

$$
\begin{aligned}
A D^{2} & =A P^{2}+D P^{2} \\
& =A P^{2}+(B P-B D)^{2} \\
& =A P^{2}+B P^{2}+B D^{2}+2 B P \cdot B D
\end{aligned}
$$

From $\triangle A P B$ using $A P^{2}+B P^{2}=A B^{2}$ we have

$$
\begin{aligned}
A D^{2} & =A B^{2}+\left(\frac{1}{3} B C\right)^{2}-2\left(\frac{B C}{2}\right)\left(\frac{B C}{3}\right) \\
& =A B^{2}+\frac{A B^{2}}{9}-\frac{A B^{2}}{3}=\frac{7}{9} A B^{2}
\end{aligned}
$$

$$
9 A D^{2}=7 A B^{2}
$$

Hence Proved

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

CHAPTER 7

COORDINATE GEOMETRY

ONE MARK QUESTIONS

Multiple Choice Questions

1. The point P on x-axis equidistant from the points $A(-1,0)$ and $B(5,0)$ is
(a) $(2,0)$
(b) $(0,2)$
(c) $(3,0)$
(d) $(-3,5)$

Ans :
[Board 2020 OD Standard]
Let the position of the point P on x-axis be $(x, 0)$, then

$$
\begin{aligned}
P A^{2} & =P B^{2} \\
(x+1)^{2}+(0)^{2} & =(5-x)^{2}+(0)^{2} \\
x^{2}+2 x+1 & =25+x^{2}-10 x \\
2 x+10 x & =25-1 \\
12 x & =24 \Rightarrow x=2
\end{aligned}
$$

Hence, the point $P(x, 0)$ is $(2,0)$.
Thus (a) is correct option.
Alternative :
You may easily observe that both point $A(-1,0)$ and $B(5,0)$ lies on x-axis because y ordinate is zero. Thus point P on x-axis equidistant from both point must be mid point of $A(-1,0)$ and $B(5,0)$.

$$
x=\frac{-1+5}{2}=2
$$

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

2. The co-ordinates of the point which is reflection of point $(-3,5)$ in x-axis are
(a) $(3,5)$
(b) $(3,-5)$
(c) $(-3,-5)$
(d) $(-3,5)$

Ans :
[Board 2020 OD Standard]

The reflection of point $(-3,5)$ in x - axis is $(-3,-5)$.

Thus (c) is correct option.
3. If the point $P(6,2)$ divides the line segment joining $A(6,5)$ and $B(4, y)$ in the ratio $3: 1$ then the value of y is
(a) 4
(b) 3
(c) 2
(d) 1

Ans :
[Board 2020 OD Standard]
As per given information in question we have drawn the figure below,

Here,

$$
x_{1}=6, y_{1}=5
$$

and

$$
x_{2}=4 y_{2}=y
$$

Now

$$
y=\frac{m y_{2}+n y_{1}}{m+n}
$$

$$
2=\frac{3 \times y+1 \times 5}{3+1}
$$

$$
2=\frac{3 y+5}{4}
$$

$$
\begin{aligned}
3 y+5 & =8 \\
3 y & =8-5=3 \Rightarrow y=1
\end{aligned}
$$

Thus (d) is correct option.
4. The distance between the points $(a \cos \theta+b \sin \theta, 0)$, and $(0, \quad a \sin \theta-b \cos \theta)$ is
(a) $a^{2}+b^{2}$
(b) $a^{2}-b^{2}$
(c) $\sqrt{a^{2}+b^{2}}$
(d) $\sqrt{a^{2}-b^{2}}$

Ans :
[Board 2020 Delhi Standard]
We have $x_{1}=a \cos \theta+b \sin \theta$ and $y_{1}=0$
and $\quad x_{2}=0$ and $y_{2}=a \sin \theta-b \cos \theta$

g218

$$
\begin{aligned}
d^{2}= & \left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
= & (0-a \cos \theta-b \sin \theta)^{2}+(a \sin \theta-b \cos \theta-0)^{2} \\
= & (-1)^{2}(a \cos \theta+b \sin \theta)^{2}+(a \sin \theta-b \cos \theta)^{2} \\
= & a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \cos \theta \sin \theta+ \\
& \quad+a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta \\
& =a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
= & a^{2} \times 1+b^{2} \times 1=a^{2}+b^{2}
\end{aligned}
$$

Thus $\quad d^{2}=a^{2}+b^{2}$

$$
d=\sqrt{a^{2}+b^{2}}
$$

Therefore (c) is correct option.
5. If the point $P(k, 0)$ divides the line segment joining the points $A(2,-2)$ and $B(-7,4)$ in the ratio $1: 2$, then the value of k is
(a) 1
(b) 2
(c) -2
(d) -1

Ans :
[Board 2020 Delhi Standard]
As per question statement figure is shown below.

$$
\begin{aligned}
& k=\frac{1(-7)+2(2)}{1+2} \quad\left(x=\frac{m x_{2}+n x_{1}}{m+n}\right) \\
& =\frac{-7+4}{3}=\frac{-3}{3}=-1
\end{aligned}
$$

Thus $\quad k=-1$
Thus (d) is correct option.
6. The coordinates of a point A on y-axis, at a distance of 4 units from x-axis and below it are
(a) $(4,0)$
(b) $(0,4)$
(c) $(-4,0)$
(d) $(0,-4)$

Ans :
[Board 2020 Delhi Basic]
Because the point is 4 units down the x-axis i.e., coordinate is -4 and on y-axis abscissa is 0 . So, the
coordinates of point A is $(0,-4)$.
Thus (d) is correct option.
7. The distance of the point $(-12,5)$ from the origin is
(a) 12
(b) 5
(c) 13
(d) 169

Ans :
g223
The distance between the origin and the point (x, y) is $\sqrt{x^{2}+y^{2}}$.
Therefore, the distance between the origin and point $(-12,5)$

$$
\begin{aligned}
d & =\sqrt{(-12-0)^{2}+(5-0)^{2}} \\
& =\sqrt{144+25}=\sqrt{169} \\
& =13 \text { units }
\end{aligned}
$$

Thus (c) is correct option.

Download 15 Years Previous Years Chapterwise
 Question Bank Free PDFs For all Subject from www.cbse.online

8. Distance of point $P(3,4)$ from x-axis is
(a) 3 units
(b) 4 units
(c) 5 units
(d) 1 units

Ans :
[Board 2020 Delhi Basic]
Point $P(3,4)$ is 4 units from the x-axis and 3 units from the y-axis.

Thus (b) is correct option.
9. The distance of the point $P(-3,-4)$ from the x-axis (in units) is
(a) 3
(b) -3
(c) 4
(d) 5

Ans :
[Board 2020 SQP Standard]
Point $P(-3,-4)$ is 4 units from the x-axis and 3 units from the y-axis.

Thus (c) is correct option.
10. If $A\left(\frac{m}{3}, 5\right)$ is the mid-point of the line segment joining the points $Q(-6,7)$ and $R(-2,3)$, then the value of m is
(a) -12
(b) -4
(c) 12
(d) -6

Ans :
[Board 2020 SQP Standard]
Given points are $Q(-6,7)$ and $R(-2,3)$
Mid point $\quad A\left(\frac{m}{3}, 5\right)=\left(\frac{-6-2}{2}, \frac{7+3}{2}\right)$

$$
=(-4,5)
$$

Equating

$$
\frac{m}{3}=-4 \Rightarrow m=-12
$$

Thus (a) is correct option.
11. The mid-point of the line-segment $A B$ is $P(0,4)$, if the coordinates of B are $(-2,3)$ then the coordinates of A are
(a) $(2,5)$
(b) $(-2,-5)$
(c) $(2,9)$
(d) $(-2,11)$

Ans:
[Board 2020 OD Basic]
Let point A be (x, y).
Now using mid-point formula,

Thus

$$
(0,4)=\left(\frac{x-2}{2}, \frac{y+3}{2}\right)
$$

$$
0=\frac{x-2}{2} \Rightarrow x=2
$$

and

$$
4=\frac{y+3}{2} \Rightarrow y=5
$$

Hence point A is $(2,5)$.
Thus (a) is correct option.
12. x-axis divides the line segment joining $A(2,-3)$ and $B(5,6)$ in the ratio
(a) $2: 3$
(b) $3: 5$
(c) $1: 2$
(d) $2: 1$

Ans:
[Board 2020 OD Basic]
Let point $P(x, 0)$ on x-axis divide the segment joining points $A(2,-3)$ and $B(5,6)$ in ratio $k: 1$, then

$$
\begin{aligned}
& y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
& 0=\frac{6 k-3}{k+1}
\end{aligned}
$$

$$
6 k=3 \Rightarrow k=\frac{1}{2}
$$

Therefore ratio is $1: 2$.
Thus (c) is correct option.
13. The point which divides the line segment joining the points $(8,-9)$ and $(2,3)$ in the ratio $1: 2$ internally lies in the
(a) I quadrant
(b) II quadrant
(c) III quadrant
(d) IV quadrant

Ans :
[Board 2020 SQP Standard]
We have $x_{1}=8, y_{1}=-9, x_{2}=2$ and $y_{2}=3$.
and

$$
m_{1}: m_{2}=1: 2
$$

Let the required point be $P(x, y)$

$$
\begin{aligned}
& x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{1 \times 2+2 \times 8}{1+2}=6 \\
& y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}=\frac{1 \times 3+2(-9)}{1+2}=-5
\end{aligned}
$$

and

Thus $(x, y)=(6,-5)$ and this point lies in IV quadrant.
Thus (d) is correct option.
14. If the centre of a circle is $(3,5)$ and end points of a diameter are $(4,7)$ and $(2, y)$, then the value of y is
(a) 3
(b) -3
(c) 7
(d) 4

Ans :
[Board 2020 Delhi Basic]
Since, centre is the mid-point of end points of the diameter.

$$
(3,5)=\left(\frac{4+2}{2}, \frac{7+y}{2}\right)
$$

Comparing both the sides, we get

$$
\begin{aligned}
5 & =\frac{7+y}{2} \\
7+y & =10 \Rightarrow y=3
\end{aligned}
$$

Thus (a) is correct option.
15. If the distance between the points $A(4, p)$ and $B(1,0)$ is 5 units then the value(s) of p is(are)
(a) 4 only
(b) -4 only
(c) ± 4
(d) 0

Ans :
[Board 2020 Delhi Basic]
Given, points are $A(4, p)$ and $B(1,0)$.

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y^{2}-y_{1}\right)^{2}}
$$

$$
\begin{aligned}
5 & =\sqrt{(1-4)^{2}+(0-p)^{2}} \\
25 & =9+p^{2} \\
p^{2} & =25-9=16 \\
p & = \pm 4
\end{aligned}
$$

Thus (c) is correct option.
Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online
16. If the points $(a, 0),(0, b)$ and $(1,1)$ are collinear, then $\frac{1}{a}+\frac{1}{b}$ equals
(a) 1
(b) 2
(c) 0
(d) -1

Ans :
Let the given points are $A(a, 0), B(0, b)$ and $C(1,1)$. Since, A, B, C are collinear.
Hence,

$$
\operatorname{ar}(\triangle A B C)=0
$$

$$
\begin{aligned}
\frac{1}{2}[a(b-1)+0(1-0)+1(0-b)] & =0 \\
a b-a-b & =0 \\
a+b & =a b \\
\frac{a+b}{a b} & =1 \\
\frac{1}{a}+\frac{1}{b} & =1
\end{aligned}
$$

Thus (a) is correct option.
17. If the points $A(4,3)$ and $B(x, 5)$ are on the circle with centre $O(2,3)$, then the value of x is
(a) 0
(b) 1
(c) 2
(d) 3

Ans :
Since, A and B lie on the circle having centre O.

$$
\begin{aligned}
O A & =O B \\
\sqrt{(4-2)^{2}+(3-3)^{2}} & =\sqrt{(x-2)^{2}+(5-3)^{2}} \\
2 & =\sqrt{(x-2)^{2}+4} \\
4 & =(x-2)^{2}+4 \\
(x-2)^{2} & =0 \Rightarrow x=2
\end{aligned}
$$

Thus (c) is correct option.
18. The ratio in which the point $(2, y)$ divides the join of $(-4,3)$ and $(6,3)$, hence the value of y is
(a) $2: 3, y=3$
(b) $3: 2, y=4$

(c) $3: 2, y=3$

(d) $3: 2, y=2$

Ans :

Let the required ratio be $k: 1$
Then,

$$
2=\frac{6 k-4(1)}{k+1}
$$

or

$$
k=\frac{3}{2}
$$

The required ratio is $\frac{3}{2}: 1$ or $3: 2$
Also,

$$
y=\frac{3(3)+2(3)}{3+2}=3
$$

Thus (c) is correct option.

For Free PDFS of all Sample Papers Visit www.cbse.online

19. The point on the x-axis which is equidistant from the points $A(-2,3)$ and $B(5,4)$ is
(a) $(0,2)$
(b) $(2,0)$
(c) $(3,0)$
(d) $(-2,0)$

Ans :
Let $P(x, 0)$ be a point on x-axis such that,

$$
\begin{aligned}
A P & =B P \\
A P^{2} & =B P^{2} \\
(x+2)^{2}+(0-3)^{2} & =(x-5)^{2}+(0+4)^{2} \\
x^{2}+4 x+4+9 & =x^{2}-10 x+25+16 \\
14 x & =28 \\
x & =2
\end{aligned}
$$

Hence required point is $(2,0)$.
Thus (b) is correct option.
20. C is the mid-point of $P Q$, if P is $(4, x), C$ is $(y,-1)$ and Q is $(-2,4)$, then x and y respectively are
(a) -6 and 1
(b) -6 and 2
(c) 6 and -1
(d) 6 and -2

Ans:
Since, $C(y,-1)$ is the mid-point of $P(4, x)$ and $Q(-2,4)$.
We have,

$$
\frac{4-2}{2}=y \Rightarrow y=1
$$

$$
\frac{4+x}{2}=-1 \Rightarrow x=-6
$$

and
Thus (a) is correct option.
21. If three points $(0,0),(3, \sqrt{3})$ and $(3, \lambda)$ form an
equilateral triangle, then λ equals
(a) 2
(b) -3
(c) -4
(d) None of these

Ans :
Let the given points are $A(0,0), B(3, \sqrt{3})$ and $C(3, \lambda)$.
Since, $\triangle A B C$ is an equilateral triangle, therefore

$$
\begin{aligned}
A B & =A C \\
\sqrt{(3-0)^{2}+(\sqrt{3}-0)^{2}} & =\sqrt{(3-0)^{2}+(\lambda-0)^{2}} \\
9+3 & =9+\lambda^{2} \\
\lambda^{2} & =3 \Rightarrow \lambda= \pm \sqrt{3}
\end{aligned}
$$

Thus (d) is correct option.

22. If $x-2 y+k=0$ is a median of the triangle whose vertices are at points $A(-1,3), B(0,4)$ and $C(-5,2)$, then the value of k is
(a) 2
(b) 4
(c) 6
(d) 8

Ans :
Coordinate of the centroid G of $\triangle A B C$

$$
\begin{aligned}
& =\left(\frac{-1+0-5}{2}, \frac{3+4+2}{3}\right) \\
& =(-2,3)
\end{aligned}
$$

Since, G lies on the median, $x-2 y+k=0$, it must satisfy the equation,

$$
-2-6+k=0 \Rightarrow k=8
$$

Thus (d) is correct option.
23. The centroid of the triangle whose vertices are $(3,-7)$, $(-8,6)$ and $(5,10)$ is
(a) $(0,9)$
(b) $(0,3)$
(c) $(1,3)$
(d) $(3,5)$

Ans :

Centroid is $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
i.e. $\quad\left(\frac{3+(-8)+5}{3}, \frac{-7+6+10}{3}\right)=\left(\frac{0}{3}, \frac{9}{3}\right)$

$$
=(0,3)
$$

Thus (b) is correct option.
24. The distance of the point $P(2,3)$ from the x-axis is
(a) 2
(b) 3
(c) 1
(d) 5

Ans :
We know that, if (x, y) is any point on the cartesian plane in first quadrant, then x is perpendicular distance from y-axis and y is perpendicular distance from x-axis.
Distance of the point $P(2,3)$ from the x-axis is 3 .

Thus (b) is correct option.
25. The distance between the points $A(0,6)$ and $B(0,-2)$ is
(a) 6
(b) 8
(c) 4
(d) 2

Ans :
Distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given as,

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Here, $\quad x_{1}=0, y_{1}=6$ and $x_{2}=0, y_{2}=-2$
Distance between $A(0,6)$ and $B(0,-2)$

$$
\begin{aligned}
A B & =\sqrt{(0-0)^{2}+(-2-6)^{2}} \\
& =\sqrt{0+(-8)^{2}}=\sqrt{8^{2}}=8
\end{aligned}
$$

g243
Thus (b) is correct option.
26. The distance of the point $P(-6,8)$ from the origin is
(a) 8
(b) $2 \sqrt{7}$
(c) 10
(d) 6

Ans :
Distance between the points (x, y) and origin is given as,

$$
d=\sqrt{x^{2}+y^{2}}
$$

Distance between $P(-6,8)$ and origin is,

$$
\begin{aligned}
P O & =\sqrt{(6)^{2}+(-8)^{2}}=\sqrt{36+64} \\
& =\sqrt{100}=10
\end{aligned}
$$

Thus (c) is correct option.
27. The distance between the points $(0,5)$ and $(-5,0)$ is
(a) 5
(b) $5 \sqrt{2}$
(c) $2 \sqrt{5}$
(d) 10

Ans :
Distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given as,

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Here,

$$
x_{1}=0, y_{1}=5 \text { and } x_{2}=-5, y_{2}=0
$$

Distance between the points $(0,5)$ and $(-5,0)$

$$
\begin{aligned}
d & =\sqrt{[-5-0]^{2}+[0-(-5)]^{2}} \\
& =\sqrt{5^{2}+5^{2}}=\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

Thus (b) is correct option.
28. If $A O B C$ is a rectangle whose three vertices are $A(0,3), O(0,0)$ and $B(5,0)$, then the length of its diagonal is

(a) 5
(b) 3
(c) $\sqrt{34}$
(d) 4

Ans :
g246
Length of the diagonal is $A B$ which is the distance between the points $A(0,3)$ and $B(5,0)$.
Distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given as,

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Here, $\quad x_{1}=0, y_{1}=3$, and $x_{2}=5, y_{2}=0$
Distance between the points $A(0,3)$ and $B(5,0)$

$$
\begin{aligned}
A B & =\sqrt{(5-0)^{2}+(0-3)^{2}} \\
& =\sqrt{25+9}=\sqrt{34}
\end{aligned}
$$

Hence, the required length of its diagonal is $\sqrt{34}$. Thus (c) is correct option.

Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online
29. The perimeter of a triangle with vertices $(0,4),(0,0)$ and $(3,0)$ is

(a) 5
(b) 12
(c) 11
(d) $7+\sqrt{5}$

Ans :
We have

$$
\begin{aligned}
& O A=4 \\
& O B=3 \\
& A B=\sqrt{3^{2}+4^{2}=5}
\end{aligned}
$$

Now, perimeter of $\triangle A O B$ is the sum of the length of all its sides.

$$
p=O A+O B+A B=4+3+5=12
$$

Hence, the required perimeter of triangle is 12. However you can calculate perimeter direct from diagram.
Thus (b) is correct option.
30. The point which lies on the perpendicular bisector of the line segment joining the points $A(-2,-5)$ and $B(2,5)$ is
(a) $(0,0)$
(b) $(0,2)$
(c) $(2,0)$
(d) $(-2,0)$

Ans :
g249
We know that, the perpendicular bisector of the any line segment divides the line segment into two equal parts i.e., the perpendicular bisector of the line segment always passes through the mid-point of the line segment.
Mid-point of the line segment joining the points $A(-2,-5)$ and $B(2,5)$

$$
=\left(\frac{-2+2}{2}, \frac{-5+5}{2}\right)=(0,0)
$$

Hence, $(0,0)$ is the required point lies on the perpendicular bisector of the lines segment.
Thus (a) is correct option.
31. If the point $P(2,1)$ lies on the line segment joining
points $A(4,2)$ and $B(8,4)$, then
(a) $A P=\frac{1}{3} A B$
(b) $A P=P B$
(c) $P B=\frac{1}{3} A B$
(d) $A P=\frac{1}{2} A B$

Ans :
Let, $\quad A P: A B=m: n$
Using section formula, we have,
and

$$
\begin{aligned}
& 4=\frac{8 m+2 n}{m+n} \\
& 2=\frac{4 m+n}{m+n}
\end{aligned}
$$

Solving these as linear equation, we get,

$$
\begin{aligned}
m & =1 \text { and } n=2 \\
\frac{A P}{A B} & =\frac{1}{2} \\
A P & =\frac{1}{2} A B
\end{aligned}
$$

Thus (d) is correct option.
32. If $P\left(\frac{a}{3}, 4\right)$ is the mid-point of the line segment joining the points $Q(-6,5)$ and $R(-2,3)$, then the value of a is
(a) -4
(b) -12
(c) 12
(d) -6

Ans :
Since $P\left(\frac{a}{3}, 4\right)$ is the mid-point of the points $Q(-6,5)$ and $R(-2,3)$,

$$
\begin{aligned}
& \left(\frac{a}{3}, 4\right)=\left(\frac{-6-2}{2}, \frac{5+3}{2}\right) \\
& \left(\frac{a}{3}, 4\right)=(-4,4)
\end{aligned}
$$

Now

$$
\frac{a}{3}=-4 \Rightarrow a=-12
$$

Thus (b) is correct option.
33. The perpendicular bisector of the line segment joining the points $A(1,5)$ and $B(4,6)$ cuts the y-axis at
(a) $(0,13)$
(b) $(0,-13)$
(c) $(0,12)$
(d) $(13,0)$

Ans :
Let $P(0, b)$ be the required point. Since, any point on perpendicular bisector is equidistant from the end point of line segment.
i.e., $\quad P A=P B$

$$
\begin{aligned}
\sqrt{(0-1)^{2}+(b-5)^{2}} & =\sqrt{(0-4)^{2}+(b-6)^{2}} \\
1+b^{2}-10 b+25 & =16+b^{2}-12 b+36 \\
2 b & =26 \Rightarrow b=13
\end{aligned}
$$

Thus (a) is correct option.
34. If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then the value of p is
(a) 4 only
(b) ± 4
(c) -4 only
(d) 0

Ans :
According to the question, the distance between the points $(4, p)$ and $(1,0)$ is 5 .
i.e., $\quad \sqrt{(1-4)^{2}+(0-p)^{2}}=5$

$$
\begin{array}{r}
\sqrt{(-3)^{2}+p^{2}}=5 \\
\sqrt{9+p^{2}}=5
\end{array}
$$

Squaring both the sides, we get,

$$
\begin{aligned}
9+p^{2} & =25 \\
p^{2} & =16 \Rightarrow p= \pm 4
\end{aligned}
$$

Hence, the required value of p is ± 4.
Thus (b) is correct option.
35. Assertion : The value of y is 6 , for which the distance between the points $P(2,-3)$ and $Q(10, y)$ is 10 .
Reason : Distance between two given points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given,

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of
assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

$$
\begin{aligned}
P Q & =10 \\
P Q^{2} & =100 \\
(10-2)^{2}+(y+3)^{2} & =100 \\
(y+3)^{2} & =100-64=36 \\
y+3 & = \pm 6 \\
y & =-3 \pm 6 \\
y & =3,-9
\end{aligned}
$$

Assertion (A) is false but reason (R) is true.
Thus (s) is correct option.

Fill in the Blank Questions

36. All the points equidistant from two given points A and B lie on the \qquad of the line segment $A B$.
Ans :
perpendicular bisector

37. The distance of a point from the y-axis is called its \qquad
Ans :

abscissa
38. The distance of a point from the x-axis is called its

Ans :

ordinate
39. The value of the expression $\sqrt{x^{2}+y^{2}}$ is the distance of the point $P(x, y)$ from the \qquad
Ans :
origin

40. The distance of the point (p, q) from (a, b) is
\qquad
Ans :
$\sqrt{(a-p)^{2}+(b-q)^{2}}$
41. If the area of the triangle formed by the
vertices $A\left(x_{1}, y_{1}\right) B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ is zero, then the points A, B and C are \qquad
Ans :

collinear
42. A point of the form $(b, 0)$ lies on \qquad Ans :
x-axis

43. The distance of the point $\left(x_{1}, y_{1}\right)$ from the origin is \qquad
Ans :
$\sqrt{x_{1}^{2}+y_{1}^{2}}$

44. A point of the form $(0, a)$ lies on \qquad
Ans :
y-axis

45. If the point $C(k, 4)$ divides the line segment joining two points $A(2,6)$ and $B(5,1)$ in ratio $2: 3$, the value of k is \qquad
Ans:
[Board 2020 Delhi Basic]

We have

$$
m: n=2: 3
$$

By section formula,

$$
\frac{m x_{2}+n x_{1}}{m+n}=x
$$

Now,

$$
\frac{2 \times 5+3 \times 2}{2+3}=k \Rightarrow k=\frac{16}{5}
$$

46. If points $A(-3,12), B(7,6)$ and $C(x, 9)$ are collinear, then the value of x is \qquad
Ans:
[Board 2020 Delhi Basic]
If points are collinear, then area of triangle must be zero.

$$
\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0
$$

$$
\frac{1}{2}[-3(6-9)+7(9-12)+x(12-6)]=0
$$

$$
\frac{1}{2}(9-21+6 x)=0
$$

$$
\frac{1}{2}(-12+6 x)=0
$$

$$
6 x=12 \Rightarrow x=2
$$

47. The co-ordinate of the point dividing the line segment joining the points $A(1,3)$ and $B(4,6)$ in the ratio $2: 1$ is \qquad
Ans :
[Board 2020 OD Basic]
Let point $P(x, y)$ divides the line segment joir points $A(1,3)$ and $B(4,6)$ in the ratio $2: 1$.
Using section formula we have

$$
\begin{aligned}
(x, y) & =\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
(x, y) & =\left(\frac{2 \times 4+1 \times 1}{2+1}, \frac{2 \times 6+1 \times 3}{2+1}\right) \\
& =\left(\frac{8+1}{3}, \frac{12+3}{3}\right)=\left(\frac{9}{3}, \frac{15}{3}\right)=(3,5)
\end{aligned}
$$

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

Very Short Answer Questions

48. Find the distance of a point $P(x, y)$ from the origin.

Ans:
[Board 2018]
Distance between origin $(0,0)$ and point $P(x, y)$ is

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(x-0)^{2}+(y-0)^{2}} \\
& =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Distance between P and origin is $\sqrt{x^{2}+y^{2}}$.
49. If the mid-point of the line segment joining the points $A(3,4)$ and $B(k, 6)$ is $P(x, y)$ and $x+y-10=0$, find the value of k.
Ans:
[Board 2020 OD Standard]
If $P(x, y)$ is mid point of $A(3,4)$ and $B(k, 6)$, then we have

$$
\frac{3+k}{2}=x \text { and } y=\frac{4+6}{2}=\frac{10}{2}=5
$$

Substituting above value in $x+y-10=0$ we have

$$
\begin{aligned}
\frac{3+k}{2}+5-10 & =0 \\
\frac{3+k}{2} & =5 \\
3+k & =10 \Rightarrow k=10-3=7
\end{aligned}
$$

50. Write the coordinates of a point P on x-axis which is equidistant from the points $A(-2,0)$ and $B(6,0)$.
Ans :
[Board 2019 OD]
Since it is equidistant from the points $A(-2,0)$ and $B(6,0)$ then

$$
A P=B P
$$

$$
A P^{2}=B P^{2}
$$

Using distance formula we have

$$
\begin{aligned}
{\left[(x-(-2)]^{2}+\right.} & (0-0)^{2}=(x+6)^{2}+(0-0)^{2} \\
(x+2)^{2} & =(x+6)^{2} \\
x^{2}+4 x+4 & =x^{2}+12 x+36 \\
8 x & =-32 \\
x & =-4
\end{aligned}
$$

Hence, required point P is $(-4,0)$.

Alternative :

You may easily observe that both point $A(-2,0)$ and $B(6,0)$ lies on x-axis because y ordinate is zero. Thus point P on x-axis equidistant from both point must be mid point of $A(-2,0)$ and $B(6,0)$.

$$
x=\frac{-2+6}{2}=2
$$

51. Find the coordinates of a point A, where $A B$ is diameter of a circle whose centre is $(2,-3)$ and B is the point $(1,4)$.
Ans:
[Board 2019 Delhi]
As per question we have shown the figure below. Since, $A B$ is the diameter, centre C must be the mid point of the diameter of $A B$.

Let the co-ordinates of point A be (x, y).
x-coordinate of C,

$$
\begin{aligned}
\frac{x+1}{2} & =2 \\
x+1 & =4 \Rightarrow x=3
\end{aligned}
$$

and y-coordinate of C,

$$
\begin{aligned}
& \frac{y+4}{2}=-3 \\
& y+4=-6 \Rightarrow y=-10
\end{aligned}
$$

Hence, coordinates of point A are $(3,-10)$.
52. Find the value of a, for which point $P\left(\frac{a}{3}, 2\right)$ is the midpoint of the line segment joining the Points $Q(-5,4)$ and $R(-1,0)$.
Ans :
[Board Term-2 SQP 2016]

As per question, line diagram is shown below.

Since P is mid-point of $Q R$, we have

$$
\frac{a}{3}=\frac{-5+(-1)}{2}=\frac{-6}{2}=-3
$$

Thus

$$
a=-9
$$

53. The ordinate of a point A on y-axis is 5 and B has co-ordinates $(-3,1)$. Find the length of $A B$.
Ans :
[Board Term-2 2014]
We have $A(0,5)$ and $B(-3,1)$.
Distance between A and B,

$$
\begin{aligned}
A B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-3-0)^{2}+(1-5)^{2}} \\
& =\sqrt{9+16} \\
& =\sqrt{25}=5
\end{aligned}
$$

54. Find the perpendicular distance of $A(5,12)$ from the y -axis.
Ans:
[Board Term-2 2011]
Perpendicular from point $A(5,12)$ on y -axis touch it at $(0,12)$.
Distance between $(5,12)$ and $(0,12)$ is,

$$
\begin{aligned}
d & =\sqrt{(0-5)^{2}+(12-12)^{2}} \\
& =\sqrt{25} \\
& =5 \text { units. }
\end{aligned}
$$

55. If the centre and radius of circle is $(3,4)$ and 7 units respectively,, then what it the position of the point $A(5,8)$ with respect to circle?
Ans :
[Board Term-2 2013]
Distance of the point, from the centre,

$$
\begin{aligned}
d & =\sqrt{(5-3)^{2}+(8-4)^{2}} \\
& =\sqrt{4+16}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Since $2 \sqrt{5}$ is less than 7 , the point lies inside the circle.
56. Find the perimeter of a triangle with vertices $(0,4)$, $(0,0)$ and $(3,0)$.

Ans :

[Board Term-2, 2011]
We have $A(0,4), B(0,0)$, and $C(3,0)$.

$$
\begin{aligned}
A B & =\sqrt{(0-2)^{2}+(0-4)^{2}}=\sqrt{16}=4 \\
B C & =\sqrt{(3-0)^{2}+(0-0)^{2}}=\sqrt{9}=3 \\
C A & =\sqrt{(0-3)^{2}+(4-0)^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

Thus perimeter of triangle is $4+3+5=12$
If Video Links are not Working, Please download updated file of this PDF from following link.

Click Here For Updated PDF of this Book

57. Locate a point Q on line segment $A B$ such that $B Q=\frac{5}{7} \times A B$. What is the ratio of line segment in which $A B$ is divided?
Ans :
[Board Term-2 2013]
We have

$$
\begin{aligned}
B Q & =\frac{5}{7} A B \\
\frac{B Q}{A B} & =\frac{5}{7} \Rightarrow \frac{A B}{B Q}=\frac{7}{5} \\
\frac{A B-B Q}{B Q} & =\frac{7-5}{5} \\
\frac{A Q}{B Q} & =\frac{2}{5}
\end{aligned}
$$

Thus $\quad A Q: B Q=2: 5$
58. Find the distance of the point $(-4,-7)$ from the y -axis.
Ans:
[Board Term-2 2013]
Perpendicular from point $A(-4,-7)$ on y-axis touch it at $(0,-7)$.
Distance between $(-4,-7)$ and $(0,-7)$ is

$$
\begin{aligned}
d & =\sqrt{(0+4)^{2}+(-7+7)^{2}} \\
& =\sqrt{4^{2}+0}=\sqrt{16}=4 \text { units }
\end{aligned}
$$

59. If the distance between the points $(4, k)$ and $(1,0)$ is 5 , then what can be the possible values of k.
Ans :
[Board Term-2 2017]
Using distance formula we have

$$
\begin{aligned}
\sqrt{(4-1)^{2}+(k-0)^{2}} & =5 \\
3^{2}+k^{2} & =25 \\
k^{2} & =25-9=16 \\
k & = \pm 4
\end{aligned}
$$

60. Find the coordinates of the point on y-axis which is
nearest to the point $(-2,5)$.
Ans :
[Board Term-2 SQP 2017]
Point $(0,5)$ on y-axis is nearest to the point $(-2,5)$.
61. In what ratio does the x-axis divide the line segment joining the points $(-4,-6)$ and $(-1,7)$? Find the coordinates of the point of division.

Ans:
[Board Term-2 SQP 2017]
Let x-axis divides the line-segment joining $(-4,-6)$ and $(-1,7)$ at the point $P(x, y)$ in the ratio $1: k$.
Now, the coordinates of point of division P,

$$
\begin{aligned}
(x, y) & =\frac{1(-1)+k(-4)}{k+1}, \frac{1(7)+k(-6)}{k+1} \\
& =\frac{-1-4 k}{k+1}, \frac{7-6 k}{k+1}
\end{aligned}
$$

Since P lies on x axis, therefore $y=0$, which gives

$$
\begin{aligned}
\frac{7-6 k}{k+1} & =0 \\
7-6 k & =0 \\
k & =\frac{7}{6}
\end{aligned}
$$

Hence, the ratio is $1: \frac{7}{6}$ or, $6: 7$ and the coordinates of P are $\left(-\frac{34}{13}, 0\right)$.

TWO MARKS QUESTIONS

62. Find the coordinates of a point A, where $A B$ is diameter of the circle whose centre is $(2,-3)$ and B is the point $(3,4)$.
Ans:
[Board 2019 Delhi]
As per question we have shown the figure below. Since, $A B$ is the diameter, centre C must be the mid point of the diameter of $A B$.

Let the co-ordinates of point A be (x, y). x-coordinate of C,

$$
\begin{aligned}
\frac{x+3}{2} & =2 \\
x+3 & =4 \Rightarrow x=1
\end{aligned}
$$

and y-coordinate of C,

$$
\begin{aligned}
\frac{y+4}{2} & =-3 \\
y+4 & =-6 \Rightarrow y=-10
\end{aligned}
$$

Hence, coordinates of point A is $(1,-10)$.
63. Find a relation between x and y such that the point $P(x, y)$ is equidistant from the points $A(-5,3)$ and $B(7,2)$.
Ans :
[Board Term-2 SQP 2016]
Let $P(x, y)$ is equidistant from $A(-5,3)$ and $B(7,2)$, then we have

$$
\begin{aligned}
A P & =B P \\
\sqrt{(x+5)^{2}+(y-3)^{2}} & =\sqrt{(x-7)^{2}+(y-2)^{2}} \\
(x+5)^{2}+(y-3)^{2} & =(x-7)^{2}+(y-2)^{2} \\
10 x+25-6 y+9 & =-14 x+49-4 y+4 \\
24 x+34 & =2 y+53 \\
24 x-2 y & =19
\end{aligned}
$$

Thus $24 x-2 y-19=0$ is the required relation.
64. The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from $Q(2,-5)$ and $R(-3,6)$, find the co-ordinates of P.
Ans :
[Board Term-2 2016]
Let the point P be $(2 y, y)$. Since $P Q=P R$, we have

$$
\begin{aligned}
\sqrt{(2 y-2)^{2}+(y+5)^{2}} & =\sqrt{(2 y+3)^{2}+(y-6)^{2}} \\
(2 y-2)^{2}+(y+5)^{2} & =(2 y+3)^{2}+(y-6)^{2} \\
-8 y+4+10 y+25 & =12 y+9-12 y+36 \\
2 y+29 & =45 \\
y & =8
\end{aligned}
$$

g116
都

Hence, coordinates of point P are $(16,8)$
65. Find the ratio in which y-axis divides the line segment joining the points $A(5,-6)$ and $B(-1,-4)$. Also find the co-ordinates of the point of division.
Ans :
[Delhi Set I, II, III, 2016]
Let y-axis be divides the line-segment joining $A(5,-6)$ and $B(-1,-4)$ at the point $P(x, y)$ in the ratio $A P: P B=k: 1$
Now, the coordinates of point of division P,

$$
\begin{aligned}
(x, y) & =\left(\frac{k(-1)+1(5)}{k+1}, \frac{k(-4)+1(-6)}{k+1}\right) \\
& =\left(\frac{-k+5}{k+1}, \frac{-4 k-6}{k+1}\right)
\end{aligned}
$$

Since P lies on y axis, therefore $x=0$, which gives

$$
\frac{5-k}{k+1}=0 \Rightarrow k=5
$$

Hence required ratio is $5: 1$,
Now

$$
y=\frac{-4(5)-6}{6}=\frac{-13}{3}
$$

Hence point on y-axis is $\left(0,-\frac{13}{3}\right)$.

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund:
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes $Q R$ code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

66. Find the ratio in which the point $(-3, k)$ divides the line segment joining the points $(-5,-4)$ and $(-2,3)$. Also find the value of k.
Ans :
[Board Term-2 Foreign 2016]
As per question, line diagram is shown below.

Let $A B$ be divides by P in ratio $n: 1$. x co-ordinate for section formula

$$
\begin{aligned}
-3 & =\frac{(-2) n+1(-5)}{n+1} \\
-3(n+1) & =-2 n-5
\end{aligned}
$$

$$
\begin{aligned}
-3 n-3 & =-2 n-5 \\
5-3 & =3 n-2 n \\
2 & =n \\
\frac{n}{1} & =\frac{2}{1} \text { or } 2: 1
\end{aligned}
$$

Now, y co-ordinate,

$$
k=\frac{2(3)+1(-4)}{2+1}=\frac{6-4}{3}=\frac{2}{3}
$$

67. If the point $P(x, y)$ is equidistant from the points $Q(a+b, b-a)$ and $R(a-b, a+b)$, then prove that $b x=a y$.
Ans :
[Board Term-2 Delhi 2012, OD 2016]
We have $|P Q|=|P R|$
$\sqrt{[x-(a+b)]^{2}+[y-(b-a)]^{2}}$
$=\sqrt{[x-(a-b)]^{2}+[y-(b+a)]^{2}}$
$(a+b, b-a)$

$$
\begin{aligned}
& {[x-(a+b)]^{2}+[y-(b-a)]^{2} } \\
&=[x-(a-b)]^{2}+[y-(a+b)]^{2} \\
&-2 x(a+b)-2 y(b-a)=-2 x(a-b)-2 y(a+b) \\
& 2 x(a+b)+2 y(b-a)=2 x(a-b)+2 y(a+b) \\
& 2 x(a+b-a+b)+2 y(b-a-a-b)=0 \\
& 2 x(2 b)+2 y(-2 a)=0 \\
& x b-a y=0 \\
& b x=a y
\end{aligned}
$$

68. Prove that the point $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a right angled isosceles triangle.
Ans:
[Board Term-2 OD 20161
We have $A(3,0), B(6,4)$ and $C(-1,3)$
Now

$$
A B^{2}=(3-6)^{2}+(0-4)^{2}
$$

g120

$$
\begin{aligned}
& =9+16=25 \\
B C^{2} & =(6+1)^{2}+(4-3)^{2} \\
& =49+1=50 \\
C A^{2} & =(-1-3)^{2}+(3-0)^{2} \\
& =16+9=25 \\
A B^{2} & =C A^{2} \text { or, } A B=C A
\end{aligned}
$$

Hence triangle is isosceles.

Also,

$$
25+25=50
$$

or, $\quad A B^{2}+C A^{2}=B C^{2}$
Since Pythagoras theorem is verified, therefore triangle is a right angled triangle.
69. If $A(5,2), B(2,-2)$ and $C(-2, t)$ are the vertices of a right angled triangle with $\angle B=90^{\circ}$, then find the value of t.
Ans :
[Board Term-2 Delhi 2015]
As per question, triangle is shown below.

Now

$$
\begin{aligned}
& A B^{2}=(2-5)^{2}+(-2-2)^{2}=9+16=25 \\
& B C^{2}=(-2-2)^{2}+(t+2)^{2}=16+(t+2)^{2} \\
& A C^{2}=(5+2)^{2}+(2-t)^{2}=49+\left(2-t^{2}\right)
\end{aligned}
$$

Since $\triangle A B C$ is a right angled triangle

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
49+(2-t)^{2} & =25+16+(t+2)^{2} \\
49+4-4 t+t^{2} & =41+t^{2}+4 t+4 \\
53-4 t & =45+4 t \\
8 t & =8 \\
t & =1
\end{aligned}
$$

70. Find the ratio in which the point $P\left(\frac{3}{4}, \frac{5}{12}\right)$ divides the line segment joining the point $A\left(\frac{1}{2}, \frac{3}{2}\right)$ and $(2,-5)$.
Ans :
[Board Term-2 Delhi 2015]
Let P divides $A B$ in the ratio $k: 1$. Line diagram is shown below.

Now $\quad \frac{k(2)+1\left(\frac{1}{2}\right)}{k+1}=\frac{3}{4}$

$$
\begin{aligned}
8 k+2 & =3 k+3 \\
k & =\frac{1}{5}
\end{aligned}
$$

Thus required ratio is $\frac{1}{5}: 1$ or $1: 5$.
71. The points $A(4,7), B(p, 3)$ and $C(7,3)$ are the vertices of a right triangle, right-angled at B. Find the value of p.
Ans :
[Board Term-2 OD 2015]
As per question, triangle is shown below. Here $\triangle A B C$ is a right angle triangle,

$$
\begin{aligned}
& A B^{2}+B C^{2}=A C^{2} \\
&(p-4)^{2}+(3-7)^{2}+(7-p)^{2}+(3-3)^{2} \\
&=(7-4)^{2}+(3-4)^{2} \\
&(p-4)^{2}+(-4)^{2}+(7-p)^{2}+0=(3)^{2}+(-4)^{2} \\
& p^{2}-8 p+16+16+49+p^{2}-14 p=9+16 \\
& 2 p^{2}-22 p+81=25 \\
& 2 p^{2}-22 p+56=0 \\
& p^{2}-11 p+28=0 \\
&(p-4)(p-7)=0 \\
& p=7 \text { or } 4
\end{aligned}
$$

72. If $A(4,3), B(-1, y)$, and $C(3,4)$ are the vertices of a right triangle $A B C$, right angled at A, then find the value of y.
Ans:
[Board Term-2 OD 2015]
As per question, triangle is shown below.

Now $\quad A B^{2}+A C^{2}=B C^{2}$

$$
\begin{aligned}
(4+1)^{2}+(3-y)^{2}+(4-3)^{2} & =(3+1)^{2}+(4-y)^{2} \\
(5)^{2}+(3-y)^{2}+(-1)^{2}+(1)^{2} & =(4)^{2}+(4-y)^{2} \\
25+9-6 y+y^{2}+1+1 & =16+16-8 y+y^{2} \\
36+2 y-32 & =0 \\
2 y+4 & =0 \\
y & =-2
\end{aligned}
$$

73. Show that the points $(a, a), \quad(-a,-a)$ and $(-\sqrt{3} a, \sqrt{3} a)$ are the vertices of an equilateral triangle.
Ans :
[Board Term-2 Foreign 2015]
Let $A(a, a), B(-a,-a)$ and $C(-\sqrt{3} a, \sqrt{3} a)$.

$$
\begin{aligned}
& \text { Now } \quad A B=\sqrt{(a+a)^{2}+(a+a)^{2}} \\
& = \\
& B C=\sqrt{4 a^{2}+4 a^{2}}=2 \sqrt{2} a \\
& = \\
& =\sqrt{(-a+\sqrt{3} a)^{2}+(-a-\sqrt{3} a)^{2}} \\
& = \\
& \begin{aligned}
a^{2}-2 \sqrt{3} a^{2}+3 a^{2}+a^{2}+2 \sqrt{3} a^{2}+3 a^{2}
\end{aligned} \\
& \begin{aligned}
A C= & \sqrt{(a+\sqrt{3} a)^{2}+(a-\sqrt{3} a)^{2}} \\
= & \sqrt{a^{2}+2 \sqrt{3} a^{2}+3 a^{2}+a^{2}-2 \sqrt{3} a^{2}+3 a^{2}} \\
= & 2 \sqrt{2} a
\end{aligned}
\end{aligned}
$$

Since $A B=B C=A C$, therefore $A B C$ is an equilateral triangle.
74. If the mid-point of the line segment joining $A\left[\frac{x}{2}, \frac{y+1}{2}\right]$ and $B(x+1, y-3)$ is $C(5,-2)$, find x, y.
Ans:
[Board Term-2 OD 2012, Delhi 2014]
If the mid-point of the line segment joining $A\left[\frac{x}{2}, \frac{y+1}{2}\right]$ and $B(x+1, y-3)$ is $C(5,-2)$, then at mid point,

$$
\begin{aligned}
\frac{\frac{x}{2}+x+1}{2} & =5 \\
\frac{3 x}{2}+1 & =10 \\
3 x & =18 \Rightarrow x=6
\end{aligned}
$$

also $\quad \frac{\frac{y+1}{2}+y-3}{2}=-2$

$$
\begin{aligned}
& \frac{y+1}{2}+y-3=-4 \\
& y+1+2 y-6=-8 \Rightarrow y=-1
\end{aligned}
$$

We have $A(6,4), B(5,-2), C(7,-2)$.
Now

$$
\begin{aligned}
A B & =\sqrt{(6-5)^{2}+(4+2)^{2}} \\
& =\sqrt{1^{2}+6^{2}}=\sqrt{37} \\
B C & =\sqrt{(5-7)^{2}+(-2+2)^{2}} \\
& =\sqrt{(-2)^{2}+0^{2}}=2 \\
C A & =\sqrt{(7-6)^{2}+(-2-4)^{2}} \\
& =\sqrt{1^{2}+6^{2}}=\sqrt{37} \\
A B & =B C=\sqrt{37}
\end{aligned}
$$

Since two sides of a triangle are equal in length, triangle is an isosceles triangle.
77. If $P(2,-1), Q(3,4), R(-2,3)$ and $S(-3,-2)$ be four points in a plane, show that $P Q R S$ is a rhombus but not a square.
Ans :
[Board Term-2 OD 2012]
We have $P(2,-1), Q(3,4), \quad R(-2,3), S(-3,-2)$

$$
\begin{aligned}
P Q & =\sqrt{1^{2}+5^{2}}=\sqrt{26} \\
Q R & =\sqrt{5^{2}+1^{2}}=\sqrt{26} \\
R S & =\sqrt{1^{2}+5^{2}}=\sqrt{26} \\
P S & =\sqrt{5^{2}+1^{2}}=\sqrt{26}
\end{aligned}
$$

Since all the four sides are equal, $P Q R S$ is a rhombus.

$$
\text { Now } \begin{aligned}
P R & =\sqrt{1^{2}+5^{2}}=\sqrt{26} \\
& =\sqrt{4^{2}+4^{2}}=\sqrt{32} \\
P Q^{2}+Q R^{2} & =2 \times 26=52 \neq(\sqrt{32})^{2}
\end{aligned}
$$

Since $\triangle P Q R$ is not a right triangle, $P Q R S$ is a rhombus but not a square.
78. Show that $A(-1,0), B(3,1), C(2,2)$ and $D(-2,1)$ are the vertices of a parallelogram $A B C D$.
Ans :
[Board Term-2 2012]
Mid-point of $A C$,

$$
\left(\frac{-1+2}{2}, \frac{0+2}{2}\right)=\left(\frac{1}{2}, 1\right)
$$

Mid-point of $B D$,

$$
\left(\frac{3-2}{2}, \frac{1+1}{2}\right)=\left(\frac{1}{2}, 1\right)
$$

Here \quad Mid-point of $A C=$ Mid-point of $B D$
Since diagonals of a quadrilateral bisect each other, $A B C D$ is a parallelogram.
79. If $(3,2)$ and $(-3,2)$ are two vertices of an equilateral triangle which contains the origin, find the third vertex.
Ans :
[Board Term-2 OD 2012]
We have $A(3,2)$ and $B(-3,2)$.
It can be easily seen that mid-point of $A B$ is lying on y -axis. Thus $A B$ is equal distance from x -axis everywhere.

Also
$O D \perp A B$
Hence $3^{r d}$ vertex of $\triangle A B C$ is also lying on y -axis. The digram of triangle should be as given below.

Let $C(x, y)$ be the coordinate of $3^{r d}$ vertex of $\triangle A B C$.
Now

$$
\begin{aligned}
& A B^{2}=(3+3)^{2}+(2-2)^{2}=36 \\
& B C^{2}=(x+3)^{2}+(y-2)^{2} \\
& A C^{2}=(x-3)^{2}+(y-2)^{2}
\end{aligned}
$$

Since $\quad A B^{2}=A C^{2}=B C^{2}$

$$
\begin{equation*}
(x+3)^{2}+(y-2)^{2}=36 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(x-3)^{2}+(y-2)^{2}=36 \tag{2}
\end{equation*}
$$

Since $P(x, y)$ lie on y-axis, substituting $x=0$ in (1) we have

$$
\begin{aligned}
3^{2}+(y-2)^{2} & =36-9=27 \\
(y-2)^{2} & =36-9=27
\end{aligned}
$$

Taking square root both side

$$
\begin{aligned}
y-2 & = \pm 3 \sqrt{3} \\
y & =2 \pm 3 \sqrt{3}
\end{aligned}
$$

Since origin is inside the given triangle, coordinate of C below the origin,

$$
y=2-3 \sqrt{3}
$$

Hence Coordinate of C is $(0,2-3 \sqrt{3})$
80. Find a so that $(3, a)$ lies on the line represented by $2 x-3 y-5=0$. Also, find the co-ordinates of the point where the line cuts the x -axis.
Ans :
[Board Term-2 2012]
Since $(3, a)$ lies on $2 x-3 y-5=0$, it must satisfy this equation. Therefore

$$
\begin{aligned}
2 \times 3-3 a-5 & =0 \\
6-3 a-5 & =0 \\
1 & =3 a \\
a & =\frac{1}{3}
\end{aligned}
$$

Line $2 x-3 y-5=0$ will cut the x-axis at $(x, 0)$. and it must satisfy the equation of line.

$$
2 x-5=0 \Rightarrow x=\frac{5}{2}
$$

Hence point is $\left(\frac{5}{2}, 0\right)$.
81. If the vertices of $\triangle A B C$ are $A(5,-1), B(-3,-2)$, $C(-1,8)$, Find the length of median through A.
Ans:
[Board Term-2 2012]
Let $A D$ be the median. As per question, triangle is shown below.

Since D is mid-point of $B C$, co-ordinates of D,

$$
\begin{aligned}
\left(x_{1}, y_{2}\right) & =\left(\frac{-3-1}{2}, \frac{-2+8}{2}\right) \\
& =(-2,3) \\
A D & =\sqrt{(5+2)^{2}+(-1-3)^{2}} \\
& =\sqrt{(7)^{2}+(4)^{2}} \\
& =\sqrt{49+16}=\sqrt{65} \text { units }
\end{aligned}
$$

Thus length of median is $\sqrt{65}$ units.

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission

82. Find the mid-point of side $B C$ of $\triangle A B C$, with $A(1,-4)$ and the mid-points of the sides through A being $(2,-1)$ and $(0,-1)$.
Ans :
[Board Term-2 2012]
Assume co-ordinates of B and C are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively. As per question, triangle is shown below.

Now

$$
\begin{aligned}
2 & =\frac{1+x_{1}}{2} \Rightarrow x_{1}=3 \\
-1 & =\frac{-4+y_{1}}{2} \Rightarrow y_{1}=2 \\
0 & =\frac{1+x_{2}}{2} \Rightarrow x=-1 \\
-1 & =\frac{-4+y_{2}}{2} \Rightarrow y_{2}=2
\end{aligned}
$$

Thus

$$
\begin{aligned}
& B\left(x_{1}, y_{1}\right)=(3,2), \\
& C\left(x_{2}, y_{2}\right)=(-1,2)
\end{aligned}
$$

So, mid-point of $B C$ is $\left(\frac{3-1}{2}, \frac{2+2}{2}\right)=(1,2)$
83. A line intersects the y -axis and x -axis at the points P
and Q respectively. If $(2,-5)$ is the mid-point of $P Q$, then find the coordinates of P and Q.
Ans :
[Board Term-2 OD 2017]
Let coordinates of P be $(0, y)$ and of Q be $(x, 0)$. $A(2,-5)$ is mid point of $P Q$.
As per question, line diagram is shown below.

Using section formula,

$$
\begin{aligned}
(2,-5) & =\left(\frac{0+x}{2}+\frac{y+0}{2}\right) \\
2 & =\frac{x}{2} \Rightarrow x=4
\end{aligned}
$$

and

$$
-5=\frac{y}{2} \Rightarrow y=-10
$$

Thus P is $(0,-10)$ and Q is $(4,0)$
84. If $\left(1, \frac{p}{3}\right)$ is the mid point of the line segment joining the points $(2,0)$ and $\left(0, \frac{2}{9}\right)$, then show that the line $5 x+3 y+2=0$ passes through the point $(-1,3 p)$.
Ans :
Since $\left(1, \frac{p}{3}\right)$ is the mid point of the line segment joining the points $(2,0)$ and $\left(0, \frac{2}{9}\right)$, we have

$$
\begin{aligned}
\frac{p}{3} & =\frac{0+\frac{2}{9}}{2}=\frac{1}{9} \\
p & =\frac{1}{3}
\end{aligned}
$$

Now the point $(-1,3 p)$ is $(-1,1)$.
The line $5 x+3 y+2=0$, passes through the point $(-1,1)$ as $5(-5)+3(1)+2=0$
85. If two adjacent vertices of a parallelogram are $(3,2)$ and $(-1,0)$ and the diagonals intersect at $(2,-5)$ then find the co-ordinates of the other two vertices.
Ans :
[Board Term-2 Foreign 2017]
Let two other co-ordinates be (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ respectively using mid-point formula.

As per question parallelogram is shown below.

Now

$$
\begin{gathered}
2=\frac{x+3}{2} \Rightarrow x=1 \\
-5=\frac{2+y}{2} \Rightarrow y=-12
\end{gathered}
$$

Again, $\quad \frac{-1+x^{\prime}}{2}=2 \Rightarrow x^{\prime}=5$
and

$$
\frac{0+y^{\prime}}{2}=-5 \Rightarrow y^{\prime}=-10
$$

Hence, coordinates of $C(1,-12)$ and $D(5,-10)$
86. In what ratio does the point $P(-4,6)$ divides the line segment joining the points $A(-6,10)$ and $B(3,-8)$?
Ans :
[Board Term-2 Delhi Compt. 2017]
Let

$$
A P: P B=k: 1
$$

Now

$$
\begin{aligned}
\frac{3 k-6}{k+1} & =-4 \\
3 k-6 & =-4 k-4 \\
7 k & =2 \Rightarrow k=\frac{2}{7}
\end{aligned}
$$

Hence, $\quad A P: P B=2: 7$
87. If the line segment joining the points $A(2,1)$ and $B(5,-8)$ is trisected at the points P and Q, find the coordinates P.
Ans :
[Board Term-2 OD Compt. 2017]
As per question, line diagram is shown below.

Let $P(x, y)$ divides $A B$ in the ratio $1: 2$
Using section formula we get

$$
\begin{aligned}
& x=\frac{1 \times 5+2 \times 2}{1+2}=3 \\
& y=\frac{1 \times-8+2 \times 1}{1+2}=-2
\end{aligned}
$$

Hence coordinates of P are $(3,-2)$.
88. Prove that the points $(2,-2),(-2,1)$ and $(5,2)$ are the vertices of a right angled triangle. Also find the area of this triangle.
Ans :
[Board Term-2 Foreign 2016]
We have $A(2,-2), B(-2,1)$ and $(5,2)$
Now using distance formula we get

$$
\begin{aligned}
A B^{2} & =(2+2)^{2}+(-2-1)^{2} \\
& =16+9=25 \\
A B^{2} & =25 \Rightarrow A B=5
\end{aligned}
$$

Thus $A B=5$.
Similarly

$$
\begin{aligned}
B C^{2} & =(-2-5)^{2}+(1-2)^{2} \\
& =49+1=50 \\
B C^{2} & =50 \Rightarrow B C=5 \sqrt{2} \\
A C^{2} & =(2-5)^{2}+(-2-2)^{2} \\
& =9+16=25 \\
A C^{2} & =25 \Rightarrow A C=5
\end{aligned}
$$

Clearly $A B^{2}+A C^{2}=B C^{2}$

$$
25+25=50
$$

Hence the triangle is right angled,

$$
\text { Area of } \triangle A B C=\frac{1}{2} \times \text { Base } \times \text { Height }
$$

$$
=\frac{1}{2} \times 5 \times 5=\frac{25}{2} \text { sq unit. }
$$

THREE MARKS QUESTIONS

89. Find the ratio in which $P(4, m)$ divides the segment joining the points $A(2,3)$ and $B(6,-3)$. Hence find m.

Ans :

[Board 2018]
Let $P(x, y)$ be the point which divide $A B$ in $k: 1$ ratio.

$$
\text { Now } \begin{aligned}
x & =\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \\
4 & =\frac{k(6)+1(2)}{k+1} \\
4 k+4 & =6 k+2 \\
6 k-4 k & =4-2 \\
2 k & =2 \Rightarrow k=1
\end{aligned}
$$

Thus point P divides the line segment $A B$ in $1: 1$ ratio.

Now

$$
\begin{aligned}
y & =\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
m & =\frac{1 \times(-3)+1(3)}{1+1} \\
& =\frac{-3+3}{2}=0
\end{aligned}
$$

Thus $m=0$.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

90. If the point $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and $B(x, y)$ in the ratio $3: 4$ find the coordinates of B.
Ans :
[Board 2020 Delhi Standard]
From the given information we have drawn the figure as below.

Using section formula,

$$
\begin{aligned}
&-1=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \\
&-1=\frac{3 \times x+4 \times 2}{3+4}=\frac{3 x+8}{7} \\
& 3 x+8=-7 \\
& 3 x=-15 \Rightarrow x=-5 \\
& \text { and } \quad \text { 㮃 } \\
& 2=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
& 2=\frac{3 y+4 \times 5}{3+4}=\frac{3 y+20}{7} \\
& 3 y+20=14 \\
& 3 y=14-20=-6
\end{aligned}
$$

$$
y=-2
$$

Hence, the coordinates of $B(x, y)$ is $(-5,-2)$.
91. Find the ratio in which the segment joining the points $(1,-3)$ and $(4,5)$ is divided by x-axis? Also find the coordinates of this point on x-axis.
Ans :
[Board 2019 Delhi]
Let the required ratio be $k: 1$ and the point on x-axis be $(x, 0)$.

Here,

$$
\left(x_{1}, y_{1}\right)=(1,-3)
$$

and

$$
\left(x_{2}, y_{2}\right)=(4,5)
$$

Using section formula y coordinate, we obtain,

$$
\begin{aligned}
y & =\frac{m y_{2}+n y_{1}}{m+n} \\
0 & =\frac{k \times 5+1 \times 1(-3)}{k+1} \\
0 & =5 k-3 \\
5 k & =3 \Rightarrow k=\frac{3}{5}
\end{aligned}
$$

Hence, the required ratio is $\frac{3}{5}$ i.e $3: 5$.
Now, again using section formula for x, we obtain

$$
\begin{aligned}
x & =\frac{m x_{2}+n x_{1}}{m+n} \\
x & =\frac{k \times(4)+1 \times 1}{k+1} \\
& =\frac{\frac{3}{5}(4)+1}{\frac{3}{5}+1}=\frac{12+5}{3+5}=\frac{17}{8}
\end{aligned}
$$

Co-ordinate of P is $\left(\frac{17}{8}, 0\right)$.
92. Find the point on y-axis which is equidistant from the points $(5,-2)$ and $(-3,2)$.
Ans :
[Board 2019 Delhi]
We have point $A=(5,-2)$ and $B=(-3,2)$
Let $C(0, a)$ be point on y-axis.
According to question, point C is equidistant from A and B.

Thus

$$
A C=B C
$$

Using distance formula we have

$$
\begin{aligned}
& \sqrt{(0-5)^{2}+(a+2)^{2}}=\sqrt{(0+3)^{2}+(a-2)^{2}} \\
& \sqrt{25+a^{2}+4+4 a}=\sqrt{9+a^{2}+4-4 a}
\end{aligned}
$$

$$
\begin{aligned}
25+a^{2}+4+4 a & =9+a^{2}+4-4 a \\
8 a & =-16 \Rightarrow a=-2
\end{aligned}
$$

Hence, point on y-axis is $(0-2)$.
93. If the point $C(-1,2)$ divides internally the line segment joining the points $A(2,5)$ and $B(x, y)$ in the ratio $3: 4$, find the value of $x^{2}+y^{2}$.
Ans :
[Board Term-2 Foreign 2016]
As per question, line diagram is shown below.

We have

$$
\frac{A C}{B C}=\frac{3}{4}
$$

Applying section formula for x co-ordinate,

$$
\begin{aligned}
& -1=\frac{3 x+4(2)}{3+4} \\
& -7=3 x+8 \Rightarrow x=-5
\end{aligned}
$$

Similarly applying section formula for y co-ordinate,

$$
\begin{aligned}
2 & =\frac{3 y+4(5)}{3+4} \\
14 & =3 y+20 \Rightarrow y=-2
\end{aligned}
$$

Thus (x, y) is $(-5,-2)$.
Now

$$
\begin{aligned}
x^{2}+y^{2} & =(-5)^{2}+(-2)^{2} \\
& =25+4=29
\end{aligned}
$$

94. If the co-ordinates of points A and B are $(-2,-2)$ and $(2,-4)$ respectively, find the co-ordinates of P such that $A P=\frac{3}{7} A B$, where P lies on the line segment $A B$.
Ans :
[Board Term-2 OD 2017]
We have

$$
A P=\frac{3}{7} A B \Rightarrow A P: P B=3: 4
$$

As per question, line diagram is shown below.

Section formula :

$$
x=\frac{m x_{2}+n x_{1}}{m+n} \text { and } y=\frac{m y_{2}+n y_{1}}{m+n}
$$

Applying section formula we get

$$
\begin{aligned}
& x=\frac{3 \times 2+4 \times(-2)}{3+4}=-\frac{2}{7} \\
& y=\frac{3 \times(-4)+4 \times(-2)}{3+4}=-\frac{20}{7}
\end{aligned}
$$

Hence P is $\left(-\frac{2}{7},-\frac{20}{7}\right)$.

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.

No Need to Buy Question Bank or Sample Papers.

95. Find the co-ordinate of a point P on the line segment joining $A(1,2)$ and $B(6,7)$ such that $A P=\frac{2}{5} A B$.
Ans:
[Board Term-2 OD 2015]
As per question, line diagram is shown below.

We have

$$
A P=\frac{2}{5} A B \Rightarrow A P: P B=2: 3
$$

Section formula :

$$
x=\frac{m x_{2}+n x_{1}}{m+n} \text { and } y=\frac{m y_{2}+n x_{1}}{m+n}
$$

Applying section formula we get

$$
x=\frac{2 \times 6+3 \times 1}{2+3}=\frac{12+3}{5}=3
$$

and $\quad y=\frac{2 \times 7+3 \times 2}{2+3}=\frac{14+6}{5}=4$
Thus $\quad P(x, y)=(3,4)$
96. If the distance of $P(x, y)$ from $A(6,2)$ and $B(-2,6)$ are equal, prove that $y=2 x$.
Ans :
[Board Term-2, 2015]
We have $P(x, y), A(6,2), B(-2,6)$
Now

$$
\begin{aligned}
P A & =P B \\
P A^{2} & =P B^{2} \\
(x-6)^{2}+(y-2)^{2} & =(x+2)^{2}+(y-6)^{2}
\end{aligned}
$$

$$
\begin{aligned}
-12 x+36-4 y+4 & =4 x+4-12 y+36 \\
-12 x-4 y & =4 x-12 y \\
12 y-4 y & =4 x+12 x \\
8 y & =16 x \\
y & =2 x \quad \text { Hence Proved }
\end{aligned}
$$

97. The co-ordinates of the vertices of $\triangle A B C$ are $A(7,2)$, $B(9,10)$ and $C(1,4)$. If E and F are the mid-points of $A B$ and $A C$ respectively, prove that $E F=\frac{1}{2} B C$.
Ans :
[Board Term-2 2015]
Let the mid-points of $A B$ and $A C$ be $E\left(x_{1}, y_{1}\right)$ and $F\left(x_{2}, y_{2}\right)$. As per question, triangle is shown below.

Co-ordinates of point E,

$$
\left(x_{1}, y_{1}\right)=\left(\frac{9+7}{2}, \frac{10+2}{2}\right)=(8,6)
$$

Co-ordinates of point F,

$$
\left(x_{2}, y_{2}\right)=\left(\frac{7+1}{2}, \frac{2+4}{2}\right)=(4,3)
$$

Length,

$$
\begin{align*}
E F & =\sqrt{(8-4)^{2}+(6-3)^{2}} \\
& =\sqrt{4^{2}+3^{2}} \\
& =5 \text { units } \tag{1}
\end{align*}
$$

Length

$$
\begin{align*}
B C & =\sqrt{(9-1)^{2}+(10-4)^{2}} \\
& =\sqrt{8^{2}+6^{2}} \\
& =10 \text { units }
\end{align*}
$$

From equation (1) and (2) we get

$$
E F=\frac{1}{2} B C
$$

Hence proved.
98. Prove that the diagonals of a rectangle $A B C D$, with vertices $A(2,-1), B(5,-1), C(5,6)$ and $D(2,6)$ are equal and bisect each other.
Ans :
[Board Term-2 2014]

As per question, rectangle $A B C D$, is shown below.

$$
\text { Now } \begin{aligned}
A C & =\sqrt{(5-2)^{2}+(6+1)^{2}} \\
& =\sqrt{3^{2}+7^{2}}=\sqrt{9+49}=\sqrt{58} \\
B D & =\sqrt{(5-2)^{2}+(-1-6)^{2}} \\
& =\sqrt{3^{2}+7^{2}}=\sqrt{9+49}=\sqrt{58}
\end{aligned}
$$

Since $A C=B D=\sqrt{58}$ the diagonals of rectangle $A B C D$ are equal.
Mid-point of $A C$,

$$
=\left(\frac{2+5}{2}, \frac{-1+6}{2}\right)=\left(\frac{7}{2}, \frac{5}{2}\right)
$$

Mid-point of $B D$,

$$
=\left(\frac{2+5}{2}, \frac{6-1}{2}\right)=\left(\frac{7}{2}, \frac{5}{2}\right)
$$

Since the mid-point of diagonal $A C$ and mid-point of diagonal $B D$ is same and equal to $\left(\frac{7}{5}, \frac{5}{2}\right)$. Hence they bisect each other.
99. Find the ratio in which the line segment joining the points $A(3,-3)$ and $B(-2,7)$ is divided by x-axis. Also find the co-ordinates of point of division.

Ans :

[Board Term-2 Delhi 2014]
We know that y co-ordinate of any point on the $x-$ axis will be zero. Let $(x, 0)$ be point on x axis which cut the line. As per question, line diagram is shown below.

Let the ratio be $k: 1$. Using section formula for y coordinate we have

$$
\begin{aligned}
& 0=\frac{1(-3)+k(7)}{1+k} \\
& k=\frac{3}{7}
\end{aligned}
$$

Using section formula for x co-ordinate we have

$$
x=\frac{1(3)+k(-2)}{1+k}=\frac{3-2 \times \frac{3}{7}}{1+\frac{3}{7}}=\frac{3}{2}
$$

Thus co-ordinates of point are $\left(\frac{3}{2}, 0\right)$.
100.Find the ratio in which $(11,15)$ divides the line segment joining the points $(15,5)$ and $(9,20)$.
Ans :
[Board Term-2 2014]
Let the two points $(15,5)$ and $(9,20)$ are divided in the ratio $k: 1$ by point $P(11,15)$.
Using Section formula, we get

$$
\begin{aligned}
x & =\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{2}+m_{1}} \\
11 & =\frac{1(15)+k(9)}{1+k} \\
11+11 k & =15+9 k \\
k & =2
\end{aligned}
$$

Thus ratio is $2: 1$.
101.Find the point on y-axis which is equidistant from the points $(5,-2)$ and $(-3,2)$.
Ans :
[Board Term-2 2014, Delhi 2012]
Let point be $(0, y)$.

$$
\begin{aligned}
5^{2}+(y+2)^{2} & =(3)^{2}+(y-2)^{2} \\
\text { or, } y^{2}+25+4 y+4 & =9-4 y+4
\end{aligned}
$$

$$
8 y=-16 \text { or, } y=-2
$$

or, \quad Point $(0,-2)$
102.The vertices of $\triangle A B C$ are $A(6,-2), B(0,-6)$ and $C(4,8)$. Find the co-ordinates of mid-points of $A B, B C$ and $A C$.
Ans :
[Board Term-2, 2014]
Let mid-point of $A B, B C$ and $A C$ be $D\left(x_{1}, y_{1}\right)$, $E\left(x_{2}, y_{2}\right)$ and $F\left(x_{2}, y_{3}\right)$. As per question, triangle is shown below.

Using section formula, the co-ordinates of the points D, E, F are

For D,

$$
\begin{aligned}
& x_{1}=\frac{6+0}{2}=3 \\
& y_{1}=\frac{-2-6}{2}=-4 \\
& x_{2}=\frac{0+4}{2}=2 \\
& y_{2}=\frac{-6+8}{2}=1
\end{aligned}
$$

For E,

For $F, \quad x_{3}=\frac{4+6}{2}=5$

$$
y_{3}=\frac{-2+8}{2}=3
$$

The co-ordinates of the mid-points of $A B, B C$ and $A C$ are $D(3,-4), E(2,1)$ and $F(5,3)$ respectively.

Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online
103.Find the ratio in which the point $(-3, p)$ divides the line segment joining the points $(-5,-4)$ and $(-2,3)$. Hence find the value of p.
Ans:
[Board Term-2, 2012]
As per question, line diagram is shown below.

Let $X(-3, p)$ divides the line joining of $A(-5,-4)$ and $B(-2,3)$ in the ratio $k: 1$.
The co-ordinates of p are $\left[\frac{-2 k-5}{k+1}, \frac{3 k-4}{k+1}\right]$
But co-ordinates of P are $(-3, p)$. Therefore we get

$$
\frac{-2 k-5}{k+1}=-3 \Rightarrow k=2
$$

and $\quad \frac{3 k-4}{k+1}=p$
Substituting $k=2$ gives

$$
p=\frac{2}{3}
$$

Hence ratio of division is $2: 1$ and $p=\frac{2}{3}$
104. Find the ratio in which the point $p(m, 6)$ divides the
line segment joining the points $A(-4,3)$ and $B(2,8)$. Also find the value of m.
Ans :
[Board Term-2, 2012]
As per question, line diagram is shown below.

Let the ratio be $k: 1$.
Using section formula, we have

$$
\begin{align*}
m & =\frac{2 k+(-4)}{k+1} \tag{1}\\
6 & =\frac{8 k+3}{k+1} \tag{2}\\
8 k+3 & =6 k+6 \\
2 k & =3 \Rightarrow k=\frac{3}{2}
\end{align*}
$$

Thus ratio is $\frac{3}{2}: 1$ or $3: 2$.
Substituting value of k in (1) we have

$$
m=\frac{2\left(\frac{3}{2}\right)+(-4)}{\frac{3}{2}+1}=\frac{3-4}{\frac{5}{2}}=\frac{-1}{\frac{5}{2}}=\frac{-2}{5}
$$

105.If $A(4,-1), B(5,3), C(2, y)$ and $D(1,1)$ are the vertices of a parallelogram $A B C D$, find y.
Ans:
[Board Term-2, 2012]
Diagonals of a parallelogram bisect each other.
Mid-points of $A C$ and $B D$ are same.
Thus $\quad\left(3, \frac{-1+y}{2}\right)=(3,2)$

$$
\frac{-1+y}{2}=2 \Rightarrow y=5
$$

106. Find the co-ordinates of the points of trisection of the line segment joining the points $A(1,-2)$ and $B(-3,4)$.
Ans :
[Board Term-2, 2012]
Let $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ divides $A B$ into 3 equal parts.
Thus P divides $A B$ in the ratio of 1:2.
As per question, line diagram is shown below.

Now $\quad x_{1}=\frac{1(-3)+2(1)}{1+3}=\frac{-3+2}{3}=\frac{-1}{3}$

$$
y_{1}=\frac{1(4)+2(-2)}{1+2}=\frac{4-4}{3}=0
$$

Co-ordinates of P is $\left(-\frac{1}{3}, 0\right)$.
Here Q is mid-point of $P B$.

Thus

$$
\begin{aligned}
& x_{2}=\frac{-\frac{1}{3}+(-3)}{2}=\frac{-10}{6}=\frac{-5}{3} \\
& y_{2}=\frac{0+4}{2}=2
\end{aligned}
$$

Thus co-ordinates of Q is $\left(-\frac{5}{2}, 2\right)$.
107.If (a, b) is the mid-point of the segment joining the points $A(10,-6)$ and $B(k, 4)$ and $a-2 b=18$, find the value of k and the distance $A B$.
Ans :
[Board Term-2, 2012]
We have $A(10,-6)$ and $B(k, 4)$.
If $P(a, b)$ is mid-point of $A B$, then we have

$$
\begin{aligned}
(a, b) & =\left(\frac{k+10}{2}, \frac{-6+4}{2}\right) \\
a & =\frac{k+10}{2} \text { and } b=-1
\end{aligned}
$$

From given condition we have

$$
a-2 b=18
$$

Substituting value $b=-1$ we obtain

$$
\begin{aligned}
a+2 & =18 \Rightarrow a=16 \\
a & =\frac{k+10}{2}=16 \Rightarrow k=22 \\
P(a, b) & =(16,1) \\
A B & =\sqrt{(22-10)^{2}+(4+6)^{2}} \\
& =2 \sqrt{61} \text { units }
\end{aligned}
$$

For Free PDFS of all Sample Papers Visit www.cbse.online

108. Find the ratio in which the line $2 x+3 y-5=0$ divides the line segment joining the points $(8,-9)$ and $(2,1)$. Also find the co-ordinates of the point of division.
Ans :
[Board Term-2, 2012]
Let a point $P(x, y)$ on line $2 x+3 y-5=0$ divides $A B$ in the ratio $k: 1$.

Now

$$
x=\frac{2 k+8}{k+1}
$$

and

$$
y=\frac{k-9}{k+1}
$$

Substituting above value in line $2 x+3 y-5=0$ we have

$$
\begin{aligned}
2\left(\frac{2 k+8}{k+1}\right)+3\left(\frac{k-9}{k+1}\right)-5 & =0 \\
4 k+16+3 k-27-5 k-5 & =0 \\
2 k-16 & =0 \\
k & =8
\end{aligned}
$$

Thus ratio is $8: 1$.
Substituting the value $k=8$ we get

$$
\begin{aligned}
& x=\left(\frac{2 \times 8+8}{8+1}\right)=\frac{8}{3} \\
& y=\left(\frac{8-9}{8+1}\right)=-\frac{1}{9}
\end{aligned}
$$

Thus

$$
P(x, y)=\left(\frac{8}{3},-\frac{1}{9}\right)
$$

109.Find the area of the rhombus of vertices $(3,0),(4,5)$, $(-1,4)$ and $(-2,-1)$ taken in order.
Ans :
[Board Term-2, 2012]
We have $A(3,0), B(4,5), C(-1,4), D(-2,-1)$
Diagonal $A C, \quad d_{1}=\sqrt{(3+1)^{2}+(0-4)^{2}}$

$$
=\sqrt{16+16}=\sqrt{32}
$$

$$
=\sqrt{16 \times 2}=4 \sqrt{2}
$$

Diagonal $B D, \quad d_{2}=\sqrt{(4+2)^{2}+(5+1)^{2}}$

$$
=\sqrt{36+36}=\sqrt{72}
$$

$$
=\sqrt{36 \times 2}=6 \sqrt{2}
$$

Area of rhombus $=\frac{1}{2} \times d_{1} \times d_{2}$

$$
\begin{aligned}
& =\frac{1}{2} 4 \sqrt{2} \times 6 \sqrt{2} \\
& =24 \text { sq. unit. }
\end{aligned}
$$

110.Find the ratio in which the line joining points $(a+b, b+a)$ and $(a-b, b-a)$ is divided by the point (a, b).
Ans :
[Board Term-2, 2013]
Let $A(a+b, b+a), B(a-b, b-a)$ and $P(a, b)$ and P divides $A B$ in $k: 1$, then we have

$$
\begin{aligned}
a & =\frac{k(a-b)+1(a+b)}{k+1} \\
a(k+1) & =k(a-b)+a+b \\
a k+a & =a k-b k+a+b
\end{aligned}
$$

$$
\begin{aligned}
b k & =b \\
k & =1
\end{aligned}
$$

Thus (a, b) divides $A(a+b, b+a)$ and $B(a-b, b-a)$ in $1: 1$ internally.

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.
111.In what ratio does the point $\left(\frac{24}{11}, y\right)$ divides the line segment joining the points $P(2,-2)$ and $Q(3,7)$? Also find the value of y.
Ans:
[Board Term-2 SQP 2012]
As per question, line diagram is shown below.

Let $P\left(\frac{24}{11}, y\right)$ divides the segment joining the points $P(2,-2)$ and $Q(3,7)$ in ratio $k: 1$.
Using intersection formula $x=\frac{m x_{2}+n x_{1}}{m+n}$ we have

$$
\begin{aligned}
\frac{3 k+2}{k+1} & =\frac{24}{11} \\
33 k+22 & =24 k+24 \\
9 k & =2 \Rightarrow k=\frac{2}{9}
\end{aligned}
$$

Hence,

$$
y=\frac{-18+14}{11}=-\frac{4}{11}
$$

112.Find the co-ordinates of the points which divide the line segment joining the points $(5,7)$ and $(8,10)$ in 3 equal parts.
Ans :
[Board Term-2 OD Compt. 2017]
Let $P\left(x_{1}, y_{2}\right)$ and $Q\left(x_{2}, y_{2}\right)$ trisect $A B$. Thus P divides $A B$ in the ratio $1: 2$
As per question, line diagram is shown below.

Using section formula we have,

Now

$$
\begin{aligned}
& x=\frac{1(8)+2(5)}{3}=6 \\
& y=\frac{1(10)+2(7)}{3}=8
\end{aligned}
$$

Thus $P\left(x_{1}, y_{1}\right)$ is $P(6,8)$. Since Q is the mid point of $P B$, we have

$$
\begin{aligned}
& x_{1}=\frac{6+8}{2}=7 \\
& y_{1}=\frac{8+10}{2}=9
\end{aligned}
$$

Thus $Q\left(x_{2}, y_{2}\right)$ is $Q(7,9)$
113.Find the co-ordinates of a point on the x-axis which is equidistant from the points $A(2,-5)$ and $B(-2,9)$. Ans :
[Board Term-2 Delhi Compt. 2017]
Let the point P on the x axis be $(x, 0)$. Since it is equidistant from the given points $A(2,-5)$ and $B(-2,9)$

$$
\begin{aligned}
P A & =P B \\
P A^{2} & =P B^{2} \\
(x-2)^{2}+[0-(-5)]^{2} & =(x-(-2))^{2}+(0-9)^{2} \\
x^{2}-4 x+4+25 & =x^{2}+4 x+4+81 \\
-4 x+29 & =4 x+85 \\
x & =-\frac{56}{8}=-7
\end{aligned}
$$

Hence the point on x axis is $(-7,0)$
114.The line segment joining the points $A(3,-4)$ and $B(1,2)$ is trisected at the points P and Q. Find the coordinate of the $P Q$.
Ans :
[Delhi Compt. Set-II, 2017]
Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ trisect $A B$. Thus P divides $A B$ in the ratio 1:2.
As per question, line diagram is shown below.

Using intersection formula

$$
\begin{aligned}
& x=\frac{1 \times 1+2 \times 3}{1+2}=\frac{7}{3} \\
& y=\frac{1 \times 2+2 \times-4}{1+2}=-2
\end{aligned}
$$

Hence point P is $\left(\frac{7}{3},-2\right)$
115. Show that $\triangle A B C$ with vertices $A(-2,0), B(0,2)$ and $C(2,0)$ is similar to $\triangle D E F$ with vertices
$D(-4,0), F(4,0)$ and $E(0,4)$.
Ans :
[Board Term-2 Delhi 2017, Foreign 2017]
Using distance formula

$$
\begin{aligned}
A B & =\sqrt{(0+2)^{2}+(2-0)^{2}}=\sqrt{4+4} \\
& =2 \sqrt{2} \text { units } \\
B C & =\sqrt{(2-0)^{2}+(0-2)^{2}}=\sqrt{4+4} \\
& =2 \sqrt{2} \text { units } \\
C A & =\sqrt{(-2-2)^{2}+(0-0)^{2}}=\sqrt{16} \\
& =4 \text { units }
\end{aligned}
$$

and

$$
\begin{aligned}
D E & =\sqrt{(0+4)^{2}+(4-0)^{2}}=\sqrt{32} \\
& =4 \sqrt{2} \text { units } \\
E F & =\sqrt{(4-0)^{2}+(0-4)^{2}}=\sqrt{32} \\
& =4 \sqrt{2} \text { units } \\
F D & =\sqrt{(-4-4)^{2}+(0-0)^{2}}=\sqrt{64} \\
& =8 \text { units }
\end{aligned}
$$

$$
\begin{gathered}
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} \\
\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Since ratio of the corresponding sides of two similar Δs is equal, we have

$$
\triangle A B C \sim \Delta D E F \quad \text { Hence Proved. }
$$

For Free PDFS of all Sample Papers Visit

 www.c bse.online116.Find the co-ordinates of the point on the y - axis which is equidistant from the points $A(5,3)$ and $B(1,-5)$
Ans:
[Board Term-2 OD Compt. 2017]
Let the points on y-axis be $P(0, y)$
Now

$$
\begin{aligned}
P A & =P B \\
P A^{2} & =P B^{2} \\
(0-5)^{2}+(y-3)^{2} & =(0-1)^{2}+(y+5)^{2} \\
5^{2}+y^{2}-6 y+9 & =1+y^{2}+10 y+25 \\
16 y & =8 \Rightarrow y=\frac{1}{2}
\end{aligned}
$$

Hence point on y-axis is $\left(0, \frac{1}{2}\right)$.
117. In the given figure $\triangle A B C$ is an equilateral triangle of side 3 units. Find the co-ordinates of the other two vertices.

Ans :
[Board Term-2 Foreign 2017]
The co-ordinates of B will be $(2+3,0)$ or.$(5,0)$
Let co-ordinates of C be (x, y). Since triangle is equilateral, we have

$$
\begin{aligned}
A C^{2} & =B C^{2} \\
(x-2)^{2}(y-0)^{2} & =(x-5)^{2}+(y-0)^{2} \\
x^{2}+4-4 x+y^{2} & =x^{2}+25-10 x+y^{2} \\
6 x & =21 \\
x & =\frac{7}{2}
\end{aligned}
$$

and

$$
\begin{gathered}
(x-2)^{2}+(y-0)^{2}=9 \\
\left(\frac{7}{2}-2\right)^{2}+y^{2}=9 \\
\frac{9}{4}+y^{2}=9 \text { or, } y^{2}=9-\frac{9}{4} \\
y^{2}=\frac{27}{4}=\frac{3 \sqrt{3}}{2}
\end{gathered}
$$

Hence C is $\left(\frac{7}{2}, \frac{3 \sqrt{3}}{2}\right)$.
118. Find the co-ordinates of the points of trisection of the line segment joining the points $(3,-2)$ and $(-3,-4)$.
Ans:
[Board Term-2 Foreign 2017]
Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ trisect the line joining $A(3,-2)$ and $B(-3,-4)$.
As per question, line diagram is shown below.

Thus P divides $A B$ in the ratio 1:2.
Using intersection formula $x=\frac{m x_{2}+n x_{1}}{m+n} \quad$ and $y=\frac{m y_{2}+n y_{1}}{m+n}$

$$
\begin{aligned}
& x_{1}=\frac{1(-3)+2(3)}{1+2}=1 \\
& y_{1}=\frac{1(-4)+2(-2)}{1+2}=-\frac{8}{3}
\end{aligned}
$$

and

Thus we have $x=1$ and $y=-\frac{8}{3}$
Since Q is at the mid-point of $P B$, using mid-point formula
and

$$
\begin{aligned}
& x_{2}=\frac{1-3}{2}=-1 \\
& y_{2}=\frac{-\frac{8}{3}+(-4)}{2}=-\frac{10}{3}
\end{aligned}
$$

Hence the co-ordinates of P and Q are $\left(1,-\frac{8}{3}\right)$ and $\left(-1,-\frac{10}{3}\right)$
119.If the distances of $P(x, y)$ from $A(5,1)$ and $B(-1,5)$ are equal, then prove that $3 x=2 y$.
Ans :
[Board Term-2 OD 2016]
Since $P(x, y)$ is equidistant from the given points $A(5,1)$ and $B(-1,5)$,

$$
\begin{aligned}
P A & =P B \\
P A^{2} & =P B^{2}
\end{aligned}
$$

Using distance formula,

$$
\begin{aligned}
(5-x)^{2}+(1-y)^{2} & =(-1-x)^{2}+(5-y)^{2} \\
(5-x)^{2}+(1-y)^{2} & =(1+x)^{2}+(5-y)^{2} \\
25-10 x+1-2 y & =1+2 x+25-10 y \\
-10 x-2 y & =2 x-10 y \\
8 y & =12 x \\
3 x & =2 y \quad \text { Hence proved. }
\end{aligned}
$$

FOUR MARKS QUESTIONS

120.To conduct Sports Day activities, in your rectangular school ground $A B C D$, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1 m from each other along $A D$, as shown in Figure. Niharika runs $1 / 4$ th the distance $A D$ on the 2 nd line and posts a green flag. Preet runs $\frac{1}{5}$ th distance $A D$ on the eighth line and posts a red flag.
(i) What is the distance between the two flags?
(ii) If Rashmi has to post a blue flag exactly half way between the line segment joining the two flags, where should she post the blue flag?

Ans :
[Board 2020 Delhi Basic]
We assume A as origin $(0,0), A B$ as x-axis and $A D$ as y-axis.
Niharika runs in the $2^{\text {nd }}$ line with green flag and distance covered (parallel to $A D$),

$$
=\frac{1}{4} \times 100=25 \mathrm{~m}
$$

Thus co-ordinates of green flag are $(2,25)$ and we label it as P i.e., $P(2,25)$.
Similarly, Preet runs in the eighth line with red flag and distance covered (parallel to $A D$),

$$
=\frac{1}{5} \times 100=20 \mathrm{~m}
$$

Co-ordinates of red flag are $(8,20)$ and we label it as Q i.e., $Q(8,20)$
(i) Now, using distance formula, distance between green flag and red flag,

$$
\begin{aligned}
P Q & =\sqrt{(8-2)^{2}+(20-25)^{2}} \\
& =\sqrt{6^{2}+(-5)^{2}}=\sqrt{36+25} \\
& =\sqrt{61} \mathrm{~m}
\end{aligned}
$$

(ii) Also, Rashmi has to post a blue flag the midpoint of $P Q$, therefore by using mid-point formula, we obtain $\left(\frac{2+8}{2}, \frac{25+20}{2}\right)$ i.e. $\left(5, \frac{45}{2}\right)$
Hence, the blue flag is in the fifth line, at a distance of $\frac{45}{2}$ i.e., 22.5 m along the direction parallel to $A D$.
121.Two friends Seema and Aditya work in the same office at Delhi. In the Christmas vacations, both decided to go to their hometown represented by Town A and Town B respectively in the figure given below. Town A and Town B are connected by trains from the same
station C (in the given figure) in Delhi. Based on the given situation answer the following questions:

(i) Who will travel more distance, Seema or Aditya, to reach to their hometown?
(ii) Seema and Aditya planned to meet at a location D situated at a point D represented by the midpoint of the line joining the points represented by Town A and Town B. Find the coordinates of the point represented by the point D.
(iii) Find the area of the triangle formed by joining the points represented by A, B and C.
Ans :
[Board 2020 SQP Standard]
From the given figure, the coordinates of points A, B and C are $(1,7),(4,2)$ and $(-4,4)$ respectively.
(i) Distance travelled by seema

$$
\begin{aligned}
C A & =\sqrt{(-4-1)^{2}+(4-7)^{2}} \\
& =\sqrt{(-5)^{2}+(-3)^{2}} \\
& =\sqrt{25+9} \quad=\sqrt{34}
\end{aligned}
$$

units
Thus distance travelled by seema is $\sqrt{34}$ units.
Similarly, distance travelled by Aditya

$$
\begin{aligned}
C B & =\sqrt{(4+4)^{2}+(4-2)^{2}} \\
& =\sqrt{8^{2}+2^{2}}=\sqrt{64+4} \\
& =\sqrt{68} \text { units }
\end{aligned}
$$

Distance travelled by Aditya is $\sqrt{68}$ units and Aditya travels more distance.
(ii) Since, D is mid-point of town A and town B

$$
D=\left(\frac{1+4}{2}, \frac{7+2}{2}\right)=\left(\frac{5}{2}, \frac{9}{2}\right)
$$

(iii) Removed from syllabus

> SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission

122.In a classroom, 4 friends are seated at the points A, B, C, and D as shown in Figure. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, Don't you think $A B C D$ is a square? Chameli disagrees. Using distance formula, find which of them is correct.

Ans :
[Board 2020 Delhi Basic]
Coordinates of points A, B, C, D are $A(3,4), B(6,7)$, $C(9,4)$ and $D(6,1)$.
Distance formula, $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Now

$$
\begin{aligned}
A B & =\sqrt{(3-6)^{2}+(4-7)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \text { units } \\
B C & =\sqrt{(6-9)^{2}+(7-4)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \text { units } \\
C D & =\sqrt{(9-6)^{2}+(4-1)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \text { units } \\
D A & =\sqrt{(6-3)^{2}+(1-4)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \text { units }
\end{aligned}
$$

Now $\quad A C=\sqrt{(3-9)^{2}+(4-4)^{2}}$
$=\sqrt{36+0}=6$ units

$$
D B=\sqrt{(6-6)^{2}+(1-7)^{2}}
$$

$$
=\sqrt{0+36}=6 \text { units }
$$

Since, $A B=B C=C D=D A$ and $A C=D B, A B C D$ is a square and Champa is right.
123. Find the ratio in which the line $x-3 y=0$ divides the line segment joining the points $(-2,-5)$ and $(6,3)$. Find the coordinates of the point of intersection.
Ans :
[Board 2019 OD]
Let $k: 1$ be the ratio in which line $x-3 y=0$ divides
the line segment at $p(x, y)$.

Using section formula, we get

$$
\begin{align*}
& x=\frac{m x_{2}+n x_{1}}{m+n}=\frac{k \times 6+1 \times(-2)}{k+1} \\
& x=\frac{6 k-2}{k+1} \tag{1}\\
& y=\frac{m y_{2}+n y_{1}}{m+n}=\frac{k \times 3+1 \times(-5)}{k+1} \\
& y=\frac{3 k-5}{k+1} \tag{2}
\end{align*}
$$

and

The point $P(x, y)$ lies on the line, hence it satisfies the equation of the given line.

$$
\begin{aligned}
\frac{6 k-2}{k+1}-3\left(\frac{3 k-5}{k+1}\right) & =0 \\
6 k-2-3(3 k-5) & =0 \\
6 k-2-9 k+15 & =0 \\
-3 k+13 & =0 \Rightarrow k=\frac{13}{3}
\end{aligned}
$$

Hence, the required ratio is $13: 3$.
Now, substituting value of k in x and y, we get

$$
\begin{aligned}
& x=\frac{6 \times \frac{13}{3}-2}{\frac{13}{3}+1}=\frac{78-6}{16}=\frac{72}{16}=\frac{9}{2} \\
& y=\frac{3 \times \frac{13}{3}-5}{\frac{13}{3}+1}=\frac{8 \times 3}{16}=\frac{24}{16}=\frac{3}{2}
\end{aligned}
$$

Hence, the co-ordinates of point of intersection

$$
P(x, y)=\left(\frac{9}{2}, \frac{3}{2}\right)
$$

124.Point A lies on the line segment $X Y$ joining $X(6,-6)$ and $Y(-4,-1)$ in such a way that $\frac{X A}{X Y}=\frac{2}{5}$. If point A also lies on the line $3 x+k(y+1)=0$, find the value of k.
Ans:
[Board 2019 OD]
As per given information in question we have drawn the figure given below.

We use section formula for point $A(x, y)$.
Here, $m_{1}=2, m_{2}=3, x_{1}=6, x_{2}=-4, y_{1}=-6$ and $y_{2}=-1$
Now $\quad x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{2 \times(-4)+3(6)}{2+3}$

$$
=\frac{-8+18}{5}=\frac{10}{5}=2
$$

and

$$
\begin{aligned}
y & =\frac{m_{1} y_{2}+m_{2} y_{2}}{m_{1}+m_{2}}=\frac{2 \times(-1)+3(-6)}{2+3} \\
& =\frac{-2-18}{5}=\frac{-20}{5}=-4
\end{aligned}
$$

Hence, coordinates of point A is $(2,-4)$.
Since point A also lies on the line $3 x+k(y+1)=0$, its coordinates must satisfies this line.

Thus

$$
\begin{aligned}
3(2)+k(-4+1) & =0 \\
6+(-3 k) & =0 \\
3 k & =6 \Rightarrow k=2
\end{aligned}
$$

Hence, value of k is 2 .

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

125.Find the ratio in which the y-axis divides the line segment joining the points $(-1,-4)$ and $(5,-6)$. Also find the coordinates of the point of intersection.
Ans :
[Board 2019 OD]
Let points $P(0, y)$ divides the line joining the point $A(-1,-4)$ and $B(5,-6)$ in ratios $k: 1$.
As per given information in question we have drawn figure below.

Section formula is given by

$$
\begin{equation*}
x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \tag{2}
\end{equation*}
$$

Here, $\quad m_{1}=k$ and $m_{2}=1$,

$$
\begin{aligned}
& x_{1}=-1 \text { and } x_{2}=5 \\
& y_{1}=-4 \text { and } y_{2}=-6
\end{aligned}
$$

Now

$$
0=\frac{k \times 5+1 \times(-1)}{k+1}
$$

$$
5 k-1=0 \Rightarrow k=\frac{1}{5}
$$

Substitute value of k in eq (2), we get

$$
\begin{aligned}
y & =\frac{k(-6)+1(-4)}{k+1} \\
& =\frac{\frac{1}{5}(-6)+1(-4)}{\frac{1}{5}+1}=\frac{-26}{6}=\frac{-13}{3}
\end{aligned}
$$

Hence, value of k is $\frac{1}{5}$ and required point is $\left(0,-\frac{13}{3}\right)$
126.If $A(-2,1), B(a, 0), C(4, b)$ and $D(1,2)$ are the vertices of a parallelogram $A B C D$, find the values of a and b. Hence find the lengths of its sides.
Ans :
[Board 2018]
As per information given in question we have drawn the figure below.

Here $A B C D$ is a parallelogram and diagonals $A C$ and $B D$ bisect each other. Therefore mid point of $B D$ is same as mid point of $A C$.
and

$$
\begin{aligned}
\left(\frac{a+1}{2}, \frac{2}{2}\right) & =\left(\frac{-2+4}{2}, \frac{b+1}{2}\right) \\
\frac{a+1}{2} & =1 \Rightarrow a=1
\end{aligned}
$$

127.If $P(9 a-2,-b)$ divides the line segment joining $A(3 a+1,-3)$ and $B(8 a, 5)$ in the ratio $3: 1$. find the values of a and b.
Ans :
[Board Term-2 SQP 2016]
Using section formula we have

$$
\begin{align*}
9 a-2 & =\frac{3(8 a)+1+(3 a+1)}{3+1} \tag{1}\\
-b & =\frac{3(5)+1(-3)}{3+1} \tag{2}
\end{align*}
$$

Form (2) $\quad-b=\frac{15-3}{4}=3 \Rightarrow b=-3$
From (1), $\quad 9 a-2=\frac{24 a+3 a+1}{4}$

$$
\begin{aligned}
4(9 a-2) & =27 a+1 \\
36 a-8 & =27 a+1 \\
9 a & =9 \Rightarrow a=1
\end{aligned}
$$

128.Find the coordinates of the point which divide the line segment joining $A(2,-3)$ and $B(-4,-6)$ into three equal parts.
Ans :
[Board Term-2 SQP 2016]
Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ trisect the line joining $A(3,-2)$ and $B(-3,-4)$.
As per question, line diagram is shown below. P divides $A B$ in the ratio of $1: 2$ and Q divides $A B$ in the ratio 2:1.

By section formula

$$
\begin{aligned}
x_{1} & =\frac{m x_{2}+n x_{1}}{1+2} \text { and } y=\frac{m y_{2}+n y_{1}}{m+n} \\
P\left(x_{1}, y_{1}\right) & =\left(\frac{1(-4)+2(2)}{2+1}, \frac{2(-6)+1(-3)}{2+1}\right) \\
& =\left(\frac{-4+4}{3}, \frac{-6-(-6)}{3}\right)=(0,-4) \\
Q\left(x_{2}, y_{2}\right) & =\left(\frac{2(-4)+1(2)}{2+1}, \frac{2(-6)+1(-3)}{2+1}\right) \\
& =\left(\frac{-8+2}{3},-\frac{12+(-3)}{3}\right)=(-2,-5)
\end{aligned}
$$

129.The base $B C$ of an equilateral triangle $A B C$ lies on y-axis. The co-ordinates of point C are $(0,3)$. The origin is the mid-point of the base. Find the coordinates of the point A and B. Also find the coordinates of another point D such that $B A C D$ is a rhombus.
Ans :
[Board Term-2 Foreign 2015]
As per question, diagram of rhombus is shown below.

Co-ordinates of point B are $(0,3)$.
Thus

$$
B C=6 \text { unit }
$$

Let the co-ordinates of point A be $(x, 0)$
Now

$$
A B=\sqrt{x^{2}+9}
$$

Since $A B=B C$, thus we have

$$
\begin{aligned}
x^{2}+9 & =36 \\
x^{2} & =27 \Rightarrow x= \pm 3 \sqrt{3}
\end{aligned}
$$

Co-ordinates of point A is $(3 \sqrt{3}, 0)$.
Since $A B C D$ is a rhombus,

$$
A B=A C=C D=D B
$$

Thus co-ordinate of point D is $(-3 \sqrt{3}, 0)$.
130. The base $Q R$ of an equilateral triangle $P Q R$ lies on x-axis. The co-ordinates of point Q are $(-4,0)$ and the origin is the mid-point of the base. find the coordinates of the point P and R.
Ans :
[Board Term-2 Delhi 2017, Foreign 2015]
As per question, line diagram is shown below.

Co-ordinates of point R is $(4,0)$.
Thus

$$
Q R=8 \text { units }
$$

Let the co-ordinates of point P be $(0, y)$
Since

$$
P Q=Q R
$$

$$
\begin{aligned}
(-4-0)^{2}+(0-y)^{2} & =64 \\
16+y^{2} & =64 \\
y & = \pm 4 \sqrt{3}
\end{aligned}
$$

Coordinates of P are $(0,4 \sqrt{3})$ or $(0,-4 \sqrt{3})$
Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

131.The vertices of quadrilateral $A B C D$ are $A(5,-1)$, $B(8,3), C(4,0)$ and $D(1,-4)$. Prove that $A B C D$ is a rhombus.
Ans :
[Board Term-2 Delhi 2015]
The vertices of the quadrilateral $A B C D$ are
$A(5,-1), B(8,3), C(4,0) D(1,-4)$.
Now

$$
\begin{aligned}
A B & =\sqrt{(8-5)^{2}+(3+1)^{2}} \\
& =\sqrt{3^{2}+4^{2}}=5 \mathrm{units}
\end{aligned}
$$

Diagonal,

$$
\begin{aligned}
A C & =\sqrt{(5-4)^{2}+(-1-0)^{2}} \\
& =\sqrt{1^{2}+1^{2}}=\sqrt{2} \text { units }
\end{aligned}
$$

Diagonal

$$
\begin{aligned}
B D & =\sqrt{(8-1)^{2}+(3+4)^{2}} \\
& =\sqrt{(7)^{2}+(7)^{2}}=7 \sqrt{2} \text { units }
\end{aligned}
$$

As the length of all the sides are equal but the length of the diagonals are not equal. Thus $A B C D$ is not square but a rhombus.
132.The co-ordinates of vertices of $\triangle A B C$ are $A(0,0)$, $B(0,2)$ and $C(2,0)$. Prove that $\triangle A B C$ is an isosceles triangle. Also find its area.
Ans :
[Board Term-2 Delhi 2014]

Using distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ we have

$$
\begin{aligned}
& A B=\sqrt{(0-0)^{2}+(0-2)^{2}}=\sqrt{4}=2 \\
& A C=\sqrt{(0-2)^{2}+(0-0)^{2}}=\sqrt{4}=2 \\
& B C=\sqrt{(0-2)^{2}+(2-0)^{2}}=\sqrt{4+4}=2 \sqrt{2}
\end{aligned}
$$

Clearly, $A B=A C \neq B C$
Thus $\triangle A B C$ is an isosceles triangle.
Now, $\quad A B^{2}+A C^{2}=2^{2}+2^{2}=4+4=8$
also, $\quad B C^{2}=(2 \sqrt{2})^{2}=8$

$$
A B^{2}+A C^{2}=B C^{2}
$$

Thus $\triangle A B C$ is an isosceles right angled triangle.
Now, area of $\triangle A B C$

$$
\begin{aligned}
& \Delta_{A B C}=\frac{1}{2} \text { base } \times \text { height } \\
&=\frac{1}{2} \times 2 \times 2 \\
&=2 \text { sq. units. } \\
&=\frac{1}{2}[3 \times(-1)+7 \times 2+5 \times(-1)] \\
&=\frac{1}{2}[-3+14-5] \\
&=3 \text { units }
\end{aligned}
$$

Area $\square_{A B C D}=\frac{5}{2}+3=\frac{11}{2}$ sq. units.
133.Find the ratio is which the line segment joining the points $A(3,-3)$ and $B(-2,7)$ is divided by x-axis. Also find the co-ordinates of the point of division.
Ans:
[Board Term-2 OD 2014]
We have $A(3,-3)$ and $B(-2,7)$.
At any point on x -axis y-coordinate is always zero.
So, let the point be $(x, 0)$ that divides line segment $A B$ in ratio $k: 1$.

Now

$$
\begin{aligned}
(x, 0) & =\left(\frac{-2 k+3}{k+1}, \frac{7 k-3}{k+1}\right) \\
\frac{7 k-3}{k+1} & =0 \\
7 k-3 & =0 \Rightarrow k=\frac{3}{7}
\end{aligned}
$$

The line is divided in the ratio of $3: 7$.
Now $\quad \frac{-2 k+3}{k+1}=x$

$$
\begin{aligned}
\frac{-2 \times \frac{3}{7}+3}{\frac{3}{7}+1} & =x \\
\frac{-6+21}{3+7} & =x \\
\frac{15}{10} & =x \Rightarrow x=\frac{3}{2}
\end{aligned}
$$

The coordinates of the point is $\left(\frac{3}{2}, 0\right)$.
134.Determine the ratio in which the straight line $x-y-2=0$ divides the line segment joining $(3,-1)$ and $(8,9)$.
Ans :
[Board Term-2, 2012]
Let co-ordinates of P be $\left(x_{1}, y_{1}\right)$ and it divides line $A B$ in the ratio $k: 1$.

Now

$$
\begin{aligned}
& x_{1}=\frac{8 k+3}{k+1} \\
& y_{1}=\frac{9 k-1}{k+1}
\end{aligned}
$$

Since point $P\left(x_{1}, y_{1}\right)$ lies on line $x-y-2=0$, so coordinates of P must satisfy the equation of line.
Thus $\quad \frac{8 k+3}{k+1}-\frac{9 k-1}{k+1}-2=0$

$$
\begin{aligned}
8 k+3-9 k+1-2 k-2 & =0 \\
-3 k+2 & =0 \Rightarrow k=\frac{2}{3}
\end{aligned}
$$

So, line $x-y-2=0$ divides $A B$ in the ratio $2: 3$
135.The line segment joining the points $A(3,2)$ and $B(5,1)$ is divided at the point P in the ratio $1: 2$ and P lies on the line $3 x-18 y+k=0$. Find the value of k.
Ans:
[Board Term-2 Delhi 2012]
Let co-ordinates of P be $\left(x_{1}, y_{1}\right)$ and it divides line $A B$ in the ratio 1:2.

$$
\begin{array}{cc}
A \xrightarrow[(3,2)]{ } & P \\
1: 2 \\
& x_{1}=\frac{m x_{2}+n x_{1}}{m+n}=\frac{1 \times 5+2 \times 3}{1+2}=\frac{11}{3} \\
& y_{2}=\frac{m y_{2}+n y_{1}}{m+n}=\frac{1 \times 2+2 \times 2}{1+2}=\frac{5}{3}
\end{array}
$$

Since point $P\left(x_{1}, y_{1}\right)$ lies on line, $3 x-18 y+k=0$, so co-ordinates of P must satisfy the equation of line.

$$
\begin{aligned}
3 \times \frac{11}{3}-18 \times \frac{5}{3}+k & =0 \\
k & =19
\end{aligned}
$$

136.If $R(x, y)$ is a point on the line segment joining the points $P(a, b)$ and $Q(b, a)$, then prove that $x+y=a+b$.
Ans:
[Board Term-2, 2012 Set (28)]
As per question line is shown below.

Let point $R(x, y)$ divides the line joining P and Q in the ratio $k: 1$, then we have
and

$$
x=\frac{k b+a}{k+1}
$$

$$
y=\frac{k a+b}{k+1}
$$

Adding,

$$
\begin{aligned}
x+y & =\frac{k b+a+k a+b}{k+1} \\
& =\frac{k(a+b)+(a+b)}{k+1} \\
& =\frac{(k+1)(a+b)}{k+1}=a+b \\
x+y & =a+b \quad \text { Hence Proved }
\end{aligned}
$$

137.(i) Derive section formula.
(ii) In what ratio does $(-4,6)$ divides the line segment joining the point $A(-6,4)$ and $B(3,-8)$
Ans:
[Board Term-2 Delhi 2014]
(i) Section Formula : Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are two points. Let $P(x, y)$ be a point on line, joining A and B, such that P divides it in the ratio $m_{1}: m_{2}$.
Now $\quad(x, y)=\left(\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{1}+m_{2}}, \frac{m_{2} y_{1}+m_{1} y_{2}}{m_{1}+m_{2}}\right)$

Proof : Let $A B$ be a line segment joining the points. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$.
Let P divides $A B$ in the ratio $m_{1}: m_{2}$. Let P have coordinates (x, y).
Draw $A L, P M, P N, \perp$ to x-axis
It is clear form figure, that
also,

$$
\begin{aligned}
A R & =L M=O M-O L=x-x_{1} \\
P R & =P M-R M=y-y_{1} \\
P S & =O N-O M=x_{2}-x \\
B S & =B N-S N=y_{2}-y
\end{aligned}
$$

Now

$$
\begin{equation*}
\triangle A P R \sim \triangle P B S \tag{AAA}
\end{equation*}
$$

Thus

$$
\frac{A R}{P S}=\frac{P R}{B S}=\frac{A P}{P B}
$$

and

$$
\frac{A R}{P S}=\frac{A P}{P B}
$$

$$
\begin{aligned}
\frac{x-x_{1}}{x_{2}-x} & =\frac{m_{1}}{m_{2}} \\
m_{2} x-m_{2} x_{1} & =m_{1} x_{2}-m_{1} x \\
x & =\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}
\end{aligned}
$$

Now

$$
\frac{P R}{B S}=\frac{A P}{P B}
$$

$$
\begin{aligned}
\frac{y-y_{2}}{y_{2}-y} & =\frac{m_{1}}{m_{2}} \\
y & =\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
\end{aligned}
$$

Thus co-ordinates of P are $\left(\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{1}+m_{2}}, \frac{m_{2} y_{1}+m_{1} y_{2}}{m_{1}+m_{2}}\right)$
(ii) Assume that $(-4,6)$ divides the line segment joining the point $A(-6,4)$ and $B(3,-8)$ in ratio $k: 1$
Using section formula for x co-ordinate we have

$$
\begin{aligned}
-4 & =\frac{k(3)-6}{k+1} \\
-4 k-4 & =3 k-6 \Rightarrow k=\frac{2}{7}
\end{aligned}
$$

138. $(1,-1),(0,4)$ and $(-5,3)$ are vertices of a triangle. Check whether it is a scalene triangle, isosceles triangle or an equilateral triangle. Also, find the length of its median joining the vertex $(1,-1)$ the mid-point of the opposite side.

Ans :

[Board Term-2, 2015]
Let the vertices of $\triangle A B C$ be $A(1,-1), B(0$ 人) and $C(-5,3)$. Let $D(x, y)$ be mid point of $B C$. N triangle is shown below.

Using distance formula, we get
$A B=\sqrt{(1-0)^{2}+(-1-4)^{2}}=\sqrt{1+5^{2}}=\sqrt{26}$
$B C=\sqrt{(-5-0)^{2}+(3-4)^{2}}=\sqrt{25+1}=\sqrt{26}$
$A C=\sqrt{(-5-1)^{2}+(3+1)^{2}}=\sqrt{36+16}=2 \sqrt{13}$
Since $A B=B C \neq A C$, triangle $\triangle A B C$ is isosceles.
Now, using mid-section formula, the co-ordinates of mid-point of $B C$ are

$$
\begin{aligned}
x & =\frac{-5+0}{2}=-\frac{5}{2} \\
y & =\frac{3+4}{2}=\frac{7}{2} \\
D(x, y) & =\left(-\frac{5}{2}, \frac{7}{2}\right)
\end{aligned}
$$

Length of median $A D$,

$$
\begin{aligned}
A D & =\sqrt{\left(\frac{-5}{2}-1\right)^{2}+\left(\frac{7}{2}+1\right)^{2}} \\
& =\sqrt{\left(\frac{-7}{2}\right)^{2}+\left(\frac{9}{2}\right)^{2}} \\
& =\sqrt{\frac{130}{4}}=\frac{\sqrt{130}}{2} \text { square unit }
\end{aligned}
$$

Thus length of median $A D$ is $\frac{\sqrt{130}}{2}$ units.
139.Point $(-1, y)$ and $B(5,7)$ lie on a circle with centre $O(2,-3 y)$. Find the values of y. Hence find the radius of the circle.

Ans :

[Board Term-2 Delhi 2014]
Since, $A(-1, y)$ and $B(5,7)$ lie on a circle with centre $O(2,-3 y), O A$ and $O B$ are the
 radius of circle and are equal. Thus
g214

$$
\begin{aligned}
O A & =O B \\
\sqrt{(-1-2)^{2}+(y+3 y)^{2}} & =\sqrt{(5-2)^{2}+(7+3 y)^{2}} \\
9+16 y^{2} & =9 y^{2}+42 y+58
\end{aligned}
$$

$$
\begin{aligned}
y^{2}-6 y-7 & =0 \\
(y+1)(y-7) & =0 \\
y & =-1,7
\end{aligned}
$$

When $y=-1$, centre is $O(2,-3 y)=(2,3)$ and radius

$$
\begin{aligned}
O B & =\left|\sqrt{(5-2)^{2}+(7-3)^{2}}\right| \\
& =\sqrt{9+16}=5 \text { unit }
\end{aligned}
$$

When $y=7$, centre is $O(2,-3 y)=(2,-21)$ and radius

$$
\begin{aligned}
O B & =\left|\sqrt{(2-5)^{2}+(-21-7)^{2}}\right| \\
& =|\sqrt{9+784}|=\sqrt{793} \text { unit }
\end{aligned}
$$

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

CHAPTER 8

INTRODUCTION OF TRIGONOMETRY

ONE MARK QUESTIONS

Multiple Choice Questions

1. Given that $\sin \alpha=\frac{\sqrt{3}}{2}$ and $\cos \beta=0$, then the value of $\beta-\alpha$ is
(a) 0°
(b) 90°
(c) 60°
(d) 30°

Ans :
[Board 2020 SQP Standard]
We have $\quad \sin \alpha=\frac{\sqrt{3}}{2}$

$$
\begin{equation*}
\sin \alpha=\sin 60^{\circ} \Rightarrow \alpha=60^{\circ} \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& \cos \beta=0 \\
& \cos \beta=\cos 90^{\circ} \Rightarrow \beta=90^{\circ} \tag{2}
\end{align*}
$$

Now,
$\beta-\alpha=90^{\circ}-60^{\circ}=30^{\circ}$
Thus (d) is correct option.
2. If $\triangle A B C$ is right angled at C, then the value of $\sec (A+B)$ is
(a) 0
(b) 1
(c) $\frac{2}{\sqrt{3}}$
(d) not defined

Ans :
[Board 2020 SQP Standard]
We have

$$
\angle C=90^{\circ}
$$

Since,

$$
\begin{aligned}
\angle A+\angle B+\angle C & =180^{\circ} \\
\angle A+\angle B & =180^{\circ}-\angle C \\
& =180^{\circ}-90^{\circ}=90^{\circ}
\end{aligned}
$$

Now, $\sec (A+B)=\sec 90^{\circ}$ not defined
Thus (d) is correct option.
3. If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta,\left(\theta \neq 90^{\circ}\right)$ then the value of $\tan \theta$ is
(a) $\sqrt{2}-1$
(b) $\sqrt{2}+1$
(c) $\sqrt{2}$
(d) $-\sqrt{2}$

Ans :
We have

$$
\sin \theta+\cos \theta=\sqrt{2} \cos \theta
$$

Dividing both sides by $\cos \theta$, we get

$$
\begin{aligned}
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\cos \theta} & =\sqrt{2} \frac{\cos \theta}{\cos \theta} \\
\tan \theta+1 & =\sqrt{2} \\
\tan \theta & =\sqrt{2}-1
\end{aligned}
$$

Thus (a) is correct option.
4. If $\cos A=\frac{4}{5}$, then the value of $\tan A$ is
(a) $\frac{3}{5}$
(b) $\frac{3}{4}$
(c) $\frac{4}{3}$
(d) $\frac{5}{3}$

Ans :
We have $\quad \cos A=\frac{4}{5}$
We know that, $\cos A=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{4}{5}$

$$
\text { Perpendicular }=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=3
$$

Now,

$$
\tan A=\frac{\text { Perpendicular }}{\text { Base }}=\frac{3}{4}
$$

Thus (b) is correct option.
5. If $\sin A=\frac{1}{2}$, then the value of $\cot A$ is
(a) $\sqrt{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{\sqrt{3}}{2}$
(d) 1

Ans :
We have $\quad \sin A=\frac{1}{2}$

$$
\sin A=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{1}{2}
$$

Now,

$$
\text { Base }=\sqrt{2^{2}-1^{2}}=\sqrt{3}
$$

So,

$$
\cot A=\frac{\text { Base }}{\text { Perpendicular }}=\frac{\sqrt{3}}{1}=\sqrt{3}
$$

Hence, the required value of $\cot A$ is $\sqrt{3}$.
Thus (a) is correct option.
6. If $\sin \theta=\frac{a}{b}$, then $\cos \theta$ is equal to
(a) $\frac{b}{\sqrt{b^{2}-a^{2}}}$
(b) $\frac{b}{a}$
(c) $\frac{\sqrt{b^{2}-a^{2}}}{b}$
(d) $\frac{a}{\sqrt{b^{2}-a^{2}}}$

Ans :

We have

$$
\begin{aligned}
\sin \theta & =\frac{a}{b}=\frac{\text { Perpendicular }}{\text { Hypotenuse }} \\
\text { Base } & =\sqrt{b^{2}-a^{2}}
\end{aligned}
$$

So, $\quad \cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{\sqrt{b^{2}-a^{2}}}{b}$
Thus (c) is correct option.
No Need to Buy any Question Bank or Sample Chapter From Market. Download Free PDF of all Study Material from

www.cbse.online

7. If $\cos (\alpha+\beta)=0$, then $\sin (\alpha-\beta)$ can be reduced to
(a) $\cos \beta$
(b) $\cos 2 \beta$
(c) $\sin \alpha$
(d) $\sin 2 \alpha$

Ans :
Given, $\quad \cos (\alpha+\beta)=0=\cos 90^{\circ} \quad\left[\cos 90^{\circ}=0\right]$

$$
\begin{aligned}
\alpha+\beta & =90^{\circ} \\
\alpha & =90^{\circ}-\beta
\end{aligned}
$$

Now, $\quad \sin (\alpha-\beta)=\sin \left(90^{\circ}-\beta-\beta\right)$

$$
=\sin \left(90^{\circ}-2 \beta\right)
$$

$=\cos 2 \beta$
Thus (b) is correct option.
8. If $\cos 9 \alpha=\sin \alpha$ and $9 \alpha<90^{\circ}$, then the value of $\tan 5 \alpha$ is
(a) $\frac{1}{\sqrt{3}}$
(b) $\sqrt{3}$
(c) 1
(d) 0
h223
Ans :
We have $\quad \cos 9 \alpha=\sin \alpha \quad$ where $9 \alpha<90^{\circ}$

$$
\begin{aligned}
\sin \left(90^{\circ}-9 \alpha\right) & =\sin \alpha \\
90^{\circ}-9 \alpha & =\alpha
\end{aligned}
$$

$$
\begin{aligned}
10 \alpha & =90^{\circ} \Rightarrow \alpha=9^{\circ} \\
\tan 5 \alpha & =\tan \left(5 \times 9^{\circ}\right) \\
& =\tan 45^{\circ}=1 \quad\left[\tan 45^{\circ}=1\right]
\end{aligned}
$$

Thus (c) is correct option.
9. If $\triangle A B C$ is right angled at C, then the value of $\cos (A+B)$ is
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) $\frac{\sqrt{3}}{2}$

Ans :
h224
We know that in $\triangle A B C$,

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

But right angled at C i.e., $\angle C=90^{\circ}$, thus

$$
\angle A+\angle B+90^{\circ}=180^{\circ}
$$

$$
A+B=90^{\circ}
$$

$$
\cos (A+B)=\cos 90^{\circ}=0
$$

Thus (a) is correct option.
10. If $\sin \alpha=\frac{1}{2}$ and $\cos \beta=\frac{1}{2}$, then the value of $(\alpha+\beta)$ is
(a) 0°
(b) 30°
(c) 60°
(d) 90°

Ans :

Given,

$$
\begin{aligned}
& \sin \alpha=\frac{1}{2}=\sin 30^{\circ} \Rightarrow \alpha=30^{\circ} \\
& \cos \beta=\frac{1}{2}=\cos 60^{\circ} \Rightarrow \beta=60^{\circ} \\
& \alpha+\beta=30^{\circ}+60^{\circ}=90^{\circ}
\end{aligned}
$$

Thus (d) is correct option.
11. If $4 \tan \theta=3$, then $\left(\frac{4 \sin \theta-\cos \theta}{4 \sin \theta+\cos \theta}\right)$ is equal to
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) $\frac{3}{4}$
14. If $x=p \sec \theta$ and $y=q \tan \theta$, then
(a) $x^{2}-y^{2}=p^{2} q^{2}$
(b) $x^{2} q^{2}-y^{2} p^{2}=p q$
(c) $x^{2} q^{2}-y^{2} p^{2}=\frac{1}{p^{2} q^{2}}$
(d) $x^{2} q^{2}-y^{2} p^{2}=p^{2} q^{2}$

Ans :
We know, $\quad \sec ^{2} \theta-\tan ^{2} \theta=1$
Substituting $\sec \theta=\frac{x}{p} \quad$ and $\quad \tan \theta=\frac{y}{q} \quad$ in above equation we have

$$
\begin{aligned}
\left(\frac{x}{p}\right)^{2}-\left(\frac{y}{q}\right)^{2} & =1 \\
x^{2} q^{2}-y^{2} p^{2} & =p^{2} q^{2}
\end{aligned}
$$

Thus (d) is correct option.
15. If $b \tan \theta=a$, the value of $\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}$ is
(a) $\frac{a-b}{a^{2}+b^{2}}$
(b) $\frac{a+b}{a^{2}+b^{2}}$
(c) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
(d) $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$

Ans :
We have $\quad \tan \theta=\frac{a}{b}$

$\frac{a \sin \theta-b \cos \theta}{a \sin _{2} \theta+b \cos \theta}=\frac{a \frac{\sin \theta}{\cos \theta}-b}{a \frac{\sin \theta}{\cos \theta}+b} \quad=\frac{a \tan \theta-b}{a \tan \theta+b}$
$=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
Thus (d) is correct option.
16. $\left(\cos ^{4} A-\sin ^{4} A\right)$ is equal to
(a) $1-2 \cos ^{2} A$
(b) $2 \sin ^{2} A-1$
(c) $\sin ^{2} A-\cos ^{2} A$
(d) $2 \cos ^{2} A-1$

Ans :

$$
\begin{aligned}
\cos ^{4} A-\sin ^{4} A & =\left(\cos ^{2} A\right)^{2}-\left(\sin ^{2} A\right)^{2} \\
= & \left(\cos ^{2} A-\sin ^{2} A\right)\left(\cos ^{2} A+\sin ^{2} A\right) \\
& =\left(\cos ^{2} A-\sin ^{2} A\right)(1) \\
& =\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
& =2 \cos ^{2} A-1
\end{aligned}
$$

Thus (d) is correct option.
17. If $\sec 5 A=\operatorname{cosec}\left(A+30^{\circ}\right)$, where $5 A$ is an acute angle, then the value of A is
(a) 15°
(b) 5°
(c) 20°
(d) 10°

Ans :

We have,

$$
\begin{aligned}
\sec 5 A & =\operatorname{cosec}\left(A+30^{\circ}\right) \\
\sec 5 A & =\sec \left[90^{\circ}-\left(A-30^{\circ}\right)\right] \\
\sec 5 A & =\sec \left(60^{\circ}-A\right) \\
5 A & =60^{\circ}-A \\
6 A & =60^{\circ} \Rightarrow A=10^{\circ}
\end{aligned}
$$

Thus (d) is correct option.

Download 15 Years Previous Years Chapterwise Question Bank Free PDFs For all Subject from www.cbse.online

18. If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$, than $x^{2}+y^{2}$ is equal to
(a) 0
(b) $1 / 2$
(c) 1
(d) $3 / 2$

Ans :
We have, $\quad x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$(x \sin \theta) \sin ^{2} \theta+(y \cos \theta) \cos ^{2} \theta=\sin \theta \cos \theta$
$x \sin \theta\left(\sin ^{2} \theta\right)+(x \sin \theta) \cos ^{2} \theta=\sin \theta \cos \theta$ $x \sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$
$x \sin \theta=\sin \theta \cos \theta \Rightarrow x=\cos \theta$
Now,

$$
x \sin \theta=y \cos \theta
$$

$$
\cos \theta \sin \theta=y \cos \theta
$$

$$
y=\sin \theta
$$

Hence,

$$
x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Thus (c) is correct option.
19. If $\tan \theta+\sin \theta=m$ and $\tan \theta-\sin \theta=n$, then $m^{2}-n^{2}$ is equal to
(a) $\sqrt{m n}$
(b) $\sqrt{\frac{m}{n}}$
(c) $4 \sqrt{m n}$
(d) None of
these

Ans :
Given, $\tan \theta+\sin \theta=m$ and $\tan \theta-\sin \theta=n$

$$
\begin{aligned}
m^{2}-n^{2} & =(\tan \theta+\sin \theta)^{2}-(\tan \theta-\sin \theta)^{2} \\
& =4 \tan \theta \sin \theta \\
& =4 \sqrt{\tan ^{2} \theta \sin ^{2} \theta} \\
& =4 \sqrt{\sin ^{2} \theta \frac{\sin ^{2} \theta}{\cos ^{2} \theta}}
\end{aligned}
$$

$$
\begin{aligned}
& =4 \sqrt{\sin ^{2} \theta \frac{\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta}} \\
& =4 \sqrt{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta} \\
& =4 \sqrt{\tan ^{2} \theta-\sin ^{2} \theta} \\
& =4 \sqrt{(\tan \theta+\sin \theta)(\tan \theta-\sin \theta)} \\
& =4 \sqrt{m n}
\end{aligned}
$$

Thus (c) is correct option.
20. If $0<\theta<\frac{\pi}{4}$, then the simplest form of $\sqrt{1-2 \sin \theta \cos \theta}$ is
(a) $\sin \theta-\cos \theta$
(b) $\cos \theta-\sin \theta$
(c) $\cos \theta+\sin \theta$
(d) $\sin \theta \cos \theta$

Ans :

$$
\begin{aligned}
\sqrt{1-2 \sin \theta \cos \theta} & =\sqrt{\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta} \\
& =\sqrt{(\cos \theta-\sin \theta)^{2}} \\
& =\cos \theta-\sin \theta
\end{aligned}
$$

For $0^{\circ}<\theta<45^{\circ}$

	0	$\pi / 6$	$\pi / 4$
$\cos \theta$	1	$\sqrt{3} / 2$	$1 / \sqrt{2}$
$\sin \theta$	0	$1 / 2$	$1 / \sqrt{2}$

Here, we see that $\cos \theta>\sin \theta$, when $0<\theta<\frac{\pi}{4}$, that's why we take $(\cos \theta-\sin \theta)^{2}$ instead of taking $(\sin \theta-\cos \theta)^{2}$.
Thus (b) is correct option.
21. If $f(x)=\cos ^{2} x+\sec ^{2} x$, then $f(x)$
(a) ≥ 1
(b) ≤ 1
(c) ≥ 2
(d) ≤ 2

Ans: (c) ≥ 2
Given, $f(x)=\cos ^{2} x+\sec ^{2} x$

$$
\begin{aligned}
& =\cos ^{2} x+\sec ^{2} x-2+2 \\
& =\cos ^{2} x+\sec ^{2} x-2 \cos x \cdot \sec x+2 \\
& =(\cos x-\sec x)^{2}+2
\end{aligned}
$$

We know that, square of any expression is always greater than equal to zero.

$$
f(x) \geq 2
$$

Hence proved.
Thus (c) is correct option.
22. Assertion : The value of $\sin \theta=\frac{4}{3}$ is not possible.

Reason : Hypotenuse is the largest side in any right angled triangle.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :

$$
\sin \theta=\frac{P}{H}=\frac{4}{3}
$$

Here, perpendicular is greater than the hypotenuse which is not possible in any right triangle. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). Thus (a) is correct option.
23. Assertion : $\sin ^{2} 67^{\circ}+\cos ^{2} 67^{\circ}=1$

Reason : For any value of $\theta, \sin ^{2} \theta+\cos ^{2} \theta=1$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Ans :
We have

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sin ^{2} 67^{\circ}+\cos ^{2} 67^{\circ} & =1
\end{aligned}
$$

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Thus (a) is correct option.
No Need to Buy any Question Bank or Sample Chapter From
Market. Download Free PDF of all Study Material from
www.cbse.online

1. FILL IN THE BLANK

1. Maximum value for sine of any angle is Ans:

2. Triangle in which we study trigonometric ratios is called \qquad
Ans :
Right Triangle
3. Cosine of 90° is \qquad
Ans :
Zero

4. Sum of \qquad of sine and cosine of angle is one.
Ans:
Square

5. Reciprocal of $\sin \theta$ is \qquad
Ans :
$\operatorname{cosec} \theta$

h245
6. The value of $\sin A$ or $\cos A$ never exceeds

Ans:

1

7. sine of $\left(90^{\circ}-\theta\right)$ is \qquad
Ans :
$\cos \theta$

8. If $\sin \theta=\frac{5}{13}$, then the value of $\tan \theta$ is \qquad
Ans :
[Board 2020 OD Basic]
From $\sin \theta=\frac{5}{13}$ we can draw the figure as given below.

Now, $\quad \tan \theta=\frac{A C}{B C}=\frac{5}{12}$
9. The value of the $\left(\tan ^{2} 60^{\circ}+\sin ^{2} 45^{\circ}\right)$ is \qquad .

Ans :
[Board 2020 OD Basic]

$$
\begin{aligned}
\tan ^{2} 60^{\circ}+\sin ^{2} 45^{\circ} & =(\sqrt{3})^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2} \\
& =3+\frac{1}{2}=\frac{7}{2}
\end{aligned}
$$

10. If $\cot \theta=\frac{12}{5}$, then the value of $\sin \theta$ is \qquad
Ans :
[Board 2020 Delhi Basic]
Given,

$$
\cot \theta=\frac{12}{5} \Rightarrow \tan \theta=\frac{5}{12}
$$

From $\tan \theta=\frac{5}{12}$ we can draw the figure as given below.

So, $\quad \sin \theta=\frac{A C}{C B}=\frac{5}{13}$
11. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}, A>B$, then the value of A is \qquad
Ans:
[Board 2020 Delhi Basic]
We have

$$
\begin{aligned}
\tan (A+B) & =\sqrt{3} \\
& =\tan 60^{\circ}
\end{aligned}
$$

Hence,

$$
A+B=60^{\circ}
$$

...(1)
Again,

$$
\begin{align*}
\tan (A-B) & =\frac{1}{\sqrt{3}} \\
& =\tan 30^{\circ} \\
A-B & =30^{\circ} \tag{2}
\end{align*}
$$

Adding equation (1) and (2) we get

$$
2 A=90^{\circ} \Rightarrow A=45^{\circ}
$$

12. The value of $\left(\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}\right)=$ \qquad . .
Ans :
[Board 2020 Delhi Standard]

$$
\begin{aligned}
\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta} & =\sin ^{2} \theta+\frac{1}{\sec ^{2} \theta} \\
& =\sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

13. The value of $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=$

$$
\begin{aligned}
& \text { Ans : } \\
& \begin{aligned}
\left(1+\tan ^{2} \theta\right)(1-\sin \theta) & (1+\sin \theta) \\
& =\sec ^{2} \theta\left(1-\sin ^{2} \theta\right) \\
& =\sec ^{2} \theta \times \cos ^{2} \theta \\
& =\frac{1}{\cos ^{2} \theta} \times \cos ^{2} \theta=1
\end{aligned}
\end{aligned}
$$

Download 20 Set Sample Papers Free PDFs for all Subject from www.cbse.online

Very Short Answer Questions

14. Prove that
$(1+\tan A-\sec A) \times(1+\tan A+\sec A)=2 \tan A$
Ans :
[Board 2020 Delhi Basic]

$$
\begin{aligned}
\mathrm{LHS} & =(1+\tan A-\sec A) \times(1+\tan A+\sec A) \\
& =(1+\tan A)^{2}-\sec ^{2} A \\
& =1+\tan ^{2} A+2 \tan A-\sec ^{2} A \\
& =\sec ^{2} A+2 \tan A-\sec ^{2} A \\
& =2 \tan A=\text { RHS }
\end{aligned}
$$

15. If $\tan A=\cot B$, then find the value of $(A+B)$.

Ans :
[Board 2020 OD Standard]
We have

$$
\begin{aligned}
\tan A & =\cot B \\
\tan A & =\tan \left(90^{\circ}-B\right)
\end{aligned}
$$

$A=90^{\circ}-B$
Thus

$$
A+B=90^{\circ}
$$

16. If $x=3 \sin \theta+4 \cos \theta$ and $y=3 \cos \theta-4 \sin \theta$ then prove that $x^{2}+y^{2}=25$.
Ans:
[Board 2020 OD Basic]
We have $x=3 \sin \theta+4 \cos \theta$
and $\quad y=3 \cos \theta-4 \sin \theta$

$$
\begin{aligned}
& x^{2}+y^{2} \\
& =(3 \sin \theta+4 \cos \theta)^{2}+(3 \cos \theta-4 \sin \theta)^{2} \\
& =\left(9 \sin ^{2} \theta+16 \cos ^{2} \theta+24 \sin \theta \cos \theta\right)+ \\
& \quad \quad+\left(9 \cos ^{2} \theta+16 \sin ^{2} \theta-24 \sin \theta \cos \theta\right) \\
& = \\
& =9\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+16\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =
\end{aligned}
$$

17. Evaluate $\sin ^{2} 60^{\circ}-2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$

Ans :
[Board 2019 OD]

$$
\begin{aligned}
\sin ^{2} 60^{\circ}-2 \tan 45^{\circ}-\cos ^{2} 30^{\circ} & =\left(\frac{\sqrt{3}}{2}\right)^{2}-2(1)-\left(\frac{\sqrt{3}}{2}\right)^{2} \\
& =\frac{3}{4}-2-\frac{3}{4}=-2
\end{aligned}
$$

18. If $\sin \theta+\sin ^{2} \theta=1$ then prove that $\cos ^{2} \theta+\cos ^{4} \theta=1$.

Ans :
[Board 2020 OD Basic]

$$
\text { We have } \begin{aligned}
\sin \theta+\sin ^{2} \theta & =1 \\
\sin \theta+\left(1-\cos ^{2} \theta\right) & =1 \\
\sin \theta-\cos ^{2} \theta & =0 \\
\sin \theta=\cos ^{2} \theta &
\end{aligned}
$$

Squaring both sides, we get

$$
\begin{aligned}
\sin ^{2} \theta & =\cos ^{4} \theta \\
1-\cos ^{2} \theta & =\cos ^{4} \theta \\
\cos ^{4} \theta+\cos ^{2} \theta & =1
\end{aligned}
$$

Hence Proved
19. In a triangle $A B C$, write $\cos \left(\frac{B+C}{2}\right)$ in terms of
angle A.

Ans :
[Board Term-1 2016]

In a triangle

$$
\begin{aligned}
A+B+C & =180^{\circ} \\
B+C & =180^{\circ}-A
\end{aligned}
$$

$$
\begin{aligned}
\cos \left(\frac{B+C}{2}\right) & =\cos \left[\frac{180^{\circ}-A}{2}\right] \\
& =\cos \left[90-\frac{A}{2}\right] \\
& =\sin \frac{A}{2}
\end{aligned}
$$

20. If $\sec \theta \cdot \sin \theta=0$, then find the value of θ.

Ans :
[Board Term-1 2016]
We have $\sec \theta \cdot \sin \theta=0$

$$
\begin{aligned}
\frac{1}{\cos \theta} \cdot \sin \theta & =0 \\
\frac{\sin \theta}{\cos \theta} & =0 \\
\tan \theta & =0=\tan 0^{\circ}
\end{aligned}
$$

Thus $\theta=0^{\circ}$
21. If $\tan 2 A=\cot \left(A+60^{\circ}\right)$, find the value of A where $2 A$ is an acute angle.
Ans :
[Board Term-1 2016]
We have $\quad \tan 2 A=\cot \left(A+60^{\circ}\right)$

$$
\begin{aligned}
\cot \left(90^{\circ}-2 A\right) & =\cot \left(A+60^{\circ}\right) \\
90^{\circ}-2 A & =A+60^{\circ} \\
3 A & =30^{\circ} \Rightarrow A=10^{\circ}
\end{aligned}
$$

22. If $\tan \left(3 x+30^{\circ}\right)=1$ then find the value of x. Ans :
[Board T

$$
\text { We have } \quad \begin{aligned}
\tan \left(3 x+30^{\circ}\right) & =1=\tan 45^{\circ} \\
3 x+30^{\circ} & =45^{\circ} \\
x & =5^{\circ}
\end{aligned}
$$

23. What happens to value of $\cos \theta$ when θ increases from 0° to 90°.

Ans :
[Board Term-1 2015]
$\cos \theta$ decreases from 1 to θ.
24. If A and B are acute angles and $\sin A=\cos B$,
 then find the value of $A+B$.
Ans :
[Board Term-1 2016]
We have $\quad \sin A=\cos B$

$$
\begin{aligned}
\sin A & =\sin \left(90^{\circ}-B\right) \\
A & =90^{\circ}-B \\
A+B & =90^{\circ}
\end{aligned}
$$

25. If $\cos A=\frac{2}{5}$, find the value of $4+4 \tan ^{2} A$.

Ans :
[Board SQP 2018]

$$
\begin{aligned}
4+4 \tan ^{2} A & =4\left(1+\tan ^{2} A\right) \\
4 \sec ^{2} A & =\frac{4}{\cos ^{2} A}=\frac{4}{\left(\frac{2}{5}\right)^{2}}=4 \times \frac{25}{4}=25
\end{aligned}
$$

26. If $k+1=\sec ^{2} \theta(1+\sin \theta)(1-\sin \theta)$, then find the value of k.
Ans :
[Board Term-1 2015]
We have

$$
\begin{aligned}
k+1 & =\sec ^{2} \theta(1+\sin \theta)(1-\sin \theta) \\
& =\sec ^{2} \theta\left(1-\sin ^{2} \theta\right) \\
& =\sec ^{2} \theta \cdot \cos ^{2} \theta \\
& =\sec ^{2} \theta \times \frac{1}{\sec ^{2} \theta} \\
k+1 & =1 \Rightarrow k=1-1=0
\end{aligned}
$$

h154

Thus $k=0$
27. Find the value of $\sin ^{2} 41^{\circ}+\sin ^{2} 49^{\circ}$

Ans :
[Board Term-1 2012, NCERT]
We have

$$
\sin ^{2} 41+\sin ^{2} 49=\sin ^{2}\left(90^{\circ}-49^{\circ}\right)+\sin ^{2} 49^{\circ}
$$

$$
\begin{aligned}
& =\cos ^{2} 49+\sin ^{2} 49^{\circ} \\
& =1
\end{aligned}
$$

h155

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission

TWO MARKS QUESTIONS

28. Prove that $1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha$

Ans :
[Board 2020 OD Standard]

$$
\begin{aligned}
1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosse} \alpha} & =1+\frac{\operatorname{cosec}^{2} \alpha-1}{1+\operatorname{cosse} \alpha} \quad \\
& =1+\frac{(1+\operatorname{cosec} \alpha)(\operatorname{cosec} \alpha-1)}{1+\operatorname{cosec} \alpha} \\
& =1+\operatorname{cosec} \alpha-1 \\
& =\operatorname{cosec} \alpha \quad \text { Hence Proved }
\end{aligned}
$$

29. Prove that : $\frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A}=\tan A$.

Ans :
[Board 2018]

$$
\begin{aligned}
\frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A} & =\frac{\sin A\left(1-2 \sin ^{2} A\right)}{\cos A\left(2 \cos ^{2} A-1\right)} \\
& =\frac{\sin A\left(1-2 \sin ^{2} A\right)}{\cos A\left(2 \cos ^{2} A-1\right)} \\
& =\tan A \frac{\left[1-2\left(1-\cos ^{2} A\right)\right]}{\left(2 \cos ^{2} A-1\right)} \\
& =\tan A \frac{\left.\left[1-2+2 \cos ^{2} A\right)\right]}{\left(2 \cos ^{2} A-1\right)} \\
& =\tan A \frac{\left(2 \cos ^{2} A-1\right)}{\left(2 \cos ^{2} A-1\right)} \\
& =\tan A \quad \text { Hence Proved }
\end{aligned}
$$

30. Show that $\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$

Ans :
[Board 2020 OD Standard]

$$
\begin{aligned}
\tan ^{4} \theta+\tan ^{2} \theta & =\tan ^{2} \theta\left(1+\tan ^{2} \theta\right) \\
& =\tan ^{2} \theta \times \sec ^{2} \theta \\
& =\left(\sec ^{2} \theta-1\right) \sec ^{2} \theta \\
& =\sec ^{4} \theta-\sec ^{2} \theta \quad \text { Hence Proved }
\end{aligned}
$$

31. Prove that $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$. Ans :

$$
\begin{aligned}
\text { LHS } & =\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sqrt{\frac{(1-\sin \theta)(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}} \\
& =\sqrt{\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}}=\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}} \\
& =\frac{1-\sin \theta}{\cos \theta}=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta} \quad \\
& =\sec \theta-\tan \theta=\text { RHS } \quad \text { Hence Proved }
\end{aligned}
$$

32. Prove that : $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos ^{2} \theta-\sin ^{2} \theta$

Ans :
[Board 2020 OD Basic]

$$
\begin{aligned}
\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} & =\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta} \\
& =\frac{1}{\sec ^{2} \theta}-\frac{\tan ^{2} \theta}{\sec ^{2} \theta} \\
& =\cos ^{2} \theta-\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \cos ^{2} \theta \\
& =\cos ^{2} \theta-\sin ^{2} \theta \quad \text { Hence Proved }
\end{aligned}
$$

33. Prove that $\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}+\frac{\cot ^{2} \theta}{1+\cot ^{2} \theta}=1$.

Ans :
[Board 2020 Delhi Basic]

$$
\begin{aligned}
\mathrm{LHS} & =\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}+\frac{\cot ^{2} \theta}{1+\cot ^{2} \theta} \\
& =\frac{\tan ^{2} \theta}{\sec ^{2} \theta}+\frac{\cot ^{2} \theta}{\operatorname{cosec}^{2} \theta} \\
& =\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{1}{\cos ^{2} \theta}}+\frac{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{\frac{1}{\sin ^{2} \theta}} \\
& =\sin ^{2} \theta+\cos ^{2} \theta=1=\text { RHS }
\end{aligned}
$$

34. Prove that : $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$

Ans :
[Board 2020 Delhi Basic]

$$
\mathrm{LHS}=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}
$$

$$
\begin{aligned}
& =\frac{(1-\sin \theta)+(1+\sin \theta)}{(1+\sin \theta)(1-\sin \theta)} \\
& =\frac{2}{1-\sin ^{2} \theta}=2 \sec ^{2} \theta=\text { RHS }
\end{aligned}
$$

35. Prove that $\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1}=2 \sec ^{2} \theta$.

Ans :
[Board 2020 Delhi Basic]

$$
\begin{aligned}
\text { LHS } & =\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1} \\
& =\operatorname{cosec} \theta\left[\frac{1}{\operatorname{cosec} \theta-1}+\frac{1}{\operatorname{cosec} \theta+1}\right] \\
& =\operatorname{cosec} \theta\left[\frac{\operatorname{cosec} \theta+1+\operatorname{cosec} \theta-1}{(\operatorname{cosec} \theta-1)(\operatorname{cosec} \theta+1)}\right] \\
& =\operatorname{cosec} \theta\left(\frac{2 \operatorname{cosec} \theta}{\operatorname{cosec}^{2} \theta-1}\right) \quad \\
& =\frac{2 \operatorname{cosec}^{2} \theta}{\operatorname{cosec}^{2} \theta-1}=\frac{2 \operatorname{cosec}^{2} \theta}{\cot ^{2} \theta} \\
& =\frac{2 \times \frac{1}{\sin ^{2}}}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}=\frac{2}{\cos ^{2} \theta} \\
& =2 \sec ^{2} \theta=\text { RHS } \quad \text { Hence Proved }
\end{aligned}
$$

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

36. If $5 \tan \theta=3$, then what is the value of $\left(\frac{5 \sin \theta-3 \cos \theta}{4 \sin \theta+3 \cos \theta}\right)$?
Ans :
[Board 2020 Delhi Basic]
We have

$$
5 \tan \theta=3 \Rightarrow \tan \theta=\frac{3}{5}
$$

Dividing numerator and denominator by
 $\cos \theta$ we have

$$
\begin{aligned}
& \frac{5 \sin \theta-3 \cos \theta}{4 \sin \theta+3 \cos \theta}=\frac{5 \frac{\sin \theta}{\cos \theta}-3}{4 \sin \theta} \frac{5 \cos \theta}{\cos \theta}+3 \\
&=\frac{5 \tan \theta-3}{4 \tan \theta+3} \\
&=\frac{5 \times \frac{3}{5}-3}{4 \times \frac{3}{5}+3}=\frac{3-3}{\frac{12}{5}+3}=0
\end{aligned}
$$

37. Evaluate :
$\frac{3 \tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\operatorname{cosec} 30^{\circ}-\tan 45^{\circ}}{\cot ^{2} 45^{\circ}}$
Ans :
[Board Term-1 2016]

$$
\begin{aligned}
& \frac{3 \tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\operatorname{cosec} 30^{\circ}-\tan 45^{\circ}}{\cot ^{2} 45^{\circ}} \\
&=\frac{3 \times\left(\frac{1}{\sqrt{3}}\right)^{2}+(\sqrt{3})^{2}+2-1}{(1)^{2}} \\
&=\frac{3 \times \frac{1}{3}+3+2-1}{1} \\
&=1+3+2-1=5
\end{aligned}
$$

38. If $\sin (A+B)=1$ and $\sin (A-B)=\frac{1}{2}$, $0 \leq A+B<90^{\circ}$ and $A>B$, then find A and B.
Ans :
[Board Term-1 2016]

and

$$
\begin{gather*}
\sin (A-B)=\frac{1}{2}=\sin 30^{\circ} \tag{1}\\
A-B=30^{\circ}
\end{gather*}
$$

Solving eq. (1) and (2), we obtain

$$
A=60^{\circ} \text { and } B=30^{\circ}
$$

39. Find $\operatorname{cosec} 30^{\circ}$ and $\cos 60^{\circ}$ geometrically.

Ans :
[Board Term-1 2015]
Let a triangle $A B C$ with each side equal to $2 a$ as shown below.

In $\triangle A B C, \quad \angle A=\angle B=\angle C=60^{\circ}$
Now we draw $A D$ perpendicular to $B C$, then

$$
\begin{aligned}
\triangle B D A & \cong \triangle C D A \\
B D & =C D \\
\angle B A D & =C A D=30^{\circ} \quad \text { by } C P C T \\
A D & =\sqrt{3 a}
\end{aligned}
$$

In $\triangle B D A, \operatorname{cosec} 30^{\circ}=\frac{A B}{B D}=\frac{2 a}{a}=2$
and

$$
\cos 60^{\circ}=\frac{B D}{A B}=\frac{a}{2 a}=\frac{1}{2}
$$

40. Evaluate $: \frac{\sin 90^{\circ}}{\cos 45^{\circ}}+\frac{1}{\operatorname{cosec} 30^{\circ}}$

Ans :
[Board Term-1 2013]

We have $\frac{\sin 90^{\circ}}{\cos 45^{\circ}}+\frac{1}{\operatorname{cosec} 30^{\circ}}=\frac{1}{\frac{1}{\sqrt{2}}}+\frac{1}{2}$

$$
=\sqrt{2}+\frac{1}{2}=\frac{2 \sqrt{2}+1}{2}
$$

41. If $\sqrt{2} \sin \theta=1$, find the value of $\sec ^{2} \theta-\operatorname{cosec}^{2} \theta$.

Ans :
[Board Term-1 2012]
We have $\quad \sqrt{2} \sin \theta=1$

$$
\begin{aligned}
\sin \theta & =\frac{1}{\sqrt{2}}=\sin 45^{\circ} \\
\theta & =45^{\circ}
\end{aligned}
$$

Thus
Now $\sec ^{2} \theta-\operatorname{cosec}^{2} \theta=\sec ^{2} 45^{\circ}-\operatorname{cosec}^{2} 45^{\circ}$

$$
\begin{aligned}
& =(\sqrt{2})^{2}-(\sqrt{2})^{2} \\
& =0
\end{aligned}
$$

42. If $4 \cos \theta=11 \sin \theta$, find the value of $\frac{11 \cos \theta-7 \sin \theta}{11 \cos \theta+7 \sin \theta}$.

Ans :
[Board Term-1 2012]
We have

$$
4 \cos \theta=11 \sin \theta
$$

$$
\text { or, } \quad \cos \theta=\frac{11}{4} \sin \theta
$$

$$
\text { Now } \frac{11 \cos \theta-7 \sin \theta}{11 \cos \theta+7 \sin \theta}=\frac{11 \times \frac{11}{4} \sin \theta-7 \sin \theta}{11 \times \frac{11}{4} \sin \theta+7 \sin \theta}
$$

$$
\begin{aligned}
& =\frac{\sin \theta\left(\frac{121}{4}-7\right)}{\sin \theta\left(\frac{121}{4}+7\right)} \\
& =\frac{121-28}{121+28}=\frac{93}{149}
\end{aligned}
$$

43. If $\quad \tan (A+B)=\sqrt{3}, \quad \tan (A-B)=\frac{1}{\sqrt{3}}$
$0^{\circ}<A+B \leq 90^{\circ}$, then find A and B.
Ans :
[Board Term-1 2012]
We have $\tan (A+B)=\sqrt{3}=\tan 60^{\circ}$

$$
\begin{equation*}
A+B=60^{\circ} \tag{1}
\end{equation*}
$$

Also

$$
\begin{align*}
\tan (A-B) & =\frac{1}{\sqrt{3}}=\tan 30^{\circ} \\
A-B & =30^{\circ} \tag{2}
\end{align*}
$$

Adding equations (1) and (2), we obtain,

$$
\begin{aligned}
2 A & =90^{\circ} \\
A & =\frac{90^{\circ}}{2}=45^{\circ}
\end{aligned}
$$

Substituting this value of A in equation (1), we get

$$
B=60^{\circ}-A=60^{\circ}-45^{\circ}=15^{\circ}
$$

Hence, $A=45^{\circ}$ and $B=15^{\circ}$
44. If $\cos (A-B)=\frac{\sqrt{3}}{2}$ and $\sin (A+B)=\frac{\sqrt{3}}{2}$, find $\sin A$ and B, where $(A+B)$ and $(A-B)$ are acute angles. Ans:
[Board Term-1 2012]
We have $\cos (A-B)=\frac{\sqrt{3}}{2}=\cos 30^{\circ}$

$$
\begin{equation*}
A-B=30^{\circ} \tag{1}
\end{equation*}
$$

Also

$$
\begin{align*}
\sin (A+B) & =\frac{\sqrt{3}}{2}=\sin 60^{\circ} \\
A+B & =60^{\circ} \tag{2}
\end{align*}
$$

Adding equations (1) and (2), we obtain,

$$
\begin{aligned}
2 A & =90^{\circ} \\
A & =45^{\circ}
\end{aligned}
$$

Substituting this value of A in equation (1), we get $B=15^{\circ}$
45. Find the value of $\cos 2 \theta$, if $2 \sin 2 \theta=\sqrt{3}$.

Ans :
[Board Term-1 2012, Set-25]
We have

$$
\begin{aligned}
2 \sin 2 \theta & =\sqrt{3} \\
\sin 2 \theta & =\frac{\sqrt{3}}{2}=\sin 60^{\circ} \\
2 \theta & =60^{\circ} \\
\cos 2 \theta & =\cos 60^{\circ}=\frac{1}{2}
\end{aligned}
$$

Hence,
46. Find the value of $\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$ is it equal to $\sin 90^{\circ}$ or $\cos 90^{\circ} ?$
Ans :
[Board Term-1 2016]

$$
\begin{aligned}
\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ} & =\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \\
& =\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1
\end{aligned}
$$

It is equal to $\sin 90^{\circ}=1$ but not equal to $\cos 90^{\circ}$ as $\cos 90^{\circ}=0$.

47. If $\sqrt{3} \sin \theta-\cos \theta=0$ and $0^{\circ}<\theta<90^{\circ}$, find the value of θ.

Ans :
[Boar Term-1, 2012]
We have

$$
\begin{aligned}
\sqrt{3} \sin \theta-\cos \theta & =0 \text { and } 0^{\circ}<\theta<90^{\circ} \\
\sqrt{3} \sin \theta & =\cos \theta \\
\frac{\sin \theta}{\cos \theta} & =\frac{1}{\sqrt{3}} \\
\tan \theta & =\frac{1}{\sqrt{3}}=\tan 30^{\circ} \quad\left[\tan \theta=\frac{\sin \theta}{\cos \theta}\right]
\end{aligned}
$$

$$
\theta=30^{\circ}
$$

48. Evaluate $: \frac{\cos 45^{\circ}}{\sec 30^{\circ}}+\frac{1}{\sec 60^{\circ}}$

Ans :
[Board Term-1 2012]
We have $\quad \frac{\cos 45^{\circ}}{\sec 30^{\circ}}+\frac{1}{\sec 60^{\circ}}=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}}+\frac{1}{2}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{2} \\
& =\frac{\sqrt{6}}{4}+\frac{1}{2}=\frac{\sqrt{6}+2}{4}
\end{aligned}
$$

49. In the given figure, $A O B$ is a diameter of a circle with centre O, find $\tan A \tan B$.

Ans:
[Board Term-1 2012]
In $\triangle A B C, \angle C$ is a angle in a semi-circle, thus
and

$$
\tan B=\frac{A C}{B C}=\frac{3}{2}
$$

$$
\tan A \tan B=\frac{2}{3} \times \frac{3}{2}=1
$$

50. If $\sin \phi=\frac{1}{2}$, show that $3 \cos \phi-4 \cos ^{3} \phi=0$.

Ans :
We have $\quad \sin \phi=\frac{1}{2}$

$$
\phi=30^{\circ}
$$

Now substituting this value of θ in LHS we have

$$
\begin{aligned}
3 \cos \phi- & 4 \cos ^{3} \phi=3 \cos 30^{\circ}-4 \cos ^{3} 30^{\circ} \\
& =3\left(\frac{\sqrt{3}}{2}\right)-4\left(\frac{\sqrt{3}}{2}\right)^{3}
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2} & \\
=0 & \text { Hence Proved }
\end{array}
$$

SUPPORT OUR MISSION FREE DIGITAL EDUCATION

Click Here to Know About Mission
51. Express the trigonometric ratio of $\sec A$ and $\tan A$ in terms of $\sin A$.
Ans :
[Board Term-1 2015]

We have

$$
\sec A=\frac{1}{\cos A}=\frac{1}{\sqrt{1-\sin ^{2} A}}
$$

and

$$
\tan A=\frac{\sin A}{\cos A}=\frac{\sin A}{\sqrt{1-\sin ^{2} A}}
$$

52. Prove that : $\frac{\left(\sin ^{4} \theta+\cos ^{4} \theta\right)}{1-2 \sin ^{2} \theta \cos ^{2} \theta}=1$

Ans :
[Board Term-1 2015]

$$
\begin{aligned}
\frac{\left(\sin ^{4} \theta+\cos ^{4} \theta\right)}{1-2 \sin ^{2} \theta \cos ^{2} \theta} & =\frac{\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}}{1-2 \sin ^{2} \theta \cos ^{2} \theta} \\
& =\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta}{1-2 \sin ^{2} \theta \cos ^{2} \theta} \\
& =\frac{1-2 \sin ^{2} \theta \cos ^{2} \theta}{1-2 \sin ^{2} \cos ^{2} \theta} \quad \\
& =1
\end{aligned}
$$

53. Prove that : $\sec ^{4} \theta-\sec ^{2} \theta=\tan ^{4} \theta+\tan ^{2} \theta$

Ans:
[Board Term-1 2015]
We have

$$
\sec ^{4} \theta-\sec ^{2} \theta=\sec ^{2} \theta\left(\sec ^{2} \theta-1\right)
$$

h158

$$
\left[\left[1+\tan ^{2} \theta=\sec ^{2} \theta\right]\right]
$$

$$
\begin{aligned}
& =\sec ^{2} \theta\left(\tan ^{2} \theta\right) \\
& =\left(1+\tan ^{2} \theta\right) \tan ^{2} \theta \\
& =\tan ^{2} \theta+\tan ^{4} \theta
\end{aligned}
$$

Hence Proved.
54. Find the value of θ, if,
$\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4 ; \theta \leq 90^{\circ}$
Ans :
[Board Term-1 20151

We have

$$
\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4
$$

$$
\begin{aligned}
\frac{\cos \theta(1+\sin \theta)+\cos \theta(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)} & =4 \\
\frac{\cos \theta[1+\sin \theta+1-\sin \theta]}{1-\sin ^{2} \theta} & =4 \\
\frac{\cos \theta(2)}{\cos ^{2} \theta} & =4 \\
\frac{1}{\cos \theta} & =2 \\
\cos \theta & =\frac{1}{2} \\
\cos \theta & =\cos 60^{\circ}
\end{aligned}
$$

Thus $\theta=60^{\circ}$.
55. Prove that : $-1+\frac{\sin A \sin \left(90^{\circ}-A\right)}{\cot \left(90^{\circ}-A\right)}=-\sin ^{2} A$

Ans :
[Board Term-1 2012]

$$
\begin{aligned}
-1+\frac{\sin A \sin \left(90^{\circ}-A\right)}{\cot \left(90^{\circ}-A\right)} & =-\sin ^{2} A \\
\frac{\sin A \sin \left(90^{\circ}-A\right)}{\cot \left(90^{\circ}-A\right)} & =1-\sin ^{2} A \\
\frac{\sin A \cos A}{\tan A} & =\cos ^{2} A \\
\frac{\sin A \cos A}{\frac{\sin A}{\cos A}} & =\cos ^{2} A \\
\frac{\cos A}{\sin A} \sin A \cos A & =\cos ^{2} A
\end{aligned}
$$

$$
\cos ^{2} A=\cos ^{2} A \text { Hence Proved. }
$$

56. Prove that : $\sqrt{\frac{1-\cos A}{1+\cos A}}=\operatorname{cosec} A-\cot A$

Ans :
[Board Term-1 2012]

$$
\begin{aligned}
\sqrt{\frac{1-\cos A}{1+\cos A}} & =\sqrt{\frac{1-\cos A}{1+\cos A} \times \frac{1-\cos A}{1-\cos A}} \\
& =\sqrt{\frac{(1-\cos A)^{2}}{\left(1-\cos ^{2} A\right)}} \\
& =\sqrt{\frac{(1-\cos A)^{2}}{\sin ^{2} A}} \\
& =\frac{1-\cos A}{\sin A}=\frac{1}{\sin A}-\frac{\cos A}{\sin A} \\
& =\operatorname{cosec} A-\cot A \quad \text { Hence Proved. }
\end{aligned}
$$

57. If $\sin \theta-\cos \theta=\frac{1}{2}$, then find the value of $\sin \theta+\cos \theta$. Ans :
[Board Term-1 2013]

We have

$$
\sin \theta-\cos \theta=\frac{1}{2}
$$

Squaring both sides, we get

$$
\begin{aligned}
& \begin{aligned}
&(\sin \theta-\cos \theta)^{2}=\left(\frac{1}{2}\right)^{2} \\
& \sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta=\frac{1}{4} \\
& 1-2 \sin \theta \cos \theta=\frac{1}{4} \\
& 2 \sin \theta \cos \theta=1-\frac{1}{4}=\frac{3}{4} \\
& \text { Again, }(\sin \theta+\cos \theta)^{2}=\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta \\
&=1+2 \sin \theta \cos \theta \\
&=1+\frac{3}{4}=\frac{7}{4} \\
& \text { Thus }
\end{aligned} \\
& \sin \theta+\cos \theta=\sqrt{\frac{7}{4}}=\frac{\sqrt{7}}{2}
\end{aligned}
$$

58. If θ be an acute angle and $5 \operatorname{cosec} \theta=7$, then evaluate $\sin \theta+\cos ^{2} \theta-1$.
Ans :
[Board Term-1 2012]
We have

$$
\begin{aligned}
5 \operatorname{cosec} \theta & =7 \\
\operatorname{cosec} \theta & =\frac{7}{5}
\end{aligned}
$$

$$
\begin{aligned}
\sin \theta+\cos ^{2} \theta-1 & =\sin \theta-\left(1-\cos ^{2} \theta\right) \\
& =\sin \theta-\sin ^{2} \theta\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& =\frac{5}{7}-\left(\frac{5}{7}\right)^{2}=\frac{35-25}{49}=\frac{10}{49}
\end{aligned}
$$

59. If $\sin A=\frac{\sqrt{3}}{2}$, find the value of $2 \cot ^{2} A-1$.

Ans :
[Board Term-1 2012]
Using $\cot ^{2} \theta=-1+\operatorname{cosec}^{2} \theta$ we have

$$
\begin{aligned}
2 \cot ^{2} A-1 & =2\left(\operatorname{cosec}^{2} A-1\right)-1 \\
& =\frac{2}{\sin ^{2} A}-3 \\
& =\frac{2}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-3=\frac{8}{3}-3=\frac{-1}{3}
\end{aligned}
$$

Thus $\quad 2 \cot ^{2} A-1=\frac{-1}{3}$
For Free PDFS of all Sample Papers Visit www.cbse.online

THREE MARKS QUESTIONS

60. Show that : $\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)}{\tan \left(60^{\circ}+\theta\right) \tan \left(30^{\circ}-\theta\right)}=1$

Ans:
[Board 2020 OD Standard]

$$
\begin{aligned}
\mathrm{LHS} & =\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)}{\tan \left(60^{\circ}+\theta\right) \tan \left(30^{\circ}-\theta\right)} \\
& =\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\sin ^{2}\left(90^{\circ}-45^{\circ}+\theta\right)}{\tan \left(60^{\circ}+\theta\right) \cot \left(90^{\circ}-30^{\circ}+\theta\right)} \\
& =\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\sin ^{2}\left(45^{\circ}+\theta\right)}{\tan \left(60^{\circ}+\theta\right) \cot \left(60^{\circ}+\theta\right)} \\
& =\frac{1}{1}=1=\text { RHS }
\end{aligned}
$$

61. The rod of TV disc antenna is fixed at right angles to wall $A B$ and a rod $C D$ is supporting the disc as shown in Figure. If $A C=1.5 \mathrm{~m}$ long and $C D=3 \mathrm{~m}$, find (i) $\tan \theta$ (ii) $\sec \theta+\operatorname{cosec} \theta$.

Ans:
[Board 2020 Delhi Standard]
From the given information we draw the figure as below

In right angle triangle $\triangle C A D$, applying Pythagoras theorem,

$$
\begin{aligned}
A D^{2}+A C^{2} & =D C^{2} \\
A D^{2}+(1.5)^{2} & =(3)^{2} \\
A D^{2} & =9-2.25=6.75 \\
A D & =\sqrt{6.75}=2.6 \mathrm{~m} \text { (Approx) }
\end{aligned}
$$

$$
\begin{equation*}
\tan \theta=\frac{A C}{A D}=\frac{1.5}{2.6}=\frac{15}{26} \tag{i}
\end{equation*}
$$

(ii) $\sec \theta+\operatorname{cosec} \theta=\frac{C D}{A D}+\frac{C D}{A C}=\frac{3}{2.6}+\frac{3}{1.5}=\frac{41}{13}$
62. Prove that : $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}=\frac{1+\cot \theta}{\sin \theta}$

Ans :
[Board 2020 Delhi Standard]

$$
\begin{aligned}
\text { LHS } & =\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1} \\
& =\frac{\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}-1}{\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}+1} \\
& =\frac{\sin \theta(\cos \theta+1-\sin \theta)}{\sin \theta(\cos \theta-1+\sin \theta)} \\
& =\frac{\sin \theta \cos \theta+\sin \theta-\sin ^{2} \theta}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{\sin \theta \cos \theta+\sin \theta-\left(1-\cos ^{2} \theta\right)}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{\sin \theta(\cos \theta+1)-\left(1-\cos ^{2} \theta\right)}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{(1+\cos \theta)(\sin \theta-1+\cos \theta)}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{1+\cos \theta}{\sin \theta}=\mathrm{RHS}
\end{aligned}
$$

63. If $\sin \theta+\cos \theta=\sqrt{2}$ prove that $\tan \theta+\cot \theta=2$

Ans :
[Board 2020 OD Standard]
We have

$$
\sin \theta+\cos \theta=\sqrt{2}
$$

Squaring both the sides, we get

$$
\begin{align*}
(\sin \theta+\cos \theta)^{2} & =(\sqrt{2})^{2} \\
\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta & =2 \\
1+2 \sin \theta \cos \theta & =2 \\
2 \sin \theta \cos \theta & =1 \\
\sin \theta \cos \theta & =\frac{1}{2} \tag{1}
\end{align*}
$$

Now $\tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$

$$
=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}
$$

$$
=\frac{1}{\sin \theta \cos \theta}=\frac{1}{\frac{1}{2}}=2=\mathrm{RHS}
$$

64. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that $\tan \theta+\cot \theta=1$. Ans:
[Board 2020 SQP Standard]

Given, $\quad \sin \theta+\cos \theta=\sqrt{3}$
Squaring above equation, we have

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta & =3 \\
1+2 \sin \theta \cos \theta & =3 \\
2 \sin \theta \cos \theta & =3-1=2 \\
\sin \theta \cos \theta & =1
\end{aligned}
$$

Now, $\quad \tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta} \\
& =\frac{1}{\sin \theta \cos \theta}
\end{aligned}
$$

Substituting value of $\sin \theta \cos \theta$ we have

$$
\tan \theta+\cot \theta=\frac{1}{\sin \theta \cos \theta}=\frac{1}{1}=1
$$

65. If $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$, prove that $\tan \theta=1$ or $1 / 2$.

Ans :
[Board 2020 OD Standard]
We have, $\quad 1+\sin ^{2} \theta=3 \sin \theta \cos \theta$
Dividing by $\sin ^{2} \theta$ on both sides, we get

$$
\begin{aligned}
\frac{1}{\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta} & =\frac{3 \sin \theta \cos \theta}{\sin ^{2} \theta} \\
\frac{1}{\sin ^{2} \theta}+1 & =3 \cot \theta \\
\operatorname{cosec}^{2} \theta+1 & =3 \cot \theta \\
1+\cot ^{2} \theta+1 & =3 \cot \theta \\
\cot ^{2} \theta-3 \cot \theta+2 & =0 \\
\cot ^{2} \theta-2 \cot \theta-\cot \theta+2 & =0 \\
\cot \theta(\cot \theta-2)-1(\cot \theta-2) & =0 \\
(\cot \theta-2)(\cot \theta-1) & =0 \\
\cot \theta & =1 \text { or } 2 \\
\tan \theta & =1 \text { or } 1 / 2
\end{aligned}
$$

66. Prove that
$(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$ Ans :
[Board 2019 Delhi Standard]
LHS $=(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$

$$
=\left(\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2 \sin \theta \operatorname{cosec} \theta\right)+
$$

$$
\begin{aligned}
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(\operatorname{cosec}^{2} \theta+\sec ^{2} \theta\right) \\
& \quad+2 \sin \theta \times \frac{1}{\sin \theta}+2 \cos \theta \times \frac{1}{\cos \theta} \\
& =1+\left(1+\cot ^{2} \theta\right)+\left(1+\tan ^{2} \theta\right)+2+2 \\
& =7+\tan ^{2} \theta+\cot ^{2} \theta \\
& =\text { RHS }
\end{aligned}
$$

67. Prove that $(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$

Ans:
[Board 2019 Delhi]

$$
\begin{aligned}
\text { LHS } & =(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A) \\
& =\left(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A}\right)\left(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}\right) \\
& =\left(\frac{\sin A+\cos A-1}{\sin A}\right)\left(\frac{\cos A+\sin A+1}{\cos A}\right) \\
& =\frac{(\sin A+\cos A-1)(\cos A+\sin A+1)}{\sin A \cos A} \\
& =\frac{(\sin A+\cos A)^{2}-(1)^{2}}{\sin A \cos A} \\
& =\frac{\sin ^{2} A+\cos ^{2} A+2 \sin A \cos A-1}{\sin A \cos A} \\
& =\frac{1+2 \sin A \cos A-1}{\sin A \cos A} \\
& =2=\mathrm{RHS}
\end{aligned}
$$

68. Prove that $\frac{\sin A-\cos A-1}{\sin A+\cos A-1}=\frac{1}{\sec A-\tan A}$

Ans :
[Board 2019 Delhi]

$$
\begin{aligned}
& \mathrm{LHS}=\frac{\sin A-\cos A+1}{\sin A+\cos A-1} \\
& =\frac{\sin A-\cos A+1}{\sin A+\cos A-1} \times \frac{1+\sin A}{1+\sin A} \\
& =\frac{(\sin A-\cos A+1)(1+\sin A)}{\sin A+\cos A-1+\sin ^{2} A+\cos A \sin A-\sin A} \\
& =\frac{(\sin A-\cos A+1)(1+\sin A)}{-1+\cos A+\left(1-\cos ^{2} A\right)+\sin A \cos A} \\
& =\frac{(\sin A-\cos A+1)(1+\sin A)}{\cos A(1-\cos A+\sin A)} \\
& =\frac{1+\sin A}{\cos A}=\frac{1}{\cos A}+\frac{\sin A}{\cos A} \\
& =\sec A+\tan A \\
& = \\
& \frac{(\sec A+\tan A)}{(\sec A-\tan A)} \times(\sec A-\tan A)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& =\frac{\sec ^{2} A-\tan ^{2} A}{\sec A-\tan A} \\
& =\frac{1}{\sec A-\tan A}=\text { RHS }
\end{aligned}
$$
\]

If Video Links are not Working, Please download updated

 file of this PDF from following link.
Click Here For Updated PDF of this Book

69. Prove that: $2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1=0$

Ans :
[Board 2020 Delhi Standard]

$$
\begin{aligned}
\text { LHS }= & 2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \\
= & 2\left[\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}\right]-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \\
= & 2\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta+\cos ^{4} \theta\right]+\right. \\
& -3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1
\end{aligned}
$$

$$
=2\left(\sin ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta+\cos ^{4} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1
$$

$$
=2\left(\sin ^{4} \theta+\cos ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1
$$

$$
=-\sin ^{4} \theta-\cos ^{4} \theta-2 \sin ^{2} \theta \cos ^{2} \theta+1
$$

$$
=-1+1=0=\mathrm{RHS}
$$

70. Provethat $\frac{\tan ^{2} A}{\tan ^{2} A-1}+\frac{\operatorname{cosec}^{2} A}{\sec ^{2} A-\operatorname{cosec}^{2} A}=\frac{1}{1-2 \cos ^{2} A}$ Ans :
[Board 2019 Delhi]

$$
\begin{aligned}
\text { LHS } & =\frac{\tan ^{2} A}{\tan ^{2} A-1}+\frac{\operatorname{cosec}^{2} A}{\sec ^{2} A-\operatorname{cosec}^{2} A} \\
& =\frac{\frac{\sin ^{2} A}{\cos ^{2} A}}{\frac{\sin ^{2} A}{\cos ^{2} A}-1}+\frac{\frac{1}{\sin ^{2} A}}{\frac{1}{\cos ^{2} A}-\frac{1}{\operatorname{cin}^{2} A}} \\
& =\frac{\frac{\sin ^{2} A}{\sin ^{2} A}}{\frac{\sin ^{2} s^{2}-\cos ^{2} A}{\cos ^{2} A}}+\frac{\frac{1}{\sin ^{2} A}}{\frac{\sin ^{2} A}{} \cos ^{2} A \cos ^{2} A} \\
& =\frac{\sin ^{2} A}{\cos ^{2} A \sin ^{2} A-\cos ^{2} A}+\frac{\cos ^{2} A}{\sin ^{2} A-\cos ^{2} A} \\
& =\frac{1}{1-\cos ^{2} A-\cos ^{2} A} \\
& =\frac{1}{1-2 \cos ^{2} A} \\
& =\text { RHS }
\end{aligned}
$$

71. If in a triangle $A B C$ right angled at $B, A B=6$ units and $B C=8$ units, then find the value of
$\sin A \cos C+\cos A \sin C$.

Ans :

[Board Term-1 2016]
As per question statement figure is shown below.

We have

$$
\begin{aligned}
A C^{2} & =8^{2}+6^{2}=100 \\
A C & =10 \mathrm{~cm} \\
\sin A & =\frac{B C}{A C}=\frac{8}{10} \\
\cos A & =\frac{A B}{A C}=\frac{6}{10}
\end{aligned}
$$

Now
and

$$
\begin{aligned}
& \sin C=\frac{A B}{A C}=\frac{6}{10} \\
& \cos C=\frac{B C}{A C}=\frac{8}{10}
\end{aligned}
$$

Thus $\sin A \cos C+\cos A \sin C=\frac{8}{10} \times \frac{8}{10}+\frac{6}{10} \times \frac{6}{10}$

$$
\begin{aligned}
& =\frac{64}{100}+\frac{36}{100} \\
& =\frac{100}{100}=1
\end{aligned}
$$

72. In the given $\angle P Q R$, right-angled at $Q, Q R=9 \mathrm{~cm}$ and $P R-P Q=1 \mathrm{~cm}$. Determine the value of $\sin R+\cos R$.

Ans :
Using Pythagoras theorem we have

$$
\begin{aligned}
P Q^{2}+Q R^{2} & =P R^{2} \\
P Q^{2}+9^{2} & =(P Q+1)^{2} \\
P Q^{2}+81 & =(P Q+1)^{2} \\
P Q^{2}+81 & =P Q^{2}+1+2 P Q \\
P Q & =40
\end{aligned}
$$

$$
=\frac{\frac{\sqrt{3}}{2}}{1+\frac{1}{2}}=\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}=\frac{1}{\sqrt{3}}
$$

Since $P R-P Q=1$, thus,

$$
\begin{aligned}
P R & =1+40=41 \\
\sin R+\cos R & =\frac{40}{41}+\frac{9}{41}=\frac{49}{41}
\end{aligned}
$$

73. If $\cos \left(40^{\circ}+x\right)=\sin 30^{\circ}$, find the value of x.

Ans :
[Board Term-1 2015]
We have

$$
\begin{aligned}
\cos \left(40^{\circ}-x\right) & =\sin 30^{\circ} \\
\cos \left(40^{\circ}+x\right) & =\sin \left(90^{\circ}-60^{\circ}\right) \\
\cos \left(40^{\circ}+x\right) & =\cos 60^{\circ} \\
40^{\circ}+x & =60^{\circ} \\
x & =60^{\circ}-40^{\circ}=20^{\circ}
\end{aligned}
$$

[Board Term-1 2015]

$$
\text { RHS }=\frac{\sin \theta}{1+\cos \theta}=\frac{\sin 60^{\circ}}{1+\cos 60^{\circ}}
$$

RHS $=$ LHS
Hence, relation is verified for $\theta=60^{\circ}$.
76. If $\tan A+\cot A=2$, then find the value of $\tan ^{2} A+\cot ^{2} A$.
Ans :
[Board Term-1 2015]

We have

$$
\tan A+\cot A=2
$$

Squaring both sides, we have

$$
(\tan A+\cot A)^{2}=(2)^{2}
$$

$$
\tan ^{2} A+\cot ^{2} A+2 \tan A \cot A=4
$$

$$
\tan ^{2} A+\cot ^{2} A+2 \tan A \times \frac{1}{\tan A}=4
$$

$$
\begin{aligned}
\tan ^{2} A+\cot ^{2} A+2 & =4 \\
\tan ^{2} A+\cot ^{2} A & =4-2 \\
\tan ^{2} A+\cot ^{2} A & =2
\end{aligned}
$$

77. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta, \quad$ show that $\cos \theta-\sin \theta=\sqrt{2} \cos \theta$.
Ans :
[Board Term-1 2011]
We have $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$
We have $\quad \sin \theta=\sqrt{2} \cos \theta-\cos \theta$

$$
\begin{aligned}
& =(\sqrt{2}-1) \cos \theta \\
& =\frac{(\sqrt{2}-1)(\sqrt{2}+1)}{(\sqrt{2}+1)} \cos \theta
\end{aligned}
$$

Thus $\quad \sin \theta=\frac{1}{\sqrt{2}+1} \cos \theta$

$$
\begin{aligned}
(\sqrt{2}+1) \sin \theta & =\cos \theta \\
\sqrt{2} \sin \theta+\sin \theta & =\cos \theta
\end{aligned}
$$

$$
\cos \theta-\sin \theta=\sqrt{2} \sin \theta \quad \text { Hence proved. }
$$

78. Prove that : $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A$.

Ans :
[Board Term-1 2013, 2011]

$$
\begin{aligned}
\mathrm{LHS} & =\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A} \\
& =\frac{\cos A}{1-\left(\frac{\sin A}{\cos A}\right)}+\frac{\sin A}{1-\left(\frac{\cos A}{\sin A}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A} \\
& =\frac{\cos ^{2} A}{\cos A-\sin A}-\frac{\sin ^{2} A}{\cos A-\sin A} \\
& =\frac{\cos ^{2} A-\sin ^{2} A}{\cos A-\sin A} \\
& =\frac{(\cos A-\sin A)(\cos A+\sin A)}{(\cos A-\sin A)} \\
& =\cos A+\sin A \\
& =\sin A+\cos A \\
& =\text { RHS } \quad \text { Hence proved. }
\end{aligned}
$$

SUPPORT US

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class.
b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes QR code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

79. In $\triangle A B C, \angle B=90^{\circ}, B C=5 \mathrm{~cm}, \quad A C-A B=1$, Evaluate $: \frac{1+\sin C}{1+\cos C}$.
Ans :
[Board Term-1 2011]
As per question we have drawn the figure given below.

We have

$$
A C-A B=1
$$

Let $A B=x$, then we have

$$
A C=x+1
$$

Now

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
(x+1)^{2} & =x^{2}+5^{2} \\
x^{2}+2 x+1 & =x^{2}+25 \\
2 x & =24 \\
x & =\frac{24}{2}=12 \mathrm{~cm}
\end{aligned}
$$

Hence, $A B=12 \mathrm{~cm}$ and $A C=13 \mathrm{~cm}$
Now

$$
\sin C=\frac{A B}{A C}=\frac{12}{13}
$$

$$
\cos C=\frac{B C}{A C}=\frac{5}{13}
$$

Now $\quad \frac{1+\sin C}{1+\cos C}=\frac{1+\frac{12}{13}}{1+\frac{5}{13}}=\frac{\frac{25}{13}}{\frac{18}{13}}=\frac{25}{18}$
80. Prove that : $\frac{\cos A}{1+\tan A}-\frac{\sin A}{1+\cot A}=\cos A-\sin A$

Ans :
[Board Term-1 2016]

$$
\frac{\cos A}{1+\tan A}-\frac{\sin A}{1+\cot A}
$$

$$
=\frac{\cos A}{1+\frac{\sin A}{\cos A}}-\frac{\sin A}{1+\frac{\cos A}{\sin A}}
$$

$$
=\frac{\cos ^{2} A}{\cos A+\sin A}-\frac{\sin ^{2} A}{\sin A+\cos A}
$$

$$
=\frac{\cos ^{2} A-\sin ^{2} A}{(\sin A+\cos A)}
$$

$$
=\frac{(\cos A+\sin A)(\cos A-\sin A)}{\sin A+\cos A}
$$

$$
=\cos A-\sin A
$$

Hence Proved.
81. If $b \cos \theta=a$ then prove that $\operatorname{cosec} \theta+\cot \theta=\sqrt{\frac{b+a}{b-a}}$.
Ans :
[Board Term-1 2015]
We have

$$
b \cos \theta=a
$$

or,

$$
\cos \theta=\frac{a}{b}
$$

Now consider the triangle shown below.

$$
A C^{2}=A B^{2}-B C^{2}
$$

or,

$$
\begin{aligned}
\cos \theta & =\frac{a}{b} \\
A C & =\sqrt{b^{2}-a^{2}}
\end{aligned}
$$

Now

$$
\operatorname{cosec} \theta=\frac{b}{\sqrt{b^{2}-a^{2}}}, \cot \theta=\frac{a}{\sqrt{b^{2}-a^{2}}}
$$

$$
\operatorname{cosec} \theta+\cot \theta=\frac{b+a}{\sqrt{b^{2}-a^{2}}}=\sqrt{\frac{b+a}{b-a}}
$$

82. Prove that : $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3}-\cos \theta}=\tan \theta$

Ans :
[Bard Term-1 2015]

$$
\begin{aligned}
\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3}-\cos \theta} & =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& =\frac{\sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-\sin ^{2} \theta-\cos ^{2} \theta\right)} \\
& =\frac{\tan \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\left(\cos ^{2} \theta-\sin ^{2} \theta\right)} \\
& =\tan \theta
\end{aligned}
$$

If Video Links are not Working, Please download updated file of this PDF from following link.

Click Here For Updated PDF of this Book

83. When is an equation called 'an identity'. Prove the trigonometric identity $1+\tan ^{2} A=\sec ^{2} A$.
Ans :
[Board Term-1 2015, NCERT]
Equations that are true no matter what value is plugged in for the variable. On simplifying an identity equation, one always get a true statement. Consider the triangle shown below.

Let $\tan A=\frac{P}{B}$ and $\sec A=\frac{H}{B}$

$$
H^{2}=P^{2}+B^{2}
$$

Now $\quad 1+\tan ^{2} A=1+\left(\frac{P}{B}\right)^{2}=1+\frac{P^{2}}{B^{2}}$

$$
\begin{aligned}
& =\frac{B^{2}+P^{2}}{B^{2}}=\frac{H^{2}}{B^{2}} \\
& =\left(\frac{H}{B}\right)^{2} \\
& =\sec ^{2} A \quad \text { Hence Proved. }
\end{aligned}
$$

84. Prove that : $(\cot \theta-\operatorname{cosec} \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

Ans :
[Board Term-1 2015]

$$
\begin{aligned}
\cot \theta-\operatorname{cosec} \theta & =\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta} \\
(\cot \theta-\operatorname{cosec} \theta)^{2} & =\left(\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)^{2} \\
& =\left(\frac{\cos \theta-1}{\sin \theta}\right)^{2} \\
& =\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}\left[\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]\right] \\
& =\frac{(1-\cos \theta)^{2}}{\left(1-\cos ^{2} \theta\right)} \\
& =\frac{(1-\cos \theta)(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)} \\
& =\frac{1-\cos \theta}{1+\cos \theta} \quad \operatorname{Hence} \quad \text { Proved. }
\end{aligned}
$$

85. Prove that :
$(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1$
Ans :
[Board Term-1 2015]
LHS $=(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)$

$$
\begin{aligned}
& =\left(\frac{1}{\sin \theta}-\sin \theta\right)\left(\frac{1}{\cos \theta}-\cos \theta\right)\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\
& =\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right)\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right)\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cdot \cos \theta}\right) \\
& =\frac{\cos ^{2} \theta}{\sin \theta} \times \frac{\sin ^{2} \theta}{\cos \theta} \times\left(\frac{1}{\sin \theta \cos \theta}\right) \quad\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& =\cos \theta \sin \theta \times \frac{1}{\sin \theta \cos \theta}=1
\end{aligned}
$$

86. Show that:
$\operatorname{cosec}^{2} \theta-\tan ^{2}\left(90^{\circ}-\theta\right)=\sin ^{2} \theta+\sin \left(90^{\circ}-\theta\right)$
Ans :
[Board Term-1 2013]

$$
\begin{aligned}
& \operatorname{cosec}^{2} \theta-\tan ^{2}\left(90^{\circ}-\theta\right) \\
&=\operatorname{cosec}^{2} \theta-\cot ^{2} \theta \\
&=\frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
&=\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{\sin ^{2} \theta}{\sin ^{2} \theta} \\
&=1 \\
&=\sin ^{2} \theta+\cos ^{2} \theta \\
&=\sin ^{2} \theta+\sin ^{2}\left(90^{\circ}-\theta\right)
\end{aligned}
$$

Hence Proved

Download 15 Years Previous Years Chapterwise

 Question Bank Free PDFs For all Subject from www.cbse.online87. Prove that : $\frac{\operatorname{cosec}^{2} \theta}{\operatorname{cosec} \theta-1}-\frac{\operatorname{cosec}^{2} \theta}{\operatorname{cosec} \theta+1}=2 \sec ^{2} \theta$

Ans :
[Board Term-1 2013]
We have

$$
\begin{aligned}
& \frac{\operatorname{cosec}^{2} \theta}{\operatorname{cosec} \theta-1}-\frac{\operatorname{cosec}^{2} \theta}{\operatorname{cosec} \theta+1}=\operatorname{cosec}^{2} \theta\left[\frac{1}{\frac{1}{\sin \theta}-1}-\frac{1}{\frac{1}{\sin \theta}+1}\right] \\
& =\operatorname{cosec}^{2} \theta\left[\frac{\sin \theta}{1-\sin \theta}-\frac{\sin \theta}{1+\sin \theta}\right] \\
& =\frac{1}{\sin ^{2} \theta} \sin \theta\left[\frac{(1+\sin \theta)-(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}\right] \\
& =\frac{1}{\sin \theta}\left[\frac{2 \sin \theta}{1-\sin ^{2} \theta}\right] \\
& =\frac{2}{\cos ^{2} \theta}=2 \sec ^{2} \theta \\
& \text { Hence Proved }
\end{aligned}
$$

88. Prove that :

$$
\frac{1}{\operatorname{cosec} A-\cot A}-\frac{1}{\sin A}=\frac{1}{\sin A}-\frac{1}{\operatorname{cosec} A+\cot A}
$$

Ans :
[Board Term-1 2011]
$\frac{1}{\operatorname{cosec} A-\cot A}-\frac{1}{\sin A}=\frac{1}{\sin A}-\frac{1}{\operatorname{cosec} A+\cot A}$
$\frac{1}{\operatorname{cosec} A-\cot A}+\frac{1}{\operatorname{cosec} A+\cot A}=\frac{1}{\sin A}+\frac{1}{\sin A}$

$$
\frac{1}{\operatorname{cosec} A-\cot A}+\frac{1}{\operatorname{cosec} A+\cot A}=\frac{2}{\sin A}
$$

$$
\frac{\operatorname{cosec} A+\cot A+\operatorname{cosec} A-\cot A}{(\operatorname{cosec} A-\cot A)(\operatorname{cosec} A+\cot a)}=\frac{2}{\sin A}
$$

$$
\frac{2 \operatorname{cosec} A}{\operatorname{cosec}^{2} A-\cot ^{2} A}=\frac{2}{\sin A}
$$

$$
\frac{2 \frac{1}{\sin A}}{1}=\frac{2}{\sin A}
$$

$$
\frac{2}{\sin A}=\frac{2}{\sin A} \text { Hence Proved. }
$$

89. If $\sec \theta=x+\frac{1}{4 x}$ prove that $\sec \theta+\tan \theta=2 x$ or, $\frac{1}{2 x}$ Ans :
[Board Term-1 2011]
We have

$$
\begin{equation*}
\sec \theta=x+\frac{1}{4 x} \tag{1}
\end{equation*}
$$

Squaring both side we have

$$
\begin{aligned}
\sec ^{2} \theta & =x^{2}+2 x \frac{1}{4 x}+\frac{1}{16 x^{2}} \\
1+\tan ^{2} \theta & =x^{2}+\frac{1}{2}+\frac{1}{16 x^{2}} \\
\tan ^{2} \theta & =x^{2}+\frac{1}{2}+\frac{1}{16 x^{2}}-1 \\
& =x^{2}-\frac{1}{2}+\frac{1}{16 x^{2}} \\
& =x^{2}-2 x \frac{1}{4 x}+\frac{1}{16 x^{2}} \\
\tan ^{2} \theta & =\left(x-\frac{1}{4 x}\right)^{2}
\end{aligned}
$$

Taking square root both sides we obtain

$$
\tan \theta= \pm\left(x-\frac{1}{4 x}\right)
$$

Now

$$
\begin{equation*}
\tan \theta=x-\frac{1}{4 x} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\tan \theta=-\left(x-\frac{1}{4 x}\right)=-x+\frac{1}{4 x} \tag{3}
\end{equation*}
$$

Adding (1) and (2) we have

$$
\tan \theta+\sec \theta=2 x
$$

Adding (1) and (3) we have

$$
\sec \theta+\tan \theta=\frac{1}{4 x}+\frac{1}{4 x}=\frac{1}{2 x} \text { Hence proved. }
$$

90. Prove that $: \frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{2}{2 \sin ^{2} \theta-1}$

Ans :
[Board Term-1 2011]

$$
\begin{aligned}
& \text { LHS }=\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta} \\
&= \frac{(\sin \theta-\cos \theta)^{2}+(\sin \theta+\cos \theta)^{2}}{\sin ^{2} \theta-\cos ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-2 \sin \theta \cos \theta+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2 \sin \theta \cos \theta}{\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)} \\
\\
=\frac{1+1}{\sin ^{2} \theta-1+\sin ^{2} \theta} \\
\\
\text { Hence Proved. }
\end{array}=\frac{2}{2 \sin ^{2} \theta-1}=\text { RHS }
\end{aligned}
$$

91. If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$, prove that $x^{2}+y^{2}=1$.
Ans :
[Board Term-1 2011]
We have $\quad x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
and

$$
\begin{array}{r}
x \sin \theta=y \cos \theta \tag{1}\\
x=\frac{y \cos \theta}{\sin \theta}
\end{array}
$$

Eliminating x from equation (1) and (2) we obtain,

$$
\begin{align*}
\frac{y \cos \theta}{\sin \theta} \sin ^{3} \theta+y \cos ^{3} \theta & =\sin \theta \cos \theta \\
y \cos \theta \sin ^{2} \theta+y \cos ^{3} \theta & =\sin \theta \cos \theta \\
y \cos \theta\left[\sin ^{2} \theta+\cos ^{2} \theta\right] & =\sin \theta \cos \theta \\
y\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\sin \theta \\
y & =\sin \theta \tag{3}
\end{align*}
$$

Substituting this value of y in equation (2) we have,

$$
\begin{equation*}
x=\cos \theta \tag{4}
\end{equation*}
$$

Squaring and adding equation (3) and (4), we get

$$
x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1 \quad \text { Hence Proved. }
$$

92. Prove that $\frac{\cos ^{3} \theta+\sin ^{3} \theta}{\cos \theta+\sin \theta}+\frac{\cos ^{3} \theta-\sin ^{3} \theta}{\cos \theta-\sin \theta}=2$

Ans :
[Board Term-1 2011]

$$
X=\frac{\cos ^{3} \theta+\sin ^{3} \theta}{\cos \theta+\sin \theta}
$$

$$
\begin{aligned}
& =\frac{(\cos \theta+\sin \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta-\sin \theta \cos \theta\right)}{(\cos \theta+\sin \theta)} \\
& =(1-\sin \theta \cos \theta) \\
Y & =\frac{\cos ^{3} \theta-\sin ^{3} \theta}{\cos \theta-\sin \theta} \\
& =\frac{(\cos \theta-\sin \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta+\sin \theta \cos \theta\right)}{(\cos \theta-\sin \theta)} \\
& =(1+\sin \theta \cos \theta)
\end{aligned}
$$

Now given expression

$$
\begin{aligned}
X+Y & =\frac{\cos ^{3} \theta+\sin ^{3} \theta}{\cos \theta+\sin \theta}+\frac{\cos ^{3} \theta-\sin ^{3} \theta}{\cos \theta-\sin \theta} \\
& =(1-\sin \theta \cos \theta)+(1+\sin \theta \cos \theta) \\
& =2-\sin \theta \cos \theta+\sin \theta \cos \theta \\
& =2=\text { RHS } \quad \text { Hence Proved. }
\end{aligned}
$$

93. Express : $\sin A, \tan A$ and $\operatorname{cosec} A$ in terms of $\sec A$. Ans:
[Board Term-1 2011]

$$
\begin{equation*}
\sin ^{2} A+\cos ^{2} A=1 \tag{1}
\end{equation*}
$$

$$
\sin A=\sqrt{1-\cos ^{2} A}
$$

$$
=\sqrt{1-\frac{1}{\sec ^{2} A}}
$$

$$
=\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}
$$

$$
\begin{equation*}
\tan A=\frac{\sin A}{\cos A}=\sin A \sec A \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{\sqrt{\sec ^{2} A-1}}{\sec A} \times \sec A \\
& =\sqrt{\sec ^{2} A-1}
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{cosec} A=\frac{1}{\sin A}=\frac{\sec A}{\sqrt{\sec ^{2} A-1}} \tag{3}
\end{equation*}
$$

94. If $\sin \theta+\cos \theta=\sqrt{2}$, then evaluate $\tan \theta+\cot \theta$.

Ans :
[Board SQP 2018]
We have

$$
\sin \theta+\cos \theta=\sqrt{2}
$$

Squaring both sides, we get

$$
(\sin \theta+\cos \theta)^{2}=(\sqrt{2})^{2}
$$

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta & =2 \\
1+2 \sin \theta \cos \theta & =2
\end{aligned}
$$

$$
2 \sin \theta \cos \theta \quad 2-1=1
$$

$$
\frac{1}{\sin \theta \cos \theta}=2
$$

Now,

$$
\begin{aligned}
\tan \theta+\cot \theta & =\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\
& =\frac{1}{\cos \theta \sin \theta}=2
\end{aligned}
$$

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

FOUR MARKS QUESTIONS

95. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that $\tan \theta+\cot \theta=1$

Ans:
[Board 2020 Delhi Standard]
We have

$$
\sin \theta+\cos \theta=\sqrt{3}
$$

Squaring both the sides, we get

$$
(\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2}
$$

$\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3$
$1+2 \sin \theta \cos \theta=3$
$2 \sin \theta \cos \theta=3-1=2$

$$
\begin{equation*}
\sin \theta \cos \theta=1 \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
\tan \theta+\cot \theta & =\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}
\end{aligned}
$$

or

$$
\tan \theta+\cot \theta=\frac{1}{\sin \theta \cos \theta}
$$

Substituting the value of $\sin \theta \cos \theta$ from equation (1) we have

Hence,

$$
\tan \theta+\cot \theta=\frac{1}{1}=1
$$

$$
\tan \theta+\cot \theta=1
$$

96. If $\sec \theta=x+\frac{1}{4 x}, x \neq 0$ find $(\sec \theta+\tan \theta)$.

Ans:
[Board 2019 Delhi]
We have $\quad \sec \theta=x+\frac{1}{4 x}$
Since,

$$
\tan ^{2} \theta=\sec ^{2} \theta-1
$$

Substituting value of $\sec \theta$ we have

$$
\tan ^{2} \theta
$$

$$
=\left(x+\frac{1}{4 x}\right)^{2}-1
$$

$$
\begin{aligned}
& =x^{2}+\frac{2 x}{4 x}+\frac{1}{16 x^{2}}-1 \\
& =x^{2}+\frac{1}{16 x^{2}}-\frac{1}{2} \\
& =\left(x-\frac{1}{4 x}\right)^{2} \\
\tan \theta & = \pm\left(x-\frac{1}{4 x}\right)
\end{aligned}
$$

When $\sec \theta=x+\frac{1}{4 x}$ and $\tan \theta=x-\frac{1}{4 x}$ we have

$$
\sec \theta+\tan \theta=\left(x+\frac{1}{4 x}\right)+\left(x-\frac{1}{4 x}\right)=2 x
$$

When $\sec \theta=x+\frac{1}{4 x}$ and $\tan \theta=-\left(x-\frac{1}{4 x}\right)$ we have

$$
\begin{aligned}
\sec \theta+\tan \theta & =\left(x+\frac{1}{4 x}\right)+\left\{-\left(x-\frac{1}{4 x}\right)\right\} \\
& =x+\frac{1}{4 x}-x+\frac{1}{4 x} \\
& =\frac{2}{4 x}=\frac{1}{2 x}
\end{aligned}
$$

97. If $\sin A=\frac{3}{4}$ calculate $\sec A$.

Ans:
[Board 2019 OD]

We have

$$
\sin A=\frac{3}{4}
$$

Now

$$
\cos ^{2} A=1-\sin ^{2} A
$$

$$
\cos ^{2} A=1-\left(\frac{3}{4}\right)^{2}=1-\frac{9}{16}=\frac{7}{16}
$$

$$
\cos A=\frac{\sqrt{7}}{4}
$$

Thus

$$
\sec A=\frac{1}{\cos A}=\frac{4}{\sqrt{7}}
$$

98. Prove that: $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

Ans :
[Board 2019 OD]

$$
\begin{aligned}
& \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\frac{\tan \theta}{1-\frac{1}{\tan \theta}}+\frac{\frac{1}{\tan \theta}}{1-\tan \theta} \\
& =\frac{\tan ^{2} \theta}{\tan \theta-1}+\frac{1}{\tan \theta(1-\tan \theta)} \\
& =\frac{\tan ^{2} \theta}{\tan \theta-1}-\frac{1}{\tan \theta(\tan \theta-1)} \\
& =\frac{\tan ^{3} \theta-1}{\tan \theta(\tan \theta-1)} \\
& =\frac{(\tan \theta-1)\left(\tan ^{2} \theta+1+\tan \theta\right)}{\tan \theta(\tan \theta-1)} \\
& =\frac{\tan ^{2} \theta+1+\tan \theta}{\tan \theta} \\
& =\tan \theta+\cot \theta+1 \\
& =\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}+1 \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}+1 \\
& =\frac{1}{\sin \theta \cos \theta}+1 \\
& =\operatorname{cosec} \theta \sec \theta+1 \\
& =1+\sec \theta \operatorname{cosec} \theta \text { Hence Proved }
\end{aligned}
$$

99. Prove that: $\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}$

Ans :
[Board 2019 OD]

$$
\begin{align*}
\mathrm{LHS} & =\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta} \\
& =\frac{\sin \theta}{\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}}=\frac{\sin ^{2} \theta}{\cos \theta+1} \\
& =\frac{1-\cos ^{2} \theta}{\cos \theta+1}=\frac{(1-\cos \theta)(1+\cos \theta)}{\cos \theta+1} \\
& =1-\cos \theta \tag{1}
\end{align*}
$$

Now, \quad RHS $=2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}$

$$
\begin{aligned}
& =2+\frac{\sin \theta}{\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}}=2+\frac{\sin ^{2} \theta}{\cos \theta-1} \\
& 2+\frac{1-\cos ^{2} \theta}{\cos \theta-1}=2-\frac{\left(\cos ^{2} \theta-1\right)}{(\cos \theta-1)} \\
& =2-\frac{(\cos \theta-1)(\cos \theta+1)}{\cos \theta-1} \\
& =2-(\cos \theta+1)=1-\cos \theta
\end{aligned}
$$

$$
=\mathrm{LHS}
$$

Hence Proved
100.Find $\quad A \quad$ and $\quad B$ if $\sin (A+2 B)=\frac{\sqrt{3}}{2} \quad$ and $\cos (A+4 B)=0$, where A and B are acute angles.
Ans :
[Board 2019 OD]

We have

$$
\begin{align*}
\sin (A+2 B) & =\frac{\sqrt{3}}{2} \\
\sin (A+2 B) & =\sin 60^{\circ} \quad\left(\sin 60^{\circ}=\frac{\sqrt{3}}{2}\right) \\
A+2 B & =60^{\circ} \tag{1}
\end{align*}
$$

Also, given

$$
\begin{align*}
\cos (A+4 B) & =0 \\
\cos (A+4 B) & =\cos 90^{\circ} \quad\left(\cos 90^{\circ}=0\right) \\
A+4 B & =90^{\circ} \tag{2}
\end{align*}
$$

Subtracting equation (2) from equation (1) we get

$$
-2 B=-30^{\circ} \Rightarrow B=15^{\circ}
$$

From equation (1) we have

$$
\begin{aligned}
A+2\left(15^{\circ}\right) & =60^{\circ} \\
A & =60^{\circ}-30^{\circ}
\end{aligned}
$$

$=30^{\circ}$
Hence angle $A=30^{\circ}$ and angle $B=15^{\circ}$.
101.If $4 \tan \theta=3$, evaluate $\left(\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}\right)$
[Board 2018]
We have $\quad 4 \tan \theta=3 \Rightarrow \tan \theta=\frac{3}{4}$

We know very well that if $\tan \theta=\frac{3}{4}$, then

$$
\sin \theta=\frac{3}{5} \text { and } \cos \theta=\frac{4}{5}
$$

Substituting above values in given expression,

$$
\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}=\frac{4 \times \frac{3}{5}-\frac{4}{5}+1}{4 \times \frac{3}{5}+\frac{4}{5}-1}=\frac{13}{11}
$$

102.Evaluate :
$\tan ^{2} 30^{\circ} \sin 30^{\circ}+\cos 60^{\circ} \sin ^{2} 90^{\circ} \tan ^{2} 60^{\circ}-2 \tan 45^{\circ} \cos ^{2} 0^{\circ} \sin 90^{\circ}$
Ans :
[Board Term-1 2015]
$\tan ^{2} 30^{\circ} \sin 30^{\circ}+\cos 60^{\circ} \sin ^{2} 90^{\circ} \tan ^{2} 60^{\circ}-2 \tan 45^{\circ} \cos ^{2} 0^{\circ} \sin 90^{\circ}$
$=\left(\frac{1}{\sqrt{3}}\right)^{2} \times \frac{1}{2}+\frac{1}{2} \times(1)^{2} \times(\sqrt{3})^{2}-2 \times 1 \times 1^{2} \times 1$
$=\frac{1}{3} \times \frac{1}{2}+\frac{1}{2} \times 3-2$
$=\frac{1}{6}+\frac{3}{2}-2=\frac{1+9-12}{6}=-\frac{2}{6}=-\frac{1}{3}$

103. Given that
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$,
find the values of $\tan 75^{\circ}$ and $\tan 90^{\circ}$ by taking suitable values of A and B.
Ans :
[Board Term-1 2012, NCERT]
We have $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
(i)

$$
\begin{aligned}
\tan 75^{\circ} & =\tan \left(45^{\circ}+30^{\circ}\right) \\
& =\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \tan 30^{\circ}} \\
& =\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1} \\
& =\frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \\
& =\frac{3+2 \sqrt{3}+1}{(\sqrt{3})^{2}-(1)^{2}}=\frac{4+2 \sqrt{3}}{2} \\
& =2+\sqrt{3}
\end{aligned}
$$

Hence $\tan 75^{\circ}=2+\sqrt{3}$
(ii)

$$
\begin{aligned}
\tan 90^{\circ} & =\tan \left(60^{\circ}+30^{\circ}\right) \\
& =\frac{\tan 60^{\circ}+\tan 30^{\circ}}{1-\tan 60^{\circ} \tan 30^{\circ}} \\
& =\frac{\sqrt{3}+\frac{1}{\sqrt{3}}}{1-\sqrt{3} \times \frac{1}{\sqrt{3}}}=\frac{\frac{3+1}{\sqrt{3}}}{0}
\end{aligned}
$$

Hence, $\tan 90^{\circ}=\infty$
104. Evaluate :
$\sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+\frac{1}{2} \sin 90^{\circ}-2 \cos ^{2} 90^{\circ}+\frac{1}{24}$
Ans :
[Board Term-1 2013]

$\sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+\frac{1}{2} \sin 90^{\circ}-2 \cos ^{2} 90^{\circ}+\frac{1}{24}$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{\sqrt{2}}\right)^{2}+4\left(\frac{1}{\sqrt{3}}\right)^{2}+\frac{1}{2}(1)^{2}-2(0)+\frac{1}{24} \\
& =\frac{1}{4}\left(\frac{1}{2}\right)+4\left(\frac{1}{3}\right)+\frac{1}{2}+\frac{1}{24}=\frac{1}{8}+\frac{4}{3}+\frac{1}{2}+\frac{1}{24}
\end{aligned}
$$

$$
=\frac{3+32+12+1}{24}=\frac{48}{24}=2
$$

105. Evaluate : $4\left(\sin ^{4} 30^{\circ}+\cos ^{4} 60^{\circ}\right)-3\left(\cos ^{2} 45-\sin ^{2} 90^{\circ}\right)$

Ans :
[Board Term-1 2013]

$$
\begin{aligned}
& 4\left(\sin ^{4} 30^{\circ}+\cos ^{4} 60^{\circ}\right)-3\left(\cos ^{2} 45-\sin ^{2} 90^{\circ}\right) \\
& \quad=4\left[\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}\right]-3\left[\left(\frac{1}{\sqrt{2}}\right)^{2}-(1)^{2}\right] \\
& \quad=4\left[\frac{1}{16}+\frac{1}{16}\right]-3\left[\frac{1}{2}-1\right] \\
& \quad=4\left(\frac{2}{16}\right)-3\left(-\frac{1}{2}\right)=\frac{1}{2}+\frac{3}{2}=\frac{4}{2}=2
\end{aligned}
$$

106.If $15 \tan ^{2} \theta+4 \sec ^{2} \theta=23$, then find the value of $(\sec \theta+\operatorname{cosec} \theta)^{2}-\sin ^{2} \theta$.
Ans :
[Board Term-1 2012]
We have $\quad 15 \tan ^{2} \theta+4 \sec ^{2} \theta=23$

$$
\begin{aligned}
15 \tan ^{2} \theta+4\left(\tan ^{2} \theta+1\right) & =23 \\
15 \tan ^{2} \theta+4 \tan ^{2} \theta+4 & =23 \\
19 \tan ^{2} \theta & =19 \\
\tan \theta & =1=\tan 45^{\circ} \\
\theta & =45^{\circ}
\end{aligned}
$$

Thus
Now, $(\sec \theta+\operatorname{cosec} \theta)^{2}-\sin ^{2} \theta$

$$
\begin{aligned}
& =\left(\sec 45^{\circ}+\operatorname{cosec} 45^{\circ}\right)^{2}-\sin ^{2} 45^{\circ} \\
& =(\sqrt{2}+\sqrt{2})^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2} \\
& =(2 \sqrt{2})^{2}-\frac{1}{2}=8-\frac{1}{2}=\frac{15}{2}
\end{aligned}
$$

107.If $\sqrt{3} \cot ^{2} \theta-4 \cot \theta+\sqrt{3}=0$, then find the value of $\cot ^{2} \theta+\tan ^{2} \theta$.
Ans :
[Board Term-1 2012]
We have $\quad \sqrt{3} \cot ^{2} \theta-4 \cot \theta+\sqrt{3}=0$
Let $\cot \theta=x$, then we have

$$
\begin{aligned}
& \sqrt{3} x^{2}-4 x+\sqrt{3}=0 \\
& \sqrt{3} x^{2}-3 x-x+\sqrt{3}=0 \\
&(x-\sqrt{3})(\sqrt{3 x}-1)=0 \\
& x=\sqrt{3} \text { or } \frac{1}{\sqrt{3}}
\end{aligned}
$$

Thus $\cot \theta=\sqrt{3}$ or $\cot \theta=\frac{1}{\sqrt{3}}$
Therefore $\theta=30^{\circ}$ or $\theta=60^{\circ}$
If $\theta=30^{\circ}$, then

$$
\begin{aligned}
\cot ^{2} 30^{\circ}+\tan ^{2} 30^{\circ} & =(\sqrt{3})^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2} \\
& =3+\frac{1}{3}=\frac{10}{3}
\end{aligned}
$$

If $\theta=60^{\circ}$, then

$$
\begin{aligned}
\cot ^{2} 60^{\circ}+\tan ^{2} 60^{\circ} & =\left(\frac{1}{\sqrt{3}}\right)^{2}+(\sqrt{3})^{2} \\
& =\frac{1}{3}+3=\frac{10}{3}
\end{aligned}
$$

108. Evaluate the following :

$$
\frac{2 \cos ^{2} 60^{\circ}+3 \sec ^{2} 30^{\circ}-2 \tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}}
$$

Ans:
[Board Term-1 2012]
$\frac{2 \cos ^{2} 60^{\circ}+3 \sec ^{2} 30^{\circ}-2 \tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}}=\frac{2\left(\frac{1}{2}\right)^{2}+3\left(\frac{2}{\sqrt{3}}\right)^{2}-2(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}$

$$
\begin{aligned}
& =\frac{2\left(\frac{1}{2}\right)^{2}+3\left(\frac{2}{\sqrt{3}}\right)^{2}-2(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}} \\
& =\frac{\frac{2}{4}+4-2}{\frac{1}{4}+\frac{1}{2}}=\frac{10}{3}
\end{aligned}
$$

109.Prove that : $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan \theta+\cot \theta$. Ans :
[Board Term-1 2012]
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\frac{\tan \theta}{1-\frac{1}{\tan \theta}}+\frac{\frac{1}{\tan \theta}}{1-\tan \theta}$

$$
\begin{aligned}
& =\frac{\tan ^{2} \theta}{\tan \theta-1}+\frac{1}{(1-\tan \theta) \tan \theta} \\
& =\frac{\tan ^{2} \theta}{\tan \theta-1}-\frac{1}{(\tan \theta-1) \tan \theta} \\
& =\frac{\tan ^{3} \theta-1}{(\tan \theta-1) \tan \theta} \\
& =\frac{(\tan \theta-1)\left(\tan ^{2} \theta+\tan \theta+1\right)}{(\tan \theta-1)(\tan \theta)} \\
& =\frac{\tan ^{2} \theta+\tan \theta+1}{\tan \theta} \quad \text { 四 } \\
& =\tan \theta+1+\cot \theta
\end{aligned}
$$

Hence Proved.
110.In an acute angled triangle $A B C$ if $\sin (A+B-C)=\frac{1}{2}$ and $\cos (B+C-A)=\frac{1}{\sqrt{2}}$ find $\angle A, \angle B$ and $\angle C$.
Ans :
[Board Term-1 2012]

We have

$$
\sin (A+B-C)=\frac{1}{2}=\sin 30^{\circ}
$$

$$
\begin{align*}
& A+B-C=30^{\circ} \tag{1}\\
& \cos (B+C-A)=\frac{1}{\sqrt{2}}=\cos 45^{\circ} \\
& B+C-A=45^{\circ} \tag{2}
\end{align*}
$$

and

Adding equation (1) and (2), we get

$$
2 B=75^{\circ} \Rightarrow B=37.5^{\circ}
$$

Subtracting equation (2) from equation (1) we get,

$$
\begin{align*}
2(A-C) & =-15^{\circ} \\
A-C & =-7.5^{\circ} \tag{3}
\end{align*}
$$

Now

$$
\begin{align*}
A+B+C & =180^{\circ} \\
A+C & =180^{\circ}-37.5^{\circ}=142.5^{\circ} \tag{4}
\end{align*}
$$

Adding equation (3) and (4), we have
and,

$$
\begin{aligned}
2 A & =135^{\circ} \Rightarrow A=67.5^{\circ} \\
C & =75^{\circ}
\end{aligned}
$$

Hence, $\angle A=67.5^{\circ}, \angle B=37.5^{\circ}, \angle C=75^{\circ}$
111.Prove that $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$, if :
(1) $x=a \sec \theta, y=b \tan \theta$, or
(2) $x=a \operatorname{cosec} \theta, y=b \cot \theta$

Ans :
[Board Term-1 2015]
(1) We have $x=a \sec \theta, y=b \tan \theta$,

$$
\begin{aligned}
\frac{x^{2}}{a^{2}} & =\sec ^{2} \theta, \frac{y^{2}}{b^{2}}=\tan ^{2} \theta \\
\text { or, } \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =\sec ^{2} \theta-\tan ^{2} \theta=1
\end{aligned}
$$

Thus

$$
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}
$$

Hence Proved
(ii) We have $x=a \operatorname{cosec} \theta, y=b \cot \theta$

$$
\begin{aligned}
\frac{x^{2}}{a^{2}} & =\operatorname{cosec}^{2} \theta, \frac{y^{2}}{b^{2}}=\cot ^{2} \theta \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =\operatorname{cosec}^{2} \theta-\cot \theta=1
\end{aligned}
$$

Thus

$$
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}
$$

Hence Proved
112.If $\operatorname{cosec} \theta-\cot \theta=\sqrt{2} \cot \theta$, then prove that $\operatorname{cosec} \theta+\cot \theta=\sqrt{2} \operatorname{cosec} \theta$.
Ans :
[Board Term-1 2015]

We have $\quad \operatorname{cosec} \theta-\cot \theta=\sqrt{2} \cot \theta$
Squaring both sides we have

$$
\operatorname{cosec}^{2} \theta+\cot ^{2} \theta-2 \operatorname{cosec} \theta \cot \theta=2 \cot ^{2} \theta
$$

$$
\begin{aligned}
& \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=2 \operatorname{cosec} \theta \cot \theta \\
&(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)=2 \operatorname{cosec} \theta \cot \theta \\
&(\operatorname{cosec} \theta-\cot \theta=\sqrt{2} \cot \theta) \\
&(\operatorname{cosec} \theta+\cot \theta) \sqrt{2} \cot \theta=2 \operatorname{cosec} \theta \cot \theta \\
& \operatorname{cosec} \theta+\cot \theta=\sqrt{2} \operatorname{cosec} \theta
\end{aligned}
$$

Hence Proved.

Don't Take Printout of This PDF. Buy Hard Book With Video at Price Less than Price of Printouts.

CLICK TO BUY HARD BOOK

113.Prove that :

$$
\frac{\cot ^{3} \theta \sin ^{3} \theta}{(\cos \theta+\sin \theta)^{2}}+\frac{\tan ^{3} \theta \cos ^{3} \theta}{(\cos \theta+\sin \theta)^{2}}=\frac{\sec \theta \operatorname{cosec} \theta-1}{\operatorname{cosec} \theta+\sec \theta}
$$

Ans :
[Board Term-1 2015]

$$
\begin{aligned}
& \frac{\cot ^{3} \theta \sin ^{3} \theta}{(\cos \theta+\sin \theta)^{2}}+\frac{\tan ^{3} \theta \cos ^{3} \theta}{(\cos \theta+\sin \theta)^{2}} \\
& \quad=\frac{\frac{\cos ^{3} \theta}{\sin ^{3} \theta} \times \sin ^{3} \theta}{(\cos \theta+\sin \theta)^{2}}+\frac{\frac{\sin ^{3} \theta}{\cos \theta} \times \cos ^{3} \theta}{(\cos \theta+\sin \theta)^{2}} \\
& =\frac{\cos ^{3} \theta}{(\cos \theta+\sin \theta)^{2}}+\frac{\sin ^{3} \theta}{(\cos \theta+\sin \theta)^{2}} \\
& =\frac{(\cos \theta+\sin \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta-\sin \theta \cos \theta\right)}{(\cos \theta+\sin \theta)^{2}} \\
& \quad=\frac{1-\sin \theta \cos \theta}{\cos \theta+\sin \theta}=\frac{\frac{1}{\cos \theta \sin \theta}-\frac{\sin \theta \cos \theta}{\cos \theta \sin \theta}}{\cos s \theta \sin \theta}+\frac{\sin \theta}{\cos \theta \sin \theta} \\
& \quad=\frac{\operatorname{cosec} \theta \sec \theta-1}{\operatorname{cosec} \theta+\sec \theta} \quad \text { Hence Proved }
\end{aligned}
$$

114. Prove that $: \sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=2 \operatorname{cosec} \theta$.

Ans :
[Board Terim-1, 2012, Set-9]

$$
\begin{aligned}
\sqrt{\frac{\sec \theta-1}{\sec \theta+1}} & +\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=\frac{(\sec \theta-1)+(\sec \theta+1)}{\sqrt{(\sec \theta+1)(\sec \theta-1)}} \\
& =\frac{2 \sec \theta}{\sqrt{\sec ^{2} \theta-1}}=\frac{2 \sec \theta}{\sqrt{\tan ^{2} \theta}}=\frac{2 \sec \theta}{\tan \theta} \\
& =2 \times \frac{1}{\cos \theta} \times \frac{\cos \theta}{\sin \theta} \\
& =2 \times \frac{1}{\sin \theta} \\
& =2 \operatorname{cosec} \theta \quad \text { Hence Proved }
\end{aligned}
$$

115. Prove that $: \frac{\tan \theta+\sin \theta}{\tan \theta-\sin \theta}=\frac{\sec \theta+1}{\sec \theta-1}$.

Ans :
[Board Term-1 2012]
We have $\frac{\tan \theta+\sin \theta}{\tan \theta-\sin \theta}=\frac{\frac{\sin \theta}{\cos \theta}+\sin \theta}{\frac{\sin \theta}{\cos \theta}-\sin \theta}$

$$
=\frac{\sin \theta\left(\frac{1}{\cos \theta}+1\right)}{\sin \theta\left(\frac{1}{\cos \theta}-1\right)}
$$

$$
=\frac{\sec \theta+1}{\sec \theta-1}
$$

Hence Proved.
116.Prove that : $\frac{\operatorname{cosec} A}{\operatorname{cosec} A-1}+\frac{\operatorname{cosec} A}{\operatorname{cosec} A+1}=2 \sec ^{2} A$

Ans:
[Board Term-1 2012]
$\frac{\operatorname{cosec} A}{\operatorname{cosec} A-1}+\frac{\operatorname{cosec} A}{\operatorname{cosec} A+1}$

$$
\begin{aligned}
& =\frac{\operatorname{cosec}^{2} A+\operatorname{cosec} A+\operatorname{cosec}^{2} A-\operatorname{cosec} A}{(\operatorname{cosec} A-1)(\operatorname{cosec} A+1)} \\
& =\frac{2 \operatorname{cosec}^{2} A}{\operatorname{cosec}^{2} A-1}=\frac{2 \operatorname{cosec}^{2} A}{\cot ^{2} A} \\
& =\frac{\frac{2}{\sin ^{2} A}}{\frac{\cos ^{2} A}{\sin ^{2} A}}=\frac{2}{\sin ^{2} A} \times \frac{\sin ^{2} A}{\cos ^{2} A} \\
& =\frac{2}{\cos ^{2} A}=2 \sec ^{2} A \quad \text { Hence Proved. }
\end{aligned}
$$

117.If $\operatorname{cosec} \theta+\cot \theta=p$, then prove that $\cos \theta=\frac{p^{2}-1}{p^{2}+1}$.

Ans:
[Board Term-1 2016

$$
\begin{aligned}
\frac{p^{2}-1}{p^{2}+1} & =\frac{(\operatorname{cosec} \theta+\cot \theta)^{2}-1}{(\operatorname{cosec} \theta+\cot \theta)^{2}+1} \\
& =\frac{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta+2 \operatorname{cosec} \theta \cot \theta-1}{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta+2 \operatorname{cosec} \theta \cot \theta+1} \\
& =\frac{1+\cot ^{2} \theta+\cot ^{2} \theta+2 \operatorname{cosec} \theta \cot \theta-1}{\operatorname{cosec}^{2} \theta+\operatorname{cosec}^{2} \theta-1+2 \operatorname{cosec} \theta \cot \theta+1} \\
& =\frac{2 \cot \theta(\cot \theta+\operatorname{cosec} \theta)}{2 \operatorname{cosec} \theta(\operatorname{cosec} \theta+\cot \theta)} \\
& =\frac{\cos \theta}{\sin \theta} \times \sin \theta=\cos \theta
\end{aligned}
$$

118.If $a \cos \theta+b \sin \theta=m$ and $a \sin \theta-b \cos \theta=n$, prove that $m^{2}+n^{2}=a^{2}+b^{2}$
Ans:
[Board Term-1 2012]
We have

$$
\begin{equation*}
m^{2}=a^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta+b^{2} \sin ^{2} \theta \tag{1}
\end{equation*}
$$

and, $\quad n^{2}=a^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta+b^{2} \cos ^{2} \theta$
Adding equations (1) and (2) we get

$$
\begin{aligned}
m^{2}+n^{2} & =a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+b^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =a^{2}(1)+b^{2}(1) \\
& =a^{2}+b^{2}
\end{aligned}
$$

119.Prove that : $\frac{\cos ^{2} \theta}{1-\tan \theta}+\frac{\sin ^{3} \theta}{\sin \theta-\cos \theta}=1+\sin \theta \cos \theta$.

Ans:
[Board Term-1 2012]

$$
\begin{aligned}
& \frac{\cos ^{2} \theta}{1-\tan \theta}+\frac{\sin ^{3} \theta}{\sin \theta-\cos \theta} \\
& \quad=\frac{\cos ^{2} \theta}{1-\frac{\sin \theta}{\cos \theta}}+\frac{\sin ^{3} \theta}{\sin \theta-\cos \theta} \\
& \quad=\frac{\cos ^{3} \theta}{\cos \theta-\sin \theta}-\frac{\sin ^{3} \theta}{\cos \theta-\sin \theta} \\
& \quad=\frac{\cos ^{3} \theta-\sin ^{3} \theta}{\cos \theta-\sin \theta} \\
& \quad=\frac{(\cos \theta-\sin \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta+\sin \theta \cos \theta\right)}{(\cos \theta-\sin \theta)}
\end{aligned}
$$

$$
=1+\sin \theta \cos \theta
$$

Hence Proved
120.If $\cos \theta+\sin \theta=p$ and $\sec \theta+\operatorname{cosec} \theta=q$, prove that $q\left(p^{2}-1\right)=2 p$
Ans:
[Board Term-1 2012]
We have $\cos \theta+\sin \theta=p$ and $\sec \theta+\operatorname{cosec} \theta=q$

$$
\begin{aligned}
& q\left(p^{2}-1\right)=(\sec \theta+\operatorname{cosec} \theta)\left[(\cos \theta+\sin \theta)^{2}-1\right] \\
& =(\sec \theta+\operatorname{cosec} \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta-1\right) \\
& =(\sec \theta+\operatorname{cosec} \theta)[1+2 \sin \theta \cos \theta-1] \\
& =\left(\frac{1}{\cos \theta}+\frac{1}{\sin \theta}\right)(2 \sin \theta \cos \theta) \\
& =\left(\frac{\sin \theta+\cos \theta}{\cos \theta \sin \theta}\right) 2 \sin \theta \cos \theta \\
& =2(\sin \theta+\cos \theta)=2 p \quad \text { Hence Proved. }
\end{aligned}
$$

121.If $x=r \sin A \cos C, y=r \sin A \sin C$ and $z=r \cos A$, then prove that $x^{2}+y^{2}+z^{2}=r^{2}$
Ans :
[Board Term-1 2012, Set-50]
Since,

$$
x^{2}=r^{2} \sin ^{2} A \cos ^{2} C
$$

$$
y^{2}=r^{2} \sin ^{2} A \sin ^{2} C
$$

and

$$
z^{2}=r^{2} \cos ^{2} A
$$

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}= & r^{2} \sin ^{2} A \cos ^{2} C+r^{2} \sin ^{2} A \sin ^{2} C+r^{2} \cos ^{2} A \\
& =r^{2} \sin ^{2} A\left(\cos ^{2} C+\sin ^{2} C\right)+r^{2} \cos ^{2} A \\
& =r^{2} \sin ^{2} A+r^{2} \cos ^{2} A \\
& =r^{2}\left(\sin ^{2} A+\cos ^{2} A\right) \\
& =r^{2} \quad \text { Hence Proved. }
\end{aligned}
$$

122.Prove that: $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$.

Ans :
[Board Term-1 2012]

$$
\begin{aligned}
& \sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}} \\
& =\sqrt{\frac{(1+\sin \theta)}{(1-\sin \theta)} \times \frac{(1+\sin \theta)}{(1+\sin \theta)}}+\sqrt{\frac{(1-\sin \theta)}{(1+\sin \theta)} \times \frac{(1-\sin \theta)}{(1-\sin \theta)}} \\
& =\sqrt{\frac{(1+\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}+\sqrt{\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}} \\
& =\sqrt{\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}+\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}} \\
& =\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}=\frac{1+\sin \theta+1-\sin \theta}{\cos \theta} \\
& =\frac{2}{\cos \theta}=2 \sec \theta \quad \text { Hence Proved }
\end{aligned}
$$

123.Prove that
$(1-\sin \theta+\cos \theta)^{2}=2(1+\cos \theta)(1-\sin \theta)$.
Ans :
[Board Term-1 2012]
$(1-\sin \theta+\cos \theta)^{2}$

$$
\begin{aligned}
& =1+\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta-2 \sin \theta \cos \theta+2 \cos \theta \\
& =1+1-2 \sin \theta-2 \sin \theta \cos \theta+2 \cos \theta \\
& =2+2 \cos \theta-2 \sin \theta-2 \sin \theta \cos \theta \\
& =2(1+\cos \theta)-2 \sin \theta(1+\cos \theta) \\
& =(1+\cos \theta)(2-2 \sin \theta) \\
& =2(1+\cos \theta)(1-\sin \theta) \quad \text { Hence Proved }
\end{aligned}
$$

124.Prove that : $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta-1}=\sec \theta+\tan \theta$

Ans :
[Board Term-1 2012]
$\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}$

$$
\begin{aligned}
& =\frac{(\tan \theta+\sec \theta)-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{\tan \theta-\sec \theta+1} \\
& =\frac{(\tan \theta+\sec \theta)-(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\tan \theta-\sec \theta+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(\tan \theta+\sec \theta)(1-\sec \theta+\tan \theta)}{\tan \theta-\sec \theta+1} \\
& =\tan \theta+\sec \theta
\end{aligned}
$$

125.Prove that :
$(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta \cot ^{2} \theta$ Ans :
[Board Term-1 2012]
$(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$
$=\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2 \sin \theta \operatorname{cosec} \theta+\cos ^{2} \theta$
$+\sec ^{2} \theta+2 \cos \theta \sec \theta$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\operatorname{cosec}^{2} \theta+2+\sec ^{2} \theta+2$
$=1+\left(1+\cot ^{2} \theta\right)+2+\left(1+\tan ^{2} \theta\right)+2$
$=7+\tan ^{2} \theta+\cot ^{2} \theta$
Hence Proved
126.If $\sin \theta=\frac{c}{\sqrt{c^{2}+d^{2}}}$ and $d>0$, find the value of $\cos \theta$ and $\tan \theta$.
Ans :
[Board Term-1 2013]

We have

$$
\sin \theta=\frac{c}{\sqrt{c^{2}+d^{2}}}
$$

Now

$$
\cos ^{2} \theta=1-\sin ^{2} \theta
$$

$$
\begin{aligned}
& =1-\left(\frac{c}{\sqrt{c^{2}+d^{2}}}\right)^{2} \\
& =1-\frac{c^{2}}{c^{2}+d^{2}} \\
& =\frac{c^{2}+d^{2}-c^{2}}{c^{2}+d^{2}}=\frac{d^{2}}{c^{2}+d^{2}}
\end{aligned}
$$

Thus

$$
\cos \theta=\frac{d}{\sqrt{c^{2}+d^{2}}}
$$

Again,

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{c}{\sqrt{c^{2}+d^{2}}}}{\frac{d}{\sqrt{c^{2}+d^{2}}}}=\frac{c}{d}
$$

Thus

$$
\tan \theta=\frac{c}{d}
$$

127.If $\tan \theta=\frac{1}{\sqrt{5}}$,
(1) Evaluate $: \frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$
(2) Verify the identity : $\sin ^{2} \theta+\cos ^{2} \theta=1$

Ans :
[Board Term-1 2012]
We have

$$
\tan \theta=\frac{1}{\sqrt{5}}
$$

We draw the triangle as shown below and write all
dimensions.

Now

$$
\begin{aligned}
& \cot \theta=\frac{1}{\tan \theta}=\sqrt{5} \\
& \sin \theta=\frac{1}{\sqrt{6}} \\
& \cos \theta=\frac{\sqrt{5}}{\sqrt{6}}
\end{aligned}
$$

(1) $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}=\frac{\left(1+\cot ^{2} \theta\right)-\left(1+\tan ^{2} \theta\right)}{\left(1+\cot ^{2} \theta\right)+\left(1+\tan ^{2} \theta\right)}$

$$
\begin{aligned}
& =\frac{\cot ^{2} \theta-\tan ^{2} \theta}{2+\cot ^{2} \theta+\tan ^{2} \theta} \\
& =\frac{(\sqrt{5})^{2}-\left(\frac{1}{5}\right)^{2}}{2+(\sqrt{5})^{2}+\left(\frac{1}{\sqrt{5}}\right)^{2}} \\
& =\frac{5-\frac{1}{5}}{2+5+\frac{1}{5}}=\frac{25-1}{35+1}=\frac{24}{36}=\frac{2}{3}
\end{aligned}
$$

(2) $\quad \sin ^{2} \theta+\cos ^{2} \theta=\left(\frac{1}{\sqrt{6}}\right)^{2}+\left(\frac{\sqrt{5}}{\sqrt{6}}\right)^{2}$

$$
=\frac{1}{6}+\frac{5}{6}=\frac{6}{6}
$$

$=1 \quad$ Hence proved.
128.If $\sec \theta+\tan \theta=p, \quad$ show that $\sec \theta-\tan \theta=\frac{1}{p}$, Hence, find the values of $\cos \theta$ and $\sin \theta$.
Ans :
[Board Term-1 2015]
We have $\quad \sec \theta+\tan \theta=p$
Now $\quad \frac{1}{p}=\frac{1}{\sec \theta+\tan \theta} \times \frac{(\sec \theta-\tan \theta)}{(\sec \theta-\tan \theta)}$

$$
=\frac{\sec \theta-\tan \theta}{\sec ^{2} \theta-\tan ^{2} \theta}=\sec \theta-\tan \theta
$$

or $\quad \frac{1}{p}=\sec \theta-\tan \theta$
Solving $\sec \theta+\tan \theta=p$ and $\sec \theta-\tan \theta=\frac{1}{p}$,

$$
\sec \theta=\frac{1}{2}\left(p+\frac{1}{p}\right)=\frac{p^{2}+1}{2 p}
$$

Thus

$$
\cos \theta=\frac{2 p}{p^{2}+1}
$$

and

$$
\tan \theta=\frac{1}{2}\left(p-\frac{1}{p}\right)=\frac{p^{2}-1}{2 p}
$$

and

$$
\sin \theta=\tan \theta \cos \theta=\frac{p^{2}-1}{p^{2}+1}
$$

129.Prove that : $(\operatorname{cosec} \theta+\cot \theta)^{2}=\frac{\sec \theta+1}{\sec \theta-1}$

Ans :
$(\operatorname{cosec} \theta+\cot \theta)^{2}=\operatorname{cosec}^{2} \theta+\cot ^{2} \theta+2 \operatorname{cosec} \theta \cdot \cot \theta$

$$
\begin{aligned}
& =\left(\frac{1}{\sin \theta}\right)^{2}+\left(\frac{\cos \theta}{\sin \theta}\right)^{2}+\frac{2 \times 1}{\sin \theta} \times \frac{\cos \theta}{\sin \theta} \\
& =\frac{1}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{2 \cos \theta}{\sin ^{2} \theta} \\
& =\frac{1+\cos ^{2} \theta+2 \cos \theta}{\sin ^{2} \theta}=\frac{(1+\cos \theta)^{2}}{1-\cos ^{2} \theta} \\
& =\frac{(1+\cos \theta)(1+\cos \theta)}{(1+\cos \theta)(1-\cos \theta)} \\
& =\frac{1+\cos \theta}{1-\cos \theta}=\frac{1+\frac{1}{\sec \theta}}{1-\frac{1}{\sec \theta}} \\
& =\frac{\sec \theta+1}{\sec \theta-1} \quad \text { Hence Prove. }
\end{aligned}
$$

130.Prove that :
$(\sin A+\sec A)^{2}+(\cos A+\operatorname{cosec} A)^{2}=(1+\sec A \operatorname{cosec} A)^{2}$
Ans :
[Board Term-1 2012]

$$
\begin{aligned}
& \text { LHS }=(\sin A+\sec A)^{2}+(\cos A+\operatorname{cosec} A)^{2} \\
& =\left(\sin A+\frac{1}{\cos A}\right)^{2}+\left(\cos A+\frac{1}{\sin A}\right)^{2} \\
& =\sin ^{2} A+\frac{1}{\cos ^{2} A}+2 \frac{\sin A}{\cos A}+\cos ^{2} A+ \\
& +\frac{1}{\sin ^{2} A}+2 \frac{\cos A}{\sin A} \\
& =\sin ^{2} A+\cos ^{2} A+\frac{1}{\sin ^{2} A}+\frac{1}{\cos ^{2} A}+ \\
& +2\left(\frac{\sin A}{\cos A}+\right. \\
& =1+\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A \cos ^{2} A}+2\left(\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}\right) \\
& \begin{array}{r}
\text { - } 208 \\
\text { h206 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{1}{\sin ^{2} A \cos ^{2} A}+\frac{2}{\sin A \cos A} \\
& =\left(1+\frac{1}{\sin A \cos A}\right)^{2} \\
& =(1+\sec A \operatorname{cosec} A)^{2}
\end{aligned}
$$

Hence Proved
131.If $(\sec A+\tan A)(\sec B+\tan B)(\sec C+\tan C)$ $=(\sec A-\tan A)(\sec B-\tan B)(\sec C-\tan C)$
Prove that each of the side is equal to ± 1.
Ans :
[Board Term-1 2012]
We have
$(\sec A+\tan A)(\sec B+\tan B)(\sec C+\tan C)$
h207
$=(\sec A-\tan A)(\sec B-\tan B)(\sec C-\tan C)$
Multiply both sides by
$(\sec A-\tan A)(\sec B-\tan B)(\sec C-\tan C)$
or, $(\sec A+\tan A)(\sec B+\tan B)(\sec C+\tan C) \times$
$(\sec A-\tan A)(\sec B-\tan B)(\sec C-\tan C)$
$=(\sec A-\tan A)^{2}(\sec B-\tan B)^{2}(\sec C-\tan C)^{2}$
or, $\left(\sec ^{2} A-\tan ^{2} A\right)\left(\sec ^{2} B-\tan ^{2} B\right)\left(\sec ^{2} C-\tan ^{2} C\right)$
$=(\sec A-\tan A)^{2}(\sec A-\tan B)^{2}(\sec C-\tan C)^{2}$
or, $1=[(\sec A-\tan A)(\sec B-\tan B)(\sec C-\tan C)]^{2}$
or, $(\sec A-\tan A)(\sec B-\tan B)(\sec C+\tan C)= \pm 1$
132.If $4 \sin \theta=3$, find the value of x if
$\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}+2 \cot \theta=\frac{\sqrt{7}}{x}+\cos \theta$
Ans :
[Board Term-1 2012]
We have

$$
\sin \theta=\frac{3}{4}
$$

or,

$$
\sin ^{2} \theta=\frac{9}{16}
$$

Since $\sin ^{2} \theta+\cos ^{2}=1$, we have

$$
\begin{aligned}
& \cos ^{2} \theta=1-\sin ^{2} \theta=1-\frac{9}{16}=\frac{7}{16} \\
& \cos \theta=\frac{\sqrt{7}}{4} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}}=\frac{3}{\sqrt{7}}
\end{aligned}
$$

Thus $\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}+2 \cot \theta=\frac{\sqrt{7}}{x}+\cos \theta$

$$
\begin{aligned}
\sqrt{\frac{1}{\tan ^{2} \theta}}+2 \times \frac{\sqrt{7}}{3} & =\frac{\sqrt{7}}{x}+\frac{\sqrt{7}}{4} \\
\frac{1}{\tan \theta}+\frac{2 \sqrt{7}}{3} & =\frac{\sqrt{7}}{x}+\frac{\sqrt{7}}{4} \\
\frac{\sqrt{7}}{3}+\frac{2 \sqrt{7}}{3}-\frac{\sqrt{7}}{4} & =\frac{\sqrt{7}}{x} \\
\frac{4 \sqrt{7}-\sqrt{7}}{4} & =\frac{\sqrt{7}}{x} \\
\frac{3 \sqrt{7}}{4} & =\frac{\sqrt{7}}{x}
\end{aligned}
$$

Thus

$$
x=\frac{4}{3}
$$

133. Prove that $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta$ can never be less than 2 .

Ans:
[Board-Term 1 2011]
Let $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=x$

$$
\begin{aligned}
1+\tan ^{2} \theta+1+\cot ^{2} \theta & =x \\
2+\tan ^{2} \theta+\cot ^{2} \theta & =x \\
2+\tan ^{2} \theta+\cot ^{2} \theta & =x
\end{aligned}
$$

$\tan ^{2} \theta \geq 0$ and $\cot ^{2} \theta \geq 0$
Thus $x>2$
Thus

$$
\sec ^{2} \theta+\operatorname{cosec}^{2} \theta>2
$$

Hence $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta$ can never be less than 2 .
134.(a) Solve for ϕ, if $\tan 5 \phi=1$
(b) Solve for ϕ, if $\frac{\sin \phi}{1+\cos \phi}+\frac{1+\cos \phi}{\sin \phi}=4$

Ans:
(a)

$$
\begin{aligned}
\tan 5 \phi & =1 \\
\tan 5 \phi & =\tan 45^{\circ} \\
5 \phi & =45^{\circ}
\end{aligned}
$$

Thus

$$
\phi=9^{\circ}
$$

(b) $\frac{\sin \phi}{1+\cos \phi}+\frac{1+\cos \phi}{\sin \phi}=4$

$$
\frac{\sin ^{2} \phi+(1+\cos \theta)^{2}}{\sin \phi(1+\cos \phi)}=4
$$

$$
\frac{\sin ^{2} \phi+1+2 \cos \phi+\cos ^{2} \phi}{\sin \phi+\sin \phi \cos \phi}=4
$$

$$
\frac{\sin ^{2} \phi+\cos ^{2} \phi+1+2 \cos \phi}{\sin \phi(1+\cos \phi)}=4
$$

$$
\begin{aligned}
\frac{2+2 \cos \phi}{\sin \phi(1+\cos \phi)} & =4 \\
\frac{2(1+\cos \phi)}{\sin \phi(1+\cos \phi)} & =4 \\
\frac{2}{\sin \phi} & =4 \\
\sin \phi & =\frac{1}{2} \\
\sin \phi & =\sin 30^{\circ}
\end{aligned}
$$

Thus $\phi=30^{\circ}$
135.If $\tan A+\sin A=m$ and $\tan A-\sin A=n$, show that $m^{2}-n^{2}=4 \sqrt{m n}$.
Ans :
[Board-Term 12009
We have

$$
\tan A+\sin A=m
$$

and $\quad \tan A-\sin A=n$

$$
\begin{aligned}
& m^{2}-n^{2}=(\tan A+\sin A)^{2}-(\tan A-\sin A)^{2} \\
& =\left(\tan ^{2} A+\sin ^{2} A+2 \sin A \tan A\right) \\
& \quad-\left(\tan ^{2} A+\sin ^{2} A-2 \sin A \tan A\right) \\
& = \\
& \tan ^{2} A+\sin ^{2} A+2 \sin A \tan A
\end{aligned}
$$

$$
-\tan ^{2} A-\sin ^{2} A+2 \sin A \tan A
$$

$$
=4 \sin A \tan A
$$

$$
4 \sqrt{m n}=4 \sqrt{(\tan A+\sin A)(\tan A-\sin A)}
$$

$$
=4 \sqrt{\tan ^{2} A-\sin ^{2} A}
$$

$$
=4 \sqrt{\frac{\sin ^{2} A}{\cos ^{2} A}-\sin ^{2} A}
$$

$$
=4 \sqrt{\frac{\sin ^{2} A-\sin ^{2} A \cos ^{2} A}{\cos ^{2} A}}
$$

$$
=4 \sqrt{\frac{\sin ^{2} A\left(1-\cos ^{2} A\right)}{\cos ^{2} A}}
$$

$$
=4 \sqrt{\frac{\sin ^{2} A \times \sin ^{2} A}{\cos ^{2} A}}
$$

$$
=4 \frac{\sin A \times \sin A}{\cos A}
$$

$$
=4 \sin A \times \frac{\sin A}{\cos A}
$$

$$
=4 \sin A \tan A
$$

Thus $m^{2}-n^{2}=4 \sqrt{m n}$
Hence Proved
136.If $\quad \frac{\cos \alpha}{\cos \beta}=m \quad$ and $\quad \frac{\cos \alpha}{\sin \beta}=n, \quad$ show that
$\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}$.

Ans:
[Board-Term 1 2010]

We have

$$
\frac{\cos \alpha}{\cos \beta}=m \text { and } \frac{\cos \alpha}{\sin \beta}=n
$$

$$
m^{2}=\frac{\cos ^{2} \alpha}{\cos ^{2} \beta} \text { and } n^{2}=\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}
$$

$$
\left(m^{2}+n^{2}\right) \cos ^{2} \beta=\left[\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}+\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}\right] \cos ^{2} \beta
$$

$$
=\cos ^{2} \alpha\left[\frac{1}{\cos ^{2} \beta}+\frac{1}{\sin ^{2} \beta}\right] \cos ^{2} \beta
$$

$$
=\cos ^{2} \alpha \frac{\sin ^{2} \beta+\cos ^{2} \beta}{\cos ^{2} \beta \sin ^{2} \beta} \cos ^{2} \beta
$$

$$
=\cos ^{2} \alpha\left(\frac{1}{\cos ^{2} \beta \sin ^{2} \beta}\right) \cos ^{2} \beta
$$

$$
=\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}
$$

$$
=n^{2} \quad \text { Hence Proved }
$$

137.If $7 \operatorname{cosec} \phi-3 \cot \phi=7$, prove that $7 \cot \phi-3 \operatorname{cosec} \phi=3$.
Ans :
We have $7 \operatorname{cosec} \phi-3 \cot \phi=7$

$$
\begin{aligned}
7 \operatorname{cosec} \phi-7 & =3 \cot \phi \quad \\
7(\operatorname{cosec} \phi-1) & =3 \cot \phi \\
7(\operatorname{cosec} \phi-1)(\operatorname{cosec} \phi+1) & =3 \cot \phi(\operatorname{cosec} \phi+1) \\
7\left(\operatorname{cosec}^{2} \phi-1\right) & =3 \cot \phi(\operatorname{cosec} \phi+1) \\
7 \cot ^{2} \phi & =3 \cot \phi(\operatorname{cosec} \phi+1) \\
7 \cot \phi & =3(\operatorname{cosec} \phi+1) \\
7 \cot \phi-3 \operatorname{cosec} \phi & =3 \quad \text { Hence Proved }
\end{aligned}
$$

138.Prove that : $\frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1}=\operatorname{cosec} \theta+\cot \theta$

Ans :
[Board SQP 2018]

$$
\begin{aligned}
& =\frac{\sin \theta(\cos \theta+1)-[(1-\cos \theta)(1+\cos \theta)]}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{(1+\cos \theta)(\sin \theta-1+\cos \theta)}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{(1+\cos \theta)(\cos \theta+\sin \theta-1)}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{1+\cos \theta}{\sin \theta} \\
& =\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta} \\
& =\operatorname{cosec} \theta+\cot \theta \quad \text { Hence Proved }
\end{aligned}
$$

We have provided you with free PDF of this book which is far better than the books available in the market. You can do full study from this PDF but we request you to purchase hard copy of this book. Our mission is to make education easy and affordable to all through free digital educational resources. To full-fill this mission we require fund and we would like to raise that fund by selling hard copies of this book. Hard copy includes videos of each and every question. What will we do with that fund :
a. We will provide PDF of all study material for free for all class. b. We will provide free access to all our videos on youtube.
c. We will develop digital education resources so that there is no need for you to go to coaching institutes for JEE, NEET and other exam preparation.
Hard book includes $Q R$ code for each video and you can open video for every question by scanning of $Q R$ code in the book with your phone To purchase hard book click this link.

CLICK TO BUY HARD BOOK

Beware of Fake (Paid) Books Marketing Videos on Youtube and Fake Book Reviews on Amazon

Click Here To Check Fake Marketing Reality

We have provided you with free PDF of this book which is far better than the books available in the market.
No Need to Buy Question Bank or Sample Papers.

$$
\begin{aligned}
\mathrm{LHS} & =\frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1} \\
& =\frac{\sin \theta(\cos \theta-\sin \theta+1)}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{\sin \theta \cos \theta-\sin ^{2} \theta+\sin \theta}{\sin \theta(\cos \theta+\sin \theta-1)} \\
& =\frac{\sin \theta \cos \theta+\sin \theta-\left(1-\cos ^{2} \theta\right)}{\sin \theta(\cos \theta+\sin \theta-1)}
\end{aligned}
$$

Click to Download

Maths PART 1

Maths PART 2

[^0]: $+\left(\cos ^{2} \theta+\sec ^{2} \theta+2 \cos \theta \sec \theta\right)$

