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A Brief History of Aerial Robotics

• International Aerial Robotics Competition (1991)
• Early work at GRASP (< 2000)
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There are no new ideas, only good ideas!

George de Bothezat’s Quadrotor, 1922Breguet-Richet Gyroplane No.1, 1907

1907, Paul 
Cornu: First 
to Hover?

Wired Magazine, A hundred years of hovering, 2007

Flying 
windmill, 
2007
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Inertial Measurement Units

• Accelerometer, airbag sensors (Analog Devices), 
1993

• MEMS gyros for electronic stability control (Bosch), 
1997

• 3-axis accelerometers for Nintendo Wii, 2006
• 3-axis accelerometer, iPhone (Apple), 2007
• 3-axis accelerometer, 3-axis gyro, 3-axis 

magnetometer, iPhone 4 (Apple), 2010
inflexion point 
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A Brief History of Aerial Robotics

• International Aerial Robotics Competition (1991)
• Early work at GRASP
• 2008-9 – small multi rotor aircrafts become practical

Ascending Technologies KMel Robotics

Daniel Mellinger and Alex Kushleyev
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Aerial Robotics, 2009

Nathan Michael (CMU)

Jonathan  Fink (ARL)

Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory Generation and Control for Precise Aggressive Maneuvers with Quadrotors.
International Journal of Robotics Research, Apr. 2012.
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Daniel Mellinger, and Vijay Kumar. “Minimum Snap Trajectory Generation and Control for Quadrotors,” Proc. IEEE International Conference on
Robotics and Automation. Shanghai, China, May, 2011.



2012 – Swarm of 75 gm quadrotors

Daniel MellingerAlex Kushleyev
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2015 – Drones everywhere!
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Drone Racing

Drone Nationals, New York City, 2016

Yash Mulgaonkar
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Beyond Quadrotors

S. Driessens and P. Pounds, “The triangular quadrotor: a 
more efficient quadrotor configuration,” 2015. Dario Brescianini and Raffaello

D’Andrea, “An omni-directional 
multirotor vehicle,” 2018.

Davide Falanga , Kevin Kleber, Stefano Mintchev , Dario Floreano , and Davide Scaramuzza, 
“The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly,” 2019. David Saldana, Bruno Gabrich, Guanrui Li, Mark Yim, and 

Vijay Kumar, “ModQuad: The Flying Modular Structure that 
Self-Assembles in Midair,” 2018.

David Saldana
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Gartner Hype Cycle

20182017



2019 (10 years later)

Goldman Sachs Research

17%

70%

13%

military

b2b

consumer

Market Agriculture, Mining, Health



Small
Safe

SpeedSmartWe are here!

Swarms

Aerial Robotics Research (and Commercialization)



Autonomy

Size

3000 g

3500 g

75 g

2011
20 g

2014
650 g 2015

740 g

2012

1750 g

2013

1850 g

2011

2016

250 g

2016

rely on external infrastructure

vision + IMU

2-D laser scanner

3-D laser



The Falcon
Fast Aggressive Lightweight flight in CONstrained Environments 

Y. Mulgaonkar, A. Makineni, K. Mohta, C.J. Taylor,  and V. Kumar, 2016 Hilton Head Workshop

. . .  and at high speeds



Search and Rescue



Five Challenges

• Perception Action Loops for Autonomy

• State Estimation

• Navigation in Cluttered Environments

• Scaling Down in Size, Weight

• Perception Action Communication Loops for Swarms



1. Nested Perception/Action Loops

Continuous

Discrete
Plan Control

Perception

Plan Control System

Perception

Hybrid
Plan Control

Perception

System

System

JTY Wen and K Kreutz-Delgado, The attitude control
problem, IEEE Transactions on Automatic control, 1991.
D Mellinger and V Kumar, “Minimum Snap Trajectory
Generation and Control for Quadrotors,” Proc. IEEE
International Conference on Robotics and Automation.
Shanghai, China, May, 2011.
T Lee, M Leok, NH McClamroch, “Nonlinear Robust
Tracking Control of a Quadrotor UAV on SE(3),” Asian
Journal of Control 2012.

Nonlinear controllers on SO(3)/SE(3)



2. State Estimation (Stereo + IMU)

K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Robust Stereo 
Visual Inertial Odometry for Fast Autonomous Flight”, RAL 2018

Augmented State

Model

Stereo Camera Measurement

Orientation

Gyro bias Velocity PositionAcc bias

Cam-IMU 
extrinsics

Ke Sun

Kartik Mohta



Stereo Multistate Constraint Kalman Filter (S-MCKF)

Fast autonomous flight (Top speed at 18m/s)

Autonomous flight in unstructured environment
● Includes various scenes (warehouse, woods, 

open field, etc).
● Round trip over 700m
● Final drift under 0.5%



Multi-Sensor 
Unscented

Kalman
Filter (200 Hz)

velocity

State Estimation

Visual 
odometry

Visual 
odometry

Laser 
odometry

Altitude 
estimator

Downward
Camera (40Hz)

Stereo
Camera (40 Hz)

Altimeter 
(20 Hz)

Laser Scanner
(20 Hz)

GPS
(10Hz)

Controller
(200 Hz)

Shaojie Shen, Yash Mulgaonkar, Nathan Michael and Vijay Kumar, “Multi-Sensor Fusion for Robust 
Autonomous Flight in Indoor and Outdoor Environments with a Rotorcraft MAV,” Proceedings of IEEE 
International Conference on Robotics and Automation (ICRA), 2014. 

IMU
(1000 Hz)

Shaojie Shen (HKUST)



3. Autonomy: Perception and Action for Navigation

Trajectory 
Generator (20 Hz)

Planner
(20 Hz)

GPS (10Hz)

Local Map
(40 Hz)

position

Pose Graph 
SLAM

Multi-Sensor 
Unscented

Kalman
Filter (200 Hz)

velocity

Visual 
odometry

Visual 
odometry

Laser 
odometry

Altitude 
estimator

Downward
Camera (40Hz)

Stereo
Camera (40 Hz)

Altimeter 
(20 Hz)

Laser Scanner
(20 Hz)

GPS
(10Hz)

Controller
(200 Hz)IMU

(1000 Hz)



DARPA Fast Lightweight Autonomy (FLA)

Cameras + IMU

Lidar

Yash Mulgaonkar



3 Planning in Cluttered Environments

– Relative degree 4 (input and state constraints)

– Non convex

– Safe corridors in different homology classes

– Partially known environment (limited field of view sensors)

X goal ⇢ X free

ẋ = Ax(t) +Bu(t), u(t) 2 U , 8t 2 [0, T ]

x(0) = x0, x(T ) 2 X goal, x(t) 2 X free

min
u(t), T

J(x(t), u(t)) + ⇢T

1. Optimal Control

Sarah Tang

Sikang Liu

Subhrajit
Bhattacharya

Mike Watterson



FLA (5-20 m/s)

S. Bhattacharya, M. Likhachev and V. Kumar, “Topological Constraints in Search-based Robot Path Planning.” Autonomous Robots, 33(3):273-290, 2012.
S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation for quadrotors with limited onboard sensing,” Robotics and Automation Letters, 2016.
S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based Motion Planning for Quadrotors using Linear Quadratic Minimum Time Control,” IROS 
2017. 

Sarah Tang

Sikang Liu

Subhrajit
Bhattacharya

Mike Watterson



Planning in Cluttered Environments

Minimum snap primitives

Search over induced 
discretization on state space

Results for different 
functionals

2. Search-Based Planning with Motion Primitives

S. Liu, N. Atanasov, K. Mohta, V. Kumar,  Search-
based motion planning for quadrotors using linear 
quadratic minimum time control, IROS 2017

Sikang Liu

Nikolay Atanasov
(UCSD)



Resolution complete but … 

p1

M

g
pk(tk)

v = 20 m/s, max acceleration 1 g Stopping time ~ 2 s
Stopping distance ~ 20 m

limited field of view 
creates challenges



Safety Certificate
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● Safety
● Completeness
● Suboptimality



Autonomous Flight in Unknown GPS-Denied Environment (5 m/s)

CJ Taylor

Yash Mulgaonkar

Sikang Liu

Mike Watterson

Ke Sun

Kartik Mohta



Search of Collapsed Buildings

S. S. Shivakumar, K. Mohta, B. Pfrommer, V. Kumar and C. J. Taylor, Guided Semi Global 
Optimization for Real Time Dense Depth Estimation, ICRA 2019.

Shreyas 
Shivakumar

CJ Taylor

Sikang Liu

Mike Watterson

Ke Sun

Kartik Mohta
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A. Weinstein,  A. Cho, and G. Loianno, and V. Kumar, 
“VIO-Swarm: A Swarm of 250 gram autonomous 
quadrotors ” ICRA 2018.

4. Light Weight Autonomy

250 gram quadrotor (2018)
Qualcomm® Snapdragon Flight™ 
development board running Snapdragon 
Navigator™ flight controller and 
Machine Vision (MV) SDK

Giuseppe
Loianno

Shreyas 
Shivakumar

Ke Sun

Kartik Mohta

CJ Taylor

S. S. Shivakumar, K. Mohta, B. Pfrommer, V. Kumar and 
C. J. Taylor, Guided Semi Global Optimization for Real 
Time Dense Depth Estimation, ICRA 2019.

1 kg quadrotor (2018)

Stereo camera synced 
with Vector NAV IMU, 
NVDIA Jetson TX2 + 
FPGA (low-level pixel-
wise operations) – OSRF

TOF 3-D camera, 6m 
range, 100x65 deg, 60 Hz 
– PMD technologies

2.5 kg quadrotor (2017)
Stereo camera synced with 
Vector NAV IMU,  LiDar, 
Intel i7
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Robustness to Collisions

250 gram quadrotor
Qualcomm® Snapdragon Flight™ board with 
Snapdragon Navigator™ flight controller 

133 gram quadrotor capable of sustaining collisions
Qualcomm® Snapdragon Flight™ board with forward-facing stereo 
cameras, a downward facing camera for VIO, onboard WiFi and 
GPS

Tiercel
Wenxin Liu

Yash Mulgaonkar, Wenxin Liu, Dinesh Thakur, 
Kostas Daniilidis, Vijay Kumar, The Tiercel: A 
novel autonomous micro aerial vehicle that can 
map the environment by flying into obstacles, IEEE 
Robotics and Automation Letters, submitted 
(2020)

Yash Mulgaonkar

Fig. 4: Onboad LEDs and drive board mounted on the MAV (left). The lighting payload is equipped with A) LEDiL C16029
STRADA-SQ-C lens and B) LEDiL C12727 STRADA-SQ-VSM lens. Cree XP-G3 illumination distribution is used for the
lenses. The concentric rings on the test target indicate fields of view of 100� and 120� captured with bottom camera.

Fig. 5: Picture of mock-up PCV viewed from a camera located at X100B (left), Point cloud of test fixture captured via
KAARATA Stencil (center), OctoMap and automatically generated JPS 3D navigation path (right)

widest and most uniform central illumination spot while
(LEDiL C12727 STRADA-SQ-VSM [15]) generated the
most uniform illumination spot over the entire FOV of the
camera. The Cree LEDs have 125� directional viewing angle.
The forward cameras have much narrower FOV of 90�, hence
no lens were added.

We have designed and fabricated a custom LED drive
controller board for use with the MAV. Constant current LED
drivers are used in the lighting payload. A constant current
driver generates consistent illumination throughout the flight
and protects the LED from thermal runaway if the ambient
temperature or the temperature of the LED increases during
the flight. The board is equipped with trim pot resistors to
control the Lux output of the LEDs. Fig. 4 shows the LED
drive board with two different lenses and the corresponding
illumination distribution and also a picture of the lighting
payload installed on the MAV platform. The lighting payload
adds only 8g to the MAV weight and draws a maximum
current of 1.5A at maximum light output of all three LEDs.

B. Waterproof System

Waterproofing the vehicle requires careful consideration
of each component. A multi-step conformal coating process
is performed on the Snapdragon Flight board, Electronic
Speed Control (ESC) and the LED driver board. Specifically,

the pins, connectors, and cameras are removed and a first
conformal coating is applied with Arathane 5750-A/B (LV),
which is a soft translucent urethane composite designed for
insulating printed circuit boards and electronic components.
Once the initial coating process is completed, the connectors
are reattached, and the second coating process is performed
using RTV silicone. To protect the LEDs from the adverse
effects of dripping water, the front PCB surface of the LEDs
was coated with RTV silicone. The downward-facing camera
is also coated with a hydrophobic coating. Glass coverslips
with a hydrophobic coating were installed on the forward-
facing stereo cameras. A waterproof coating is added to the
battery cell, balancing cable, and circuit.

III. AUTONOMOUS NAVIGATION

In this section, we describe the main algorithms enabling
the autonomous capabilities of the aerial vehicle in unknown
and unstructured environments.

A. Control and Estimation
The system combines the Inertial Measurement Unit

(IMU) data and the VGA downward camera image data in an
Extended Kalman Filter (EKF) framework in order to local-
ize the vehicle in the environment [12]. The prediction step
is based on integration of the IMU data. The measurement
update step is given by the standard 3D landmark perspective

Giuseppe Loianno

Dinesh Thakur



Autonomous Flight in Fukushima Daiichi Reactor Unit 1

Monica Garcia (SWRI), Richard Garcia (SWRI), Wataru Sato (TEPCO)

Giuseppe Loianno

Dinesh Thakur

Laura Jarin-Lipschitz

Wenxin Liu

Elijah Lee



5. Aerial Robot Swarms

Perception Action

• observations inform actions
• move for better observations

Perception—Action Loops



5. Aerial Robot Swarms

Perception Action

Communication

• share private perceptions

• observations inform actions
• move for better observations

• messages inform actions
• move to communicate better

Task

Perception—Action—Communication Loops

• communicate to make 
better observations



Decentralized Multi-Robot Teams

• Decentralized, correct-by-
construction policies 
available only for very simple 
cases

– simple communication and 
sensing models

– edge or cloud computation 
– point robots 

A. Weinstein,  A. Cho, and G. Loianno, and V. Kumar, 
“VIO-Swarm: A Swarm of 250 gram autonomous 
quadrotors ” ICRA 2018.

Tanner, Pappas and Jadbabaie, 2004
Sensor Coverage
Cortes, 2004

Belta and Kumar, 2005

Aaron Weinstein

Giuseppe Loianno

• Centralized methods are not practical for 
real-world robot deployments (Turpin, ‘14)

– Partial observability by individual agents

– Limited communication



Distributed Learning: PAC Loops

Perception Action

Communication

Task

Ø Key Ideas:
o Learn communication policies
o Learn action policies
o Learn planning policies

Jimmy Paulos

Ekaterina Tolstaya

Arbaaz Khan

Steven Chen

(with Professor Alejandro Ribeiro)

Dinesh Thakur

Laura Jarin-Lipschitz



Graph Neural Networks

• Robots act on relative position and velocity information
– Must stay close to each other
– Must avoid collisions

– Must “align” themselves

ChoiceofParametrization

IThereisoverwhelmingempiricalandtheoreticaljustificationtochooseaneuralnetwork

IChallengeiswewanttolearnoverthisIAndwearegoodatlearningoverthis

ITheNeuralNetworksthatweknowgeneralizewellareConvolutionalNeuralNetworks

IWeknowhowtolearnovertimeandimages.Wedon’tknowhowtolearnoveragraph.

A.RibeiroLearningDecentralizedControllersforRobotSwarmswithGraphNeuralNetworks6/28

CNNs GNNs

Aggregate information at each node from neighboring node using graph adjacency properties
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Aggregate over belief states of neighbors

z =
KX

k=0

hkS
k
x
(k) = H(S)x

<latexit sha1_base64="SY4t/wzZstDd8eWBFh8xN2m9gdM="></latexit>
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Flocking
GNN-learned control 

policy (K=3)

(a) Average difference in velocities (b) Average minimum distance to a neighbor

(c) Flock positions using the GNN (d) Flock positions using the local controller

Figure 1. The GNN (K = 3) maintains a cohesive flock, while the local controller allows the flock to scatter.

using 400 trajectories, each of length 200 steps total. For testing, 20 trajectories of length 200 were
observed by using the learned controller only.

In practice, following the optimal policy to collect training data results in a distribution of states
that is not representative of those seen at test time. To resolve this we use the Dataset Aggregation
(DAgger) algorithm and follow the learner’s policy instead of the expert’s with probability 1�b
when collecting training trajectories [33]. The probability b of choosing the expert action while
training is decayed by a factor of 0.993 after each trajectory to a minimum of 0.5.

5 Results

We report results comparing (11) and (10) for point masses with fully controllable accelerations in
Section 5.1. This simple setting allows for an exploration of the effect of different system parameters
such as initial velocity or communication radius, to determine experimentally the scenarios on which
the aggregation GNN offers good performance. In Section 5.2 we study the case of transfer learning,
where we train the model in one network but test it in another (for example, with different number
of agents), and also by exporting the trained architecture to other physical models beyond the point-
mass model, as shown in the AirSim simulator (Sec. 7.2).

5.1 Learning to flock with point masses

First, we compare the performance of the GNN controller with K = 3 to the local controller u
†
i

(11). Figure 1a depicts the magnitude of velocity differences between agents over the course of a
trajectory in terms of the population mean and standard devision. The GNN converges much more
rapidly and, unlike the local controller, approaches a perfect velocity consensus. Part of the reason
for this is explained in Figure 1b, which plots agents’ minimum distance to any neighbor over
time. The GNN control approaches a uniform flock spacing, but the local controller fails to stop
agents from dispersing quickly enough. Soon the local controller’s network has become completely
disconnected as agent distances exceed their communication range of R = 1. One flock trajectory is
depicted for the GNN controller in Fig. 1c and the local controller in Fig. 1d. Each diagram shows
the initial agent positions and velocities at time n = 0 and then at n = 300, qualitatively illustrating
the stable flocking of the GNN and failure of the local controller.

6

Tanner, Pappas and Jadbabaie, 2004



Graph Policy Gradients

• Train GNNs on a small number of robots
– Information from k-hop neighbors is aggregated by each robot

– Local controllers are learned by each robot
– Centralized reward used to train the robots

• Extend to swarms with larger numbers
– Transfer of policies to larger groups with similar “local” graph properties

Arbaaz Khan

Arbaaz Khan, Vijay Kumar, and Alejandro Ribeiro, Graph Policy Gradients for Large Scale 
Unlabeled Motion Planning with Constraints , IEEE International Conference on Robotics and 
Automation, submitted (2020)



Graph Policy Gradients for Large Scale Formation Control
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Conclusion

• Autonomy using smartphone grade 
processors/sensors

• 10x improvement in performance/price 
• Applications to search and rescue and precision 

agriculture
• Integration of model-based and data-driven methods

AI 1.0 AI 2.0 AI 3.0
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