
Resource Management Techniques for Multi-Stage
Jobs with Deadlines Running on Clouds

by

Norman Lim, M.A.Sc. (ECE), B. Eng. (CSE)

A thesis submitted to the Faculty of Graduate and Postdoctoral
Affairs in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada K1S 5B6

© 2016, Norman Lim

i

Abstract

The objective of this thesis is to devise effective resource management techniques

for processing a workload comprising an open stream of multi-stage jobs on a distributed

computing environment, such as a private cluster or a set of resources acquired a priori

from a public cloud. Each job is associated with a service level agreement (SLA)

characterized by an earliest start time, an execution time, and an end-to-end deadline. The

two important operations in resource management that this thesis focuses on are resource

allocation (matchmaking) and scheduling. Given a pool of jobs to execute, a matchmaking

algorithm chooses the resources to be allocated to a given job, whereas a scheduling

algorithm determines the order in which these jobs are to be executed for achieving the

desired system objectives. Multi-stage jobs have multiple phases of execution and require

processing from multiple system resources.

Resource management techniques for processing MapReduce jobs (used for

facilitating Big Data analytics), as well as other multi-stage jobs such as scientific

workflows characterized by multiple phases of execution and different types of precedence

relationships, are considered. The key techniques devised in this thesis research include:

(1) resource management techniques based on decomposing the end-to-end deadline of a

multi-stage job into components (e.g., sub-deadlines) each of which is associated with a

specific task in the job, (2) alternative resource management algorithms that use

optimization techniques, and (3) techniques for handling inaccuracy/error in user estimates

of job execution times (submitted as part of the SLA). A comprehensive and rigorous

performance evaluation of the resource management techniques is conducted using

prototyping and measurement on a real system deployed on a cloud as well as simulation.

ii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my thesis

supervisor, Professor Shikharesh Majumdar, for his guidance, encouragement, and

continuous support throughout the completion of my research and this thesis. I am greatly

appreciative for his professionalism and the time and effort he invested through out my

studies, including reviewing my research papers and giving me suggestions to improve my

research.

In addition, I am grateful to Carleton University, the Government of Ontario, the

Natural Science and Engineering Council (NSERC), and Huawei Technologies Canada for

providing financial support for this research, which allowed me to fully focus my time and

effort on my studies. I would also like to acknowledge Peter Ashwood-Smith from Huawei

Technologies Canada for his support of this research.

Last but not least, I want to thank my parents, my brother, my sister, and my friends

for their unwavering support and encouragement. I want to especially thank them for

always believing in me and providing me motivation through some tough times. Without

them, completing this thesis would not have been possible.

iii

Table of Contents

Abstract .. i

Acknowledgments .. ii

Table of Contents .. iii

List of Figures .. ix

List of Tables .. xiii

List of Algorithms ... xvi

List of Symbols .. xvii

Glossary of Terms .. xx

Chapter 1 Introduction .. 1

1.1 Motivations and Challenges for the Thesis ..3

1.2 Objective and Contributions of the Thesis ...6

1.2.1 List of Publications ... 9

1.2.2 Scope of the Thesis .. 11

1.3 Outline of the Thesis .. 11

Chapter 2 Background and Related Work ... 13

2.1 Cloud Computing ... 13

2.2 Resource Management on Clouds .. 16

2.2.1 Resource Management on Clouds for Processing Jobs with SLAs 17

2.2.1.1 Techniques for Maintaining High Utilization of Resources 18

2.2.1.2 Techniques for Co-allocation and Advance Reservation of Resources 19

2.2.1.3 Techniques for Virtual Machine Provisioning and Placement 21

2.2.2 Resource Management on Clouds for Processing Workflows 21

2.3 MapReduce ... 24

2.4 Apache Hadoop ... 27

2.4.1 Hadoop MapReduce Architecture Version 2 (MRv2) ... 31

iv

2.5 Resource Management Techniques for Processing MapReduce Jobs 32

2.5.1 Techniques to Reduce Job Completion Times ... 33

2.5.2 Data-Locality-Aware Techniques ... 34

2.5.3 Techniques for Handling Heterogeneous Computing Environments 35

2.5.4 Resource Sharing Techniques .. 36

2.5.5 Techniques for Energy Management of Resources ... 38

2.5.6 Techniques for Handling MapReduce Jobs with Deadlines 39

2.6 Handling Error/Inaccuracies in User-estimated Job Execution Times 42

2.7 Comparison of Thesis Research with Related Work ... 44

Chapter 3 Resource Management Techniques for Processing a Batch of MapReduce
 Jobs with SLAs ... 47

3.1 Problem Description and Model ... 47

3.1.1 Laxity of Jobs .. 49

3.2 Overview of the Approach ... 50

3.3 Formulation of the CP Model ... 54

3.4 Formulation of the MILP Model .. 57

3.4.1 Comparison of the MILP Model and the CP Model ... 61

3.5 Design and Implementation Experience .. 62

3.5.1 Approach 1: MILP Model Implemented Using LINGO .. 62

3.5.2 Approach 2: CP Model Implemented Using MiniZinc and Gecode 63

3.5.3 Approach 3: CP Model Implemented Using CPLEX .. 66

3.6 Performance Evaluation of the Resource Management Techniques for Processing a
 Batch of MapReduce Jobs with SLAs ... 68

3.6.1 Experimental Setup .. 69

3.6.2 System and Workload Parameters for Batch Workloads... 70

3.7 Results of the Performance Evaluation ... 72

3.7.1 Small and Medium Workloads ... 72

3.7.2 Large Workloads .. 74

3.7.3 Summary of Simulation Results ... 77

3.8 Summary and Discussion .. 79

v

Chapter 4 MapReduce Constraint Programming based Resource Management
 Technique for Open Systems .. 82

4.1 Overview of the MRCP-RM Technique .. 83

4.1.1 Modifications to the OPL Model .. 84

4.2 MRCP-RM Algorithm .. 85

4.2.1 Complexity of the MRCP-RM Algorithm .. 89

4.3 Performance Optimizations for the MRCP-RM Technique 91

4.3.1 Performance Optimization 1: Separating the Matchmaking and Scheduling
 Operations .. 91

4.3.2 Performance Optimization 2: Handling Earliest Start Time of Jobs 93

4.4 Performance Evaluation of the MRCP-RM Technique .. 94

4.4.1 Experimental Setup .. 95

4.4.2 Synthetic MapReduce Workload—Facebook .. 97

4.4.3 Generic Synthetic MapReduce Workload .. 98

4.5 Comparison with Related Work .. 101

4.6 Effect of System and Workload Parameters .. 103

4.6.1 Effect of Job Arrival Rate .. 103

4.6.2 Effect of Task Execution Times ... 105

4.6.3 Effect of Earliest Start Time of Jobs ... 107

4.6.4 Effect of Job Deadlines ... 109

4.6.5 Effect of the Number of Resources .. 111

4.6.6 Scalability of the MRCP-RM Technique .. 112

4.7 Summary and Discussion .. 114

Chapter 5 Hadoop Constraint Programming based Resource Management Technique
 .. 117

5.1 Overview of the CP-Scheduler and the HCP-RM Algorithm 118

5.1.1 Challenges in Designing and Implementing the CP-Scheduler 120

5.2 Matchmaking and Scheduling in Hadoop .. 121

5.2.1 Hadoop FIFO Scheduler .. 122

5.3 Design and Implementation of the CP-Scheduler .. 123

5.3.1 Modifications to the CP Model .. 125

5.3.2 Integration of IBM CPLEX with Hadoop ... 126

vi

5.3.3 Entity Classes .. 127

5.4 HCP-RM Algorithm ... 130

5.4.1 Technique to Support Data Locality ... 135

5.4.2 Generate and Solve Method .. 137

5.4.3 Stalling Problem for Reduce Tasks ... 140

5.5 Performance Evaluation of the HCP-RM Technique ... 141

5.5.1 Experimental Setup .. 142

5.5.2 Hadoop WordCount Workload .. 143

5.5.3 Hadoop Synthetic Workload .. 145

5.6 Results of the Performance Evaluation ... 148

5.6.1 Results of Experiments Using the Hadoop WordCount Workload 148

5.6.2 Results of Experiments Using the Hadoop Synthetic Workload 151

5.6.2.1 Effect of Job Arrival Rate ... 151

5.6.2.2 Effect of Task Execution Times .. 153

5.6.2.3 Effect of Job Deadlines .. 154

5.7 Investigation of Error in User-estimated Execution Times 156

5.7.1 Models for Generating Error in User-estimated Execution Times 157

5.7.2 Laxity of Jobs in the Presence of Error in User-estimated Execution Times 159

5.7.3 Results of Experiments Using the Constant Error Model....................................... 160

5.7.4 Results of Experiments Using Feitelson’s Error Model .. 163

5.8 Summary and Discussion .. 166

Chapter 6 Techniques for Handling Error/Inaccuracy in User-estimated Execution
 Times ... 169

6.1 Prescheduling Error Handling Technique ... 171

6.2 Performance Evaluation of the PSEH Technique .. 173

6.2.1 Experimental Setup .. 173

6.2.2 System and Workload Parameters ... 174

6.2.3 Models for Generating Error in User-estimated Execution Times 174

6.3 Results of the Performance Evaluation ... 176

6.3.1 Constant Error Model ... 177

6.3.2 Feitelson’s Error Model .. 183

6.3.3 Variable Error Model .. 185

vii

6.4 Summary and Discussion .. 187

6.4.1 Runtime Error Handling Technique .. 189

Chapter 7 Workflow Budget-Based Resource Management Technique 191

7.1 Problem Description and Resource Management Model 192

7.2 Deadline Budgeting Algorithm for Workflows ... 195

7.2.1 Laxity of Tasks .. 196

7.2.2 Proportional Distribution of Job Laxity Algorithm ... 198

7.2.2.1 Set Sub-deadlines of Parent Tasks Method ... 199

7.2.3 Even Distribution of Job Laxity Algorithm .. 202

7.3 WFBB-RM Matchmaking and Scheduling Algorithm .. 205

7.3.1 Job Mapping Algorithm .. 205

7.3.2 Job Remapping Algorithm .. 210

7.4 Performance Evaluation of the WFBB-RM Technique .. 215

7.4.1 Experimental Setup .. 216

7.4.2 System and Workload Parameters for the Factor-at-a-Time Experiments 217

7.5 Results of the Factor-at-a-Time Experiments ... 223

7.5.1 Effect of Job Arrival Rate .. 225

7.5.2 Effect of Earliest Start Time of Jobs ... 228

7.5.3 Effect of Job Deadlines ... 231

7.5.4 Effect of the Number of Resources .. 234

7.6 Comparison of WFBB-RM and MRCP-RM .. 238

7.6.1 Effect of Job Arrival Rate .. 238

7.6.2 Effect of the Number of Resources .. 240

7.7 Summary and Discussion .. 242

Chapter 8 Summary and Conclusions ... 246

8.1 Resource Management Techniques for Processing a Batch of MapReduce Jobs with
 SLAs ... 247

8.2 MapReduce Constraint Programming based Resource Management Technique... 248

8.3 Hadoop Constraint Programming based Resource Management Technique 249

8.4 Techniques for Handling Error in User-estimated Execution Times 250

8.5 Workflow Budget-Based Resource Management Technique 252

viii

8.6 Future Work .. 253

References ... 256

Appendix A Design and Implementation of the MILP Model and the CP Model 267

A.I. MILP Model Implemented Using LINGO .. 267

A.II. CP Model Implemented Using MiniZinc .. 268

A.III. CP Model Implemented Using IBM CPLEX ... 270

Appendix B Additional Details on the MRCP-RM Algorithm 273

B.I. Creating and Solving the OPL Model Using IBM CPLEX’s Java APIs 273

B.II. Split Single Resource Schedule Algorithm ... 276

Appendix C Additional Details on the Design and Implementation of the Hadoop CP-
 Scheduler ... 280

C.I. Adding Support for Job Deadlines ... 280

C.II. Adding Support for User-estimated Task Execution Times 282

C.III. Details on Integrating IBM CPLEX with Hadoop ... 283

C.IV. Create New Model Definition Method .. 283

Appendix D Additional Results for the Performance Evaluation of the WFBB-RM
 Technique .. 286

D.I. CyberShake Workload .. 286

D.II. LIGO Workload .. 291

D.III. Genome Workload ... 296

D.IV. Comparison of WFBB-RM and MRCP-RM .. 302

ix

List of Figures

Figure 2.1. Example of a MapReduce job [48]. .. 27

Figure 2.2. Example of a Hadoop cluster using MRv1 [51]. ... 28

Figure 2.3. Example of HDFS. .. 30

Figure 2.4. Example of Hadoop MapReduce architecture v1. .. 31

Figure 3.1. Overview of approaches for solving the resource management problem using
optimization techniques. ... 53

Figure 3.2. Results of C when using the small and medium workloads. 73

Figure 3.3. Results of PO when using the small and medium workloads. 74

Figure 3.4. Results of C when using the large workloads. .. 75

Figure 3.5. Results of PO when using the large workloads. ... 76

Figure 4.1. Example of a system deploying the MRCP-RM technique. 84

Figure 4.2. Flowchart of the MRCP-RM algorithm. .. 90

Figure 4.3. MRCP-RM vs MinEDF-WC: effect of λ on P. ... 102

Figure 4.4. MRCP-RM vs MinEDF-WC: effect of λ on T. ... 102

Figure 4.5. MRCP-RM: effect of λ on P and T. .. 104

Figure 4.6. MRCP-RM: effect of λ on O. .. 104

Figure 4.7. MRCP-RM: effect of memax on P and T. .. 106

Figure 4.8. MRCP-RM: effect of memax on O. .. 106

Figure 4.9. MRCP-RM: effect of smax on P and T. .. 107

Figure 4.10. MRCP-RM: effect of smax on O. ... 108

Figure 4.11. MRCP-RM: effect of p on P and T. .. 108

Figure 4.12. MRCP-RM: effect of p on O. ... 109

Figure 4.13. MRCP-RM: effect of emmax on P and T. .. 110

x

Figure 4.14. MRCP-RM: effect of emmax on O. .. 111

Figure 4.15. MRCP-RM: effect of m on P and T. ... 112

Figure 4.16. MRCP-RM: effect of m on O. .. 112

Figure 5.1. Example of a Hadoop cluster deploying the CP-Scheduler. 119

Figure 5.2. Overview of the HCP-RM algorithm. .. 120

Figure 5.3. Abbreviated class diagram of the CP-Scheduler. ... 124

Figure 5.4. Abbreviated class diagram of the CP-Scheduler’s entity classes. 128

Figure 5.5. HCP-RM vs EDFS: effect of λ on P when using the Hadoop WordCount
Workload. ... 149

Figure 5.6. HCP-RM vs EDFS: effect of λ on T and O when using the Hadoop WordCount
Workload. ... 150

Figure 5.7. HCP-RM vs EDFS: effect of λ on P when using the Hadoop Synthetic
Workload. ... 152

Figure 5.8. HCP-RM vs EDFS: effect of λ on T and O when using the Hadoop Synthetic
Workload. ... 152

Figure 5.9. HCP-RM vs EDFS: effect of memax on P when using the Hadoop Synthetic
Workload. ... 153

Figure 5.10. HCP-RM vs EDFS: effect of memax on T and O when using the Hadoop
Synthetic Workload. ... 154

Figure 5.11. HCP-RM vs EDFS: effect of emmax on P when using the Hadoop Synthetic
Workload. ... 155

Figure 5.12. HCP-RM vs EDFS: effect of emmax on T and O when using the Hadoop
Synthetic Workload. ... 155

Figure 5.13. Constant Error Model: effect of f on P. .. 161

Figure 5.14. Constant Error Model: effect of f on T. .. 162

Figure 5.15. Constant Error Model: effect of f on O. .. 163

Figure 5.16. Feitelson’s Error Model vs No Error: effect of λ on P. 164

Figure 5.17. Feitelson’s Error Model vs No Error: effect of λ on T. 165

xi

Figure 5.18. Feitelson’s Error Model vs No Error: effect of λ on O. 165

Figure 6.1. HCP-RM vs HCP-RM-EH: effect of f on P when using the Constant Error Model
and λ is 1/30 jobs per sec. .. 178

Figure 6.2. HCP-RM vs HCP-RM-EH: effect of f on T when using the Constant Error Model
and λ is 1/30 jobs per sec. .. 180

Figure 6.3. HCP-RM vs HCP-RM-EH: effect of f on O when using the Constant Error
Model and λ is 1/30 jobs per sec. ... 182

Figure 6.4. HCP-RM vs HCP-RM-EH: effect of λ on P when using Feitelson’s Error Model.
 .. 184

Figure 6.5. HCP-RM vs HCP-RM-EH: effect of λ on T and O when using Feitelson’s Error
Model. .. 184

Figure 6.6. HCP-RM vs HCP-RM-EH: effect of λ on P when using the Variable Error
Model. .. 186

Figure 6.7. HCP-RM vs HCP-RM-EH: effect of λ on T and O when using the Variable Error
Model. .. 186

Figure 7.1. Example of a system deploying the WFBB-RM technique. 192

Figure 7.2. DAG of a sample multi-stage job. ... 193

Figure 7.3. Sample DAG for illustrating the purpose of getListOfSucceedingTasksUnitl().
 .. 202

Figure 7.4. DAG of a sample CyberShake application [113]. .. 218

Figure 7.5. DAG of a sample LIGO Inspiral Analysis application [113]. 219

Figure 7.6. DAG of a sample Epigenomics application [113]. ... 220

Figure 7.7. Effect of λCS on P when using the CyberShake workload. 225

Figure 7.8. Effect of λCS on T and O when using the CyberShake workload. 226

Figure 7.9. Effect of smax on P when using the CyberShake workload. 229

Figure 7.10. Effect of smax on T and O when using the CyberShake workload. 229

Figure 7.11. Effect of emmax on P when using the CyberShake workload. 232

Figure 7.12. Effect of emmax on T and O when using the CyberShake workload............ 233

xii

Figure 7.13. Effect of m on P when using the CyberShake workload. 235

Figure 7.14. Effect of m on T and O when using the CyberShake workload. 235

Figure 7.15. WFBB-RM vs MRCP-RM: effect of λ on P. .. 239

Figure 7.16. WFBB-RM vs MRCP-RM: effect of λ on T and O. .. 240

Figure 7.17. WFBB-RM vs MRCP-RM: effect of m on P. ... 241

Figure 7.18. WFBB-RM vs MRCP-RM: effect of m on T and O. 241

Figure C.1. Sequence diagram for setting the deadline of a job in Hadoop. 282

Figure C.2. Sequence diagram for retrieving the estimated task execution times of a job
in Hadoop. .. 283

Figure D.1. WFBB-RM vs MRCP-RM: effect of memax on P. .. 302

Figure D.2. WFBB-RM vs MRCP-RM: effect of memax on T and O. 303

Figure D.3. WFBB-RM vs MRCP-RM: effect of smax on P. .. 303

Figure D.4. WFBB-RM vs MRCP-RM: effect of smax on T and O. 304

Figure D.5. WFBB-RM vs MRCP-RM: effect of emmax on P. .. 304

Figure D.6. WFBB-RM vs MRCP-RM: effect of emmax on T and O. 305

xiii

List of Tables

Table 3.1. CP Model. ... 55

Table 3.2. MILP Model. ... 60

Table 3.3. System and Workload Parameters for the Batch Workloads. 71

Table 4.1. Job Information for the Synthetic MapReduce Workload—Facebook [70]. ... 98

Table 4.2. System and Workload Parameters for the Generic Synthetic MapReduce
Workload. .. 100

Table 5.1. System and Workload Parameters for the Hadoop Synthetic Workload. 147

Table 6.1. HCP-RM vs HCP-RM-EH: effect of f on P when using the Constant Error Model.
 ... 179

Table 6.2. HCP-RM vs HCP-RM-EH: effect of f on T when using the Constant Error Model.
 ... 181

Table 6.3. HCP-RM vs HCP-RM-EH: effect of f on O when using the Constant Error Model.
 ... 182

Table 7.1. System and Workload Parameters for the WFBB-RM Factor-at-a-Time
Experiments. .. 222

Table 7.2. LIGO workload: effect of λLG on P, T, and O. .. 227

Table 7.3. Genome workload: effect of λGN on P, T, and O. ... 228

Table 7.4. LIGO workload: effect of smax on P, T, and O. .. 230

Table 7.5. Genome workload: effect of smax on P, T, and O. .. 231

Table 7.6. LIGO workload: effect of emmax on P, T, and O. ... 234

Table 7.7. Genome workload: effect of emmax on P, T, and O. 234

Table 7.8. LIGO workload: effect of m on P, T, and O. ... 237

Table 7.9. Genome workload: effect of m on P, T, and O. ... 237

xiv

Table D.1. CyberShake workload: effect of λCS on P, T, and O when using the PD-based
WFBB-RM configurations. .. 287

Table D.2. CyberShake workload: effect of emmax on P, T, and O when using the PD-based
WFBB-RM configurations. .. 287

Table D.3. CyberShake workload: effect of smax on P, T, and O when using the PD-based
WFBB-RM configurations. .. 288

Table D.4. CyberShake workload: effect of m on P, T, and O when using the PD-based
WFBB-RM configurations. .. 288

Table D.5. CyberShake workload: effect of λCS on P, T, and O when using the ED-based
WFBB-RM configurations. .. 289

Table D.6. CyberShake workload: effect of emmax on P, T, and O when using the ED-based
WFBB-RM configurations. .. 290

Table D.7. CyberShake workload: effect of smax on P, T, and O when using the ED-based
WFBB-RM configurations. .. 290

Table D.8. CyberShake workload: effect of m on P, T, and O when using the ED-based
WFBB-RM configurations. .. 291

Table D.9. LIGO workload: effect of λLG on P, T, and O when using the PD-based WFBB-
RM configurations. ... 292

Table D.10. LIGO workload: effect of emmax on P, T, and O when using the PD-based WFBB-
RM configurations. .. 292

Table D.11. LIGO workload: effect of smax on P, T, and O when using the PD-based WFBB-
RM configurations. .. 293

Table D.12. LIGO workload: effect of m on P, T, and O when using the PD-based WFBB-
RM configurations. ... 293

Table D.13. LIGO workload: effect of λLG on P, T, and O when using the ED-based WFBB-
RM configurations. ... 294

Table D.14. LIGO workload: effect of emmax on P, T, and O when using the ED-based WFBB-
RM configurations. .. 295

Table D.15. LIGO workload: effect of smax on P, T, and O when using the ED-based WFBB-
RM configurations. .. 295

xv

Table D.16. LIGO workload: effect of m on P, T, and O when using the ED-based WFBB-
RM configurations. ... 296

Table D.17. Genome workload: effect of λGN on P, T, and O when using the PD-based
WFBB-RM configurations. .. 297

Table D.18. Genome workload: effect of emmax on P, T, and O when using the PD-based
WFBB-RM configurations. .. 297

Table D.19. Genome workload: effect of smax on P, T, and O when using the PD-based
WFBB-RM configurations. .. 298

Table D.20. Genome workload: effect of m on P, T, and O when using the PD-based WFBB-
RM configurations. .. 298

Table D.21. Genome workload: effect of λGN on P, T, and O when using the ED-based
WFBB-RM configurations. .. 299

Table D.22. Genome workload: effect of emmax on P, T, and O when using the ED-based
WFBB-RM configurations. .. 300

Table D.23. Genome workload: effect of smax on P, T, and O when using the ED-based
WFBB-RM configurations. .. 300

Table D.24. Genome workload: effect of m on P, T, and O when using the ED-based WFBB-
RM configurations. .. 301

xvi

List of Algorithms

Algorithm 4.1: MRCP-RM Algorithm .. 88

Algorithm 5.1: HCP-RM Algorithm ... 131

Algorithm 5.2: CP-Scheduler’s identifyLocalMapTasks() ... 136

Algorithm 5.3: CP-Scheduler’s generateAndSolve() ... 139

Algorithm 5.4: Feitelson’s Error Model .. 158

Algorithm 6.1: Variable Error Model .. 175

Algorithm 7.1: Deadline Budgeting Algorithm for Workflows 196

Algorithm 7.2: Proportional Distribution of Job Laxity Algorithm 198

Algorithm 7.3: WFBB-RM algorithm’s setParentTasksSubDeadline() 201

Algorithm 7.4: Even Distribution of Job Laxity Algorithm .. 204

Algorithm 7.5: WFBB-RM algorithm’s mapJob() .. 206

Algorithm 7.6: WFBB-RM algorithm’s mapJobHelper() ... 208

Algorithm 7.7: WFBB-RM algorithm’s remapJob() ... 212

Algorithm 7.8: WFBB-RM algorithm’s remapJobHelper() .. 214

Algorithm B.1: MRCP-RM algorithm’s splitSingleResourceSchedule() 277

Algorithm C.1: CP-Scheduler’s createNewModelDefinition()... 284

xvii

List of Symbols

λ Job arrival rate

𝜏𝑗,𝑘 kth task of job j

at Assigned (or scheduled) start time of task t (decision

 variable used by CP Model)

atj Arrival time of job j

AT A set that contains all the tasks of all the jobs in J

cr
mp Map task capacity of resource r

cr
rd Reduce task capacity of resource r

C Completion time of a batch workload

CLt Cumulative laxity of task t

CLj
ph Cumulative laxity of execution phase ph for a job j

CTj Completion time of job j

dj Deadline of job j

DU Discrete uniform distribution

et Execution time of task t

et
adj

 Adjusted execution time of task t

et
est

 Estimated execution time of task t

et
run

 Actual runtime of task t

et
threshold

 Task execution time threshold used by Feitelson’s Error

Model

em Execution time multiplier

emmax Upper-bound of the uniform distribution used to generate

 em

epst Earliest possible start time of task t

f Execution time error factor

ft Execution time error factor of task t

xviii

I Set of discrete time values (used by MILP Model)

J Set of jobs

kj
mp Number of map tasks in job j

kj
rd Number of reduce tasks in job j

Lj Laxity of job j

Lj
act

 Actual laxity of job j

Lj
ep

 Laxity for each execution phase in job j

Lj
est

 Estimated laxity of job j

LN Lognormal Distribution

LTt Laxity of task t

LTt
max Maximum laxity of task t

LTt
min Minimum laxity of task t

m Number of resources in R

me Map task execution time

memax Upper-bound of the discrete uniform distribution used to

 generate me

n Number of jobs processed in an experiment

nj
ep Number of execution phases in job j

N Number of jobs that miss their deadlines

Nj Binary variable that is set to 1 if job j misses its deadline

 (used by MILP Model and CP Model)

NLj Normalized laxity of job j

oj The matchmaking and scheduling time of job j

O Average job matchmaking and scheduling time

p Probability that a job j has sj greater than atj

P Proportion of jobs that miss their deadlines

PO Processing time overhead of the solver for matchmaking

 and scheduling a batch workload

xix

qt Resource capacity requirement of task t

re Reduce task execution time

R Set of resources that represent the distributed computing

 environment (comprises m resources)

sj Earliest start time (or release time) of job j

smax Upper-bound of the discrete uniform distribution used to

 generate the value that is added to atj for calculating sj of

 jobs that have sj greater than atj

sdt Sub-deadline of task t

sdt
LFPT

 Sub-deadline of the latest finishing parent task of task t

SCTj
 Sample completion time of job j

SETj Sample execution time of job j

SETj
max Maximum execution time of job j

SETj
min Minimum execution time of job j

SETj
R The execution time of job j when it executes at its

 maximum degree of parallelism on R

SETj
R_PL The execution time of job j when it executes on R, while

 considering the current processing load of the resources

 in R.

tst
 Earliest start time of task t

T Average job turnaround time

Tj
mp Set of map tasks in job j

Tj
rd Set of reduce tasks in job j

U Uniform distribution

xtr Binary variable that is set to true if task t is assigned on

 resource r (used by CP Model)

xtri Binary variable that is set to true if task t is assigned to

 execute on resource r at time i (used by MILP model)

xx

Glossary of Terms

Amazon EC2 Amazon Elastic Cloud Compute

CP Constraint Programming

CPLEX IBM ILOG CPLEX Optimization Studio

CPS CP-Scheduler

DAG Directed acyclic graph

DBW Deadline Budgeting Algorithm for Workflows

ED Even Distribution of Job Laxity Algorithm

EDF Earliest Deadline First

EDFS EDF-Scheduler

ETIL Hadoop’s Eager Task Initialization Listener class

FIFO First-in-first-out

HCP-RM Hadoop Constraint Programming based Resource

 technique

HCP-RM-EH HCP-RM with techniques to handle error in user-estimated

 execution times

HDFS Hadoop Distributed File System

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

IT Information Technology

JIPL Hadoop’s Job In Progress Listener class

JQ-JIPL Hadoop’s Job Queue Job In Progress Listener class

JQTS Hadoop’s Job Queue Task Scheduler class

LFMT Latest Finishing Map Task

LFRT Latest Finishing Reduce Task

LIGO Laser Interferometer Gravitational Wave Observatory

MILP Mixed Integer Linear Programming

xxi

MinEDF-WC Minimum Resource Quota Earliest Deadline First with

 Work-Conserving scheduling technique

MRCP-RM MapReduce Constraint Programming based Resource

 Management technique

MRv1 Hadoop MapReduce Architecture Version 1

MRv2 Hadoop MapReduce Architecture Version 2

OPL Optimization Programming Language

PaaS Platform-as-a-Service

PD Proportional Distribution of Job Laxity Algorithm

POpt1 Performance Optimization 1 for MRCP-RM: Separating the

 Matchmaking and Scheduling Operations

POpt2 Performance Optimization 2 for MRCP-RM: Handling

 Earliest Start Time of Jobs

PSEH Prescheduling Error Handling technique

QoS Quality of Service

RT CP-Scheduler’s REFERENCE_TIME variable

SaaS Software-as-a-Service

setPTSubDL WFBB-RM’s setParentTasksSubDeadline() method

SimExec Simulate Execution Time Hadoop application

SL Sample Laxity

SLA Service Level Agreement

TL True Laxity

TSP1 WFBB-RM’s Task Scheduling Policy 1

TSP2 WFBB-RM’s Task Scheduling Policy 2

URL Uniform Resource Locator

VM Virtual Machine

WFBB-RM Workflow Budget-Based Resource Management technique

XaaS Everything-as-a-Service

1

Chapter 1 Introduction

Cloud computing has emerged as one of the most prevalent parallel and distributed

computing paradigms. One of the key objectives of cloud computing is to deliver reliable

services/applications hosted on the “cloud” such that consumers can access the

services/applications anywhere and at any time (i.e., on-demand) via the Internet [1]. The

authors of [1] define a “cloud” as follows:

“A Cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented as

one or more unified computing resource(s) based on service-level agreements established

through negotiation between the service provider and consumers.”

The computer systems and resources of the cloud that include compute, storage, and

network resources are often housed in a facility called a datacenter.

Since the emergence of cloud computing, its popularity has steadily increased and

it is now deployed extensively in the domain of Information Technology (IT) because it

improves and simplifies how IT is managed and consumed. A number of reputable

financial institutions and market research organizations, including Merrill Lynch and

Gartner, have predicted a multi-billion-dollar market for the cloud computing industry

[2][3][4]. Furthermore, as pointed out in [5], the annual world-wide spending on cloud

computing for enterprise IT is expected to increase significantly with time. Consequently,

research on cloud computing is receiving a great deal of interest from researchers and

practitioners from academia as well as industry.

The importance of cloud computing that provides resources on demand to various

types of users, including enterprises and engineering and scientific institutions, is growing

2

rapidly [6]. Although cloud computing is an effective and economically viable solution for

distributed computing, it poses a number of challenges. A survey [7] presented on cloud

computing stated that security and performance are the two top priorities for cloud service

consumers and cloud service providers. In a cloud, the user has a lack of control over the

execution environment, and there is also a concern with the security and privacy of the data

stored in the cloud. Another key issue in cloud computing is related to performance. Public

cloud service providers, such as Amazon [8] and Microsoft [9], deploy datacenters that

comprise a large pool of resources. Many enterprises and institutions also have their own

private clouds for managing their IT infrastructure, performing data processing operations,

and facilitating research. Irrespective of the type of cloud deployed, effective and efficient

resource management techniques are crucial for harnessing the power of the underlying

resource pool and to achieve the performance objectives of the system. Achieving a high

system performance is important because it can lead to more satisfied users and high

utilization of resources, leading to more revenue for the cloud service provider. For

example, with an effective resource management technique the system can achieve a high

job throughput, low job response times (latency), high utility of resources, and a high

quality of service (QoS) for consumers [6]. Thus, the focus of this thesis is on the critical

issue of resource management on clouds.

The rest of this chapter is organized as follows. In Section 1.1, the motivation and

challenges behind the research of the thesis is described. Next, in Section 1.2, the

objectives, contributions, and scope of the thesis are presented. Lastly, Section 1.3 provides

an outline of how the remainder of the thesis is organized.

3

1.1 Motivations and Challenges for the Thesis

A significant amount of research is available in the area of resource management

on parallel and distributed systems, including grids [10] (a predecessor of cloud computing)

and clouds, characterized by on-demand jobs that are to be satisfied on a best effort basis.

However, comparatively less work is available for resource management where jobs

require a QoS that is often captured by a service level agreement (SLA). This is an active

and open research area [1][6]. As in the case of grid computing [10], which also supported

resources on demand, QoS and SLAs remain an important issue. A SLA, which defines a

contract between the service requester and the service provider regarding the level of QoS

associated with a job, is an important characteristic of cloud computing [11]. Ensuring that

the SLA (i.e., QoS requirements) of a job is satisfied is important for service providers

because it is imperative for achieving a high quality of experience and satisfaction for the

cloud users. A satisfied user is more likely to use the same service provider again.

Furthermore, violating a SLA can lead to fines for the service provider and a loss of

revenue. The SLA may vary from application to application and various parameters can be

included in a SLA, such as delays, packet loss, uptime, and mean time to recover. Similar

to [1] and [11], this thesis focuses on SLAs that are characterized by an earliest start time,

an execution time, and an end-to-end deadline for job completion. This, for example, is

important for latency-sensitive business and scientific applications that require a timely

processing of data. Note that the deadline for the job is a soft deadline, which means that

the job can complete its execution even if it misses its deadline; however, the desired

system objective is to minimize the number of such late jobs. Missing a deadline may lead

to a low quality of experience for the user and a SLA violation for the service provider.

4

Thus, minimizing the number of late jobs, which leads to a higher number of satisfied users

and a higher quality of service, is an important objective of the system.

Due to cloud computing becoming more prevalent, a variety of different

applications are run on clouds, including those that are characterized by multiple phases of

execution and require processing from multiple system resources (referred to as multi-stage

jobs). Most of the research on resource management for jobs characterized by SLAs have

not considered:

1). Jobs requiring service from multiple system resources as required for supporting

multi-stage jobs. Most of the research on resource management for jobs with

SLAs has only considered jobs that need to be processed by a single resource.

2). An open stream of job arrivals. Most of the previous research in the literature has

only addressed meeting the deadlines for a fixed number of jobs executing on the

system (i.e., a batch workload). However, clouds are typically subjected to an

open stream of job arrivals and not a fixed number of jobs.

The objective of the research presented in this thesis is aimed at filling this gap. The type

of resources that this thesis is concerned with are nodes in a distributed system where each

node has its own compute resources (CPU and memory), storage devices, and

communication devices, as well as runs its own operating system. For example, each of

these nodes can be PCs in a private cluster or alternatively, virtual machines (described in

more detail in Section 2.1) provisioned from a public cloud.

Multi-stage jobs are important in a variety of contexts. For example, a job invoking

an application with multiple components or a job comprising multiple tasks that require

executing on multiple resources. Another scenario is in the context of a workflow that is

5

characterized by multiple phases of execution where each phase can comprise multiple

tasks with precedence relationships and each phase requires execution on multiple devices.

Scientific applications and workflows that are used in various fields of study, such as

physics and biology, are examples of multi-stage jobs that are run on clouds. When

considering resource management for an open stream of multi-stage jobs with SLAs, a

complex resource management problem arises that has a number of challenging issues that

warrant further investigation. These challenges are summarized next.

 SLA budgeting: How to decompose the end-to-end SLA into components each

of which is to be associated with a specific component in the end-to-end path

traversed for processing the job?

 Resource management algorithm: Effective matchmaking and scheduling

algorithms are required for selecting resources from a given resource pool and

determining the order of execution of jobs mapped to the same resource for

satisfying the SLAs. Matchmaking and scheduling is known to be a NP-hard

problem, and when considering an open stream of multi-stage jobs with SLAs,

the complexity of the problem increases significantly due to a continuous stream

of jobs arriving on the system.

 Single step resource management techniques: Investigating alternate

approaches that avoid the budget-based technique in order to make resource

management decisions on multiple resources in a single joint step.

Note that a naïve solution to solve the resource management problem described is to

reserve all the resources that a job requires for the entire duration of time specified in the

SLA. However, this approach is not efficient because with multiple phases of execution,

6

each resource may not be used during each phase and reserving all the resources for the

entire duration of time leads to poor resource utilization and less revenue for the service

provider. Reserving each resource only for the duration it is used for executing a job is a

more efficient and effective solution because it allows more jobs to be executed on the

cloud, leading to a more efficient use of resources. Therefore, the techniques described in

this thesis avoids the naïve solution and instead proposes more efficient and intelligent

resource management techniques.

1.2 Objective and Contributions of the Thesis

The focus and objective of this thesis is to devise efficient resource management

techniques and algorithms for processing an open stream of multi-stage jobs where each

job is characterized by a SLA (comprising an earliest start time, an execution time, and an

end-to-end deadline) on a parallel and distributed computing environment with a fixed

number of resources (or nodes), such as a private cluster or a set of resources acquired a

priori from a public cloud. Recall from the previous section that each resource (or node)

has its own compute resources (CPU and memory), storage devices, and communication

devices, as well as runs its own operating system. More specifically, the goal is to devise

resource management techniques that can make decisions that minimize the number of jobs

that miss their deadlines, while incurring a low processing overhead. Note that the resource

management techniques that are presented in this thesis can be used by public cloud service

providers such as Amazon, as well as by a user who uses his/her own resources that are

available on a private cluster or that are acquired from a public cloud.

An example of a multi-stage application that this thesis considers is MapReduce

[12] (described in more detail in Section 2.3), which is used by many companies and

7

institutions for processing and analyzing large data sets (i.e., facilitating Big Data

analytics). Devising effective resource management techniques for processing MapReduce

jobs with deadlines forms an important component of this thesis. In addition to MapReduce

jobs, which are characterized by two phases of execution, this thesis also devises resource

management techniques for processing workflows with different types of precedence

relationships and more than two phases of execution, such as scientific workflows used in

the domain of physics and biology.

The new resource management techniques and algorithms that are presented in this

thesis have contributed to the state of the art in the field of resource management on clouds

as reflected in the various research papers that have been published (described in more

detail in Section 1.2.1). The major contributions of this thesis are summarized next:

 Deadline budgeting algorithms: Algorithms are devised to decompose the end-

to-end deadline associated with a job into components (e.g., sub-deadlines) each

of which is associated with a specific task in the job. In particular, algorithms are

devised to handle both MapReduce type jobs characterized by two phases of

executions and scientific workflows with different types of precedence

relationships.

 Budget-based resource management technique: Effective matchmaking and

scheduling algorithms are devised to process multi-stage jobs on parallel and

distributed systems using the budgets (component SLAs) determined by the

deadline budgeting algorithms.

 Resource management techniques based on optimization methods: Alternate

resource management techniques, which avoid the budget-based technique, are

8

devised to make matchmaking and scheduling decisions on multiple resources in

a single joint resource management step. These resource management techniques

formulate and solve the resource management problem as an optimization

problem using mixed integer linear programming (MILP) [13] and constraint

programming (CP) [14]. Both MILP and CP are well-known theoretical

techniques that can solve optimization problems and find optimal solutions.

Various implementations of the formulations using commercial-off-the-shelf and

open source software packages are considered, including IBM ILOG CPLEX

Optimization Studio (CPLEX) [15].

o Although previous works have used optimization methods to perform

matchmaking and scheduling, most of these techniques are offline

techniques and only work in a closed system for processing a batch

workload with a fixed number of jobs. The resource management

techniques based on optimization methods (and associated performance

optimizations) that this thesis presents are devised to process an open stream

of multi-stage jobs with SLAs.

 Handling error associated with user-estimated job execution times: Studies

on real systems show that user estimates of job execution times (included in a

SLA, for example) are error prone [16][17][18]. A novelty of the research

presented in this thesis is the techniques devised for handling inaccuracy or error

in user estimates of job execution times to build in the appropriate robustness into

the resource management techniques. With little work existing in this area in the

context of MapReduce type systems, addressing the challenges in devising

9

techniques to improve the robustness of the resource management algorithms

makes a strong contribution to the state of the art.

 Insights resulting from a performance analysis based on simulation and a

proof-of-concept prototype: An in-depth and rigorous performance evaluation

of the resource management techniques is conducted using prototyping and

measurement on a real system deployed on a cloud (Amazon EC2 [8]), as well as

using simulation. A detailed analysis of the results is provided to gain insights

into system behavior and performance, as well as to investigate the impact of

various workload and system parameters on the performance of each technique.

In addition, the relative performance of the resource management techniques

compared to other techniques in the literature is provided. Lastly, a comparative

performance analysis of the proposed techniques is performed to determine the

system and workload parameters for which one technique is superior in

performance to the others.

1.2.1 List of Publications

Based on the results of the research, four papers [19][20][21][22] have been

published in refereed international conferences. In addition, a book chapter [23] and a

journal article [24] have been accepted for publication. The details are presented next.

Archival Publications:

 N. Lim and S. Majumdar, “Resource Management for MapReduce Jobs

Performing Big Data Analytics”, in Big Data Management, Architecture, and

Processing, K.-C. Li, H. Jiang, and A. Zomaya, Eds. USA: CRC Press, Taylor

& Francis Group, 2016 (accepted for publication).

10

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “MRCP-RM: a Technique for

Resource Allocation and Scheduling of MapReduce Jobs with Deadlines”, IEEE

Transactions on Parallel and Distributed Systems, October 2016 (accepted for

publication).

Refereed Conference Publications:

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “Resource Management

Techniques for Handling Requests with Service Level Agreements”,

International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS), Monterey, CA, USA, 6-10 July 2014,

pp. 618 -625.

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “Engineering Resource

Management Middleware for Optimizing the Performance of Clouds Processing

MapReduce Jobs with Deadlines”, International Conference on Performance

Engineering (ICPE), Dublin, Ireland, 24 -26 March 2014, pp.161-172.

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming-

Based Resource Management Technique for Processing MapReduce Jobs with

SLAs on Clouds”, International Conference on Parallel Processing (ICPP),

Minneapolis, MN, USA, 9-12 Sept 2014, pp. 411-421.

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming

Based Hadoop Scheduler for Handling MapReduce Jobs with Deadlines on

Clouds”, International Conference on Performance Engineering (ICPE),

Austin, TX, USA, 31 Jan – 4 Feb 2015, pp. 111-122.

11

1.2.2 Scope of the Thesis

The resource management techniques described in this thesis are devised for

distributed computing environments with a fixed number of resources (or nodes) subjected

to a workload comprising an open stream of multi-stage jobs with SLAs. Such

environments can include a cluster of computers or a set of virtual machines that are

provisioned a priori from a cloud. Furthermore, the resource management techniques also

consider a single datacentre environment where the network delays and data transmission

times are negligibly small. Adapting the techniques for environments where the number of

resources in the system can be dynamically changed or for geographically-dispersed multi-

datacentre environments where the network delays and data transmission times may be

large are out of scope for this research and can form a direction for future research, as

described in Section 8.6.

As discussed earlier, the SLA submitted as part of the job includes an earliest start

time, an execution time, and an end-to-end soft deadline. In this thesis, the estimated job

execution times are provided by the user. The estimation of job execution times by the

system instead of the user is beyond the scope of this thesis. However, this thesis does

concern dealing with inaccuracy/errors in user-estimated job execution times, as described

in Chapter 6. Moreover, the deadlines of the jobs submitted by the user are soft deadlines,

which means that jobs are permitted to miss their deadlines but the objective of the system

is to minimize the number of missed deadlines to preserve a high quality of service.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, background

information is provided and related work is discussed. The focus of Chapter 3 is on

12

describing the resource management techniques devised to process a batch of MapReduce

jobs with SLAs. The MapReduce Constraint Programming based Resource Management

(MRCP-RM) technique devised for systems subjected to an open stream of MapReduce

jobs with SLAs, along with its adaption onto a real system, Hadoop [25], referred to as the

Hadoop Constraint Programming based Resource Management (HCP-RM) technique, are

discussed in Chapter 4 and Chapter 5, respectively. In Chapter 6, the techniques for

improving the robustness of the resource management algorithms through handling of

errors/inaccuracies in user-estimated execution times are discussed. The focus of Chapter

7 is on describing the Workflow Budget-Based Resource Management (WFBB-RM)

technique, which can process an open stream of multi-stage jobs with different structures

and types of precedence relationships, such as scientific workflows. Lastly, the conclusions

of the thesis and directions for future research are presented in Chapter 8.

13

Chapter 2 Background and Related Work

This chapter presents background information on the concepts, technologies and

related work that is relevant to this thesis. In Section 2.1, background information on cloud

computing is provided. Section 2.2 then presents a representative set of existing work

related to resource management on clouds for processing jobs and workflows with SLAs.

The focus of Section 2.3 is on motivating and describing MapReduce, which is a popular

multi-stage job that this thesis considers. In Section 2.4, a description of Apache Hadoop,

an open-source implementation of the MapReduce programming model, is provided.

Resource management techniques for processing MapReduce jobs with various objectives,

including MapReduce jobs with deadlines, are presented in Section 2.5. Next, in Section

2.6, a representative set of related work describing techniques to handle error and

inaccuracies in user-estimated job execution times is described. Lastly, Section 2.7

compares the techniques described in this thesis with techniques from related work.

2.1 Cloud Computing

In cloud computing, hardware resources (e.g., processor, memory, storage, and

network elements) and software resources (e.g., operating systems, tools, and applications)

are made accessible on-demand over a network (typically the Internet) [1]. The cloud

computing paradigm uses a service-oriented model that offers “everything-as-a-service”

(XaaS) [1]. To accomplish this goal, cloud computing utilizes several concepts and

technologies, including virtualization, service-orientation, elasticity, scalability, and utility

computing. Virtualization technology allows the hardware resources (e.g., CPU, memory,

storage) of a physical machine to be partitioned into multiple independent virtual machines

(VMs). A VM is an emulation of a physical machine (e.g., computer) that has its own CPU,

14

memory, storage, and runs its own operating system. Logically, a VM is viewed as a

physical machine but in reality, the VM runs on the physical hardware that may be shared

with other VMs. With the help of virtualization technology, cloud computing can deliver

an on-demand, service-oriented model that offers: Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [1]. IaaS delivers basic

computational resources (e.g., virtual machines) as an on-demand service, and PaaS offers

a higher-level service (e.g., an application framework with development tools) where

consumers can create and deploy their own scalable Web applications without having to

invest money to build and maintain their own physical infrastructure. Lastly, SaaS provides

consumers with complete end-user applications. Communication and social applications

such as Customer Relationship Management systems and email are examples of SaaS.

The scalability and elasticity characteristics of a cloud provide the ability to grow

or shrink the number of resources allocated to a consumer’s request dynamically with time.

For example, if a Web application that is deployed on the cloud is suddenly exhibiting poor

performance due to a surge in traffic leading to a large number of requests, additional

resources from the cloud can be deployed to handle the additional requests. Similarly, if

the Web application is not using all the resources it has provisioned, resulting in a low

resource utilization, money can be saved by scaling down the number of resources that are

provisioned. With the utility computing model, consumers can lease resources on-demand

from the service provider and pay only for the time the resources are used. This is

analogous to how people pay for everyday utilities at home such as electricity, gas, and

water.

15

A summary of the primary advantages of the cloud that are attractive to users and

has helped expand its popularity is provided next.

 Low investment and utility computing: An organization or business can utilize

cloud computing for their IT infrastructure instead of purchasing a large number

of physical resources and spending money to house/maintain the resources. In

addition, the utility computing or “pay-as-you-go” feature of the cloud allows

users to acquire resources on demand and pay only for the time the resources

are used. For example, cloud service providers such as Amazon [8] charge users

an hourly rental fee when they provision a virtual machine. This low upfront

cost is of great value for small start-up companies as well as larger enterprises

who want to reduce costs by migrating some of their business operations to the

cloud.

 Scalability and elasticity: Cloud computing enables a consumer to dynamically

grow and shrink the number of resources provisioned to match the current

number of resources required. This provides a significant benefit for handling

temporary increases in resource usage and allows consumers to efficiently

spend their money.

 Green computing: Consumers using cloud computing also contribute to the

green computing initiative. By consolidating the IT operations of multiple

consumers at a single datacentre instead of each consumer (e.g., organization)

maintaining their own IT infrastructure, an effective resource sharing is

achieved that can lead to a reduction in power consumed by the computing,

storage, and cooling equipment.

16

There are two main types of clouds that are deployed today: public clouds and private

clouds. Public clouds offer resources to the general public. Two of today’s popular public

clouds include: (1) Amazon Elastic Compute Cloud (EC2) [8], which provides IaaS and

allows users to deploy virtual machines called instances, and (2) Microsoft’s Windows

Azure [9], which provides both IaaS and PaaS to users. The second type of cloud is a

private cloud that is only accessible to the members of a given group. For example, two

variants of the private cloud are: (1) an enterprise cloud that serves the IT needs for

employees of a given company, organization, or institution and (2) a research and

engineering cloud that unifies resources located in multiple institutions to foster resource

sharing and collaboration. There is also a third type of cloud called a hybrid cloud that

borrows features from both private and public clouds. Hybrid clouds provide and manage

a set of private resources (owned by an organization, for example), but the hybrid cloud

can also provision resources from a public cloud when necessary (e.g., to improve

performance or to handle a surge in the number of requests).

2.2 Resource Management on Clouds

Irrespective of the type of cloud deployed, effective resource management

strategies and algorithms are needed for harnessing the power of the underlying resource

pool of the datacentre. Even though the resource pool of the datacentre is vast, it is still

limited and needs to be efficiently shared among multiple users. By using effective

resource management strategies, the following benefits can be achieved: higher quality of

service for consumers, higher job throughput, lower job response times, and higher

utilization of resources [6]. This thesis focuses on the following areas of resource

management that is outlined by [6]:

17

 Resource allocation (matchmaking): involves determining how to distribute

the resources of the cloud economically among competing users and assigning

one or more resource(s) to a customer’s job.

 Resource scheduling: involves determining when each job assigned to a

resource should start to execute.

Matchmaking and scheduling of jobs onto the resources of a cloud are two

important operations performed by a resource manager deployed in the resource

management middleware of a cloud. When a job arrives, the resource manager invokes a

matchmaking algorithm that selects the resource(s) from a given pool of resources to be

allocated to the job. Once a number of jobs get allocated to a specific resource, a scheduling

algorithm is used to determine the order in which each of these jobs are to be executed.

The matchmaking operation and the scheduling operation are often jointly referred to as

the mapping operation. Note that in some systems matchmaking and scheduling can be

performed in a joint resource management step. The matchmaking and scheduling problem

is a NP-hard problem, and the problem becomes even more complex when the user’s

requirements for quality of service that is often captured in a SLA need to be satisfied,

while also achieving the desired system objectives for the service providers, such as

maintaining high resource utilization and minimizing the number of overall SLAs that are

violated.

2.2.1 Resource Management on Clouds for Processing Jobs with SLAs

In this section, a representative set of work describing techniques for resource

management on clouds for processing jobs with SLAs is described. The existing research

18

is categorised based on the objectives/goals of the research and a discussion of each such

category is presented in a subsection.

2.2.1.1 Techniques for Maintaining High Utilization of Resources

In this section, techniques that focus on efficiently provisioning resources in the

cloud for achieving high utilization of resources are described.

The authors of [26] design and evaluate a QoS-aware cloud middleware that

configures and manages cloud resources based on SLAs. An inefficient approach to

guarantee that a job’s SLA is not violated is to use a resource overprovision policy, but this

is not an optimal solution because it leads to poor system utilization, which in turn can

reduce revenue for the service provider. One of the main components of the middleware is

a load balancer that monitors the QoS of the system and distributes the load across the

platform evenly. In addition, the proposed middleware can dynamically add and remove

resources at runtime as needed to meet the SLAs of the jobs.

SmartSLA, a cost-aware resource management framework that addresses how to

efficiently manage the resources in a shared cloud database system, is presented in [27].

The objective of the resource management framework is to intelligently allocate the limited

resources of a cloud among multiple clients, while ensuring that SLAs are not violated.

Machine learning techniques are used to identify the optimal configuration of the system

resources (e.g., CPU, memory, and storage) for a client to meet their SLAs, while

optimizing the revenue of the cloud service provider.

In [28], the authors focus on the problem of pre-reserved resources in the cloud

leading to low resource utilization. Pre-reservation of resources allows users with a

complex applications or services to reserve multiple resources ahead of time so that their

19

SLAs can be satisfied. A resource management mechanism that includes a resource pre-

reservation strategy and a resource borrowing/lending strategy is presented. The idea

behind resource borrowing/lending is to allow a user to lend idle pre-reserved resources to

a user with a shortage of resources. A system controller monitors usage statistics and builds

a model that minimizes operating costs while guaranteeing SLAs are not violated.

2.2.1.2 Techniques for Co-allocation and Advance Reservation of Resources

The focus of this section is on techniques for co-allocation and advance reservation

of multiple cloud resources, including computing and storage resources.

In [11], the authors discuss the important challenges and architectural elements of

SLA-oriented resource management in a cloud environment. Many existing resource

management systems in today’s datacentres do not yet provide full support for SLA-

oriented resource allocation and also do not collectively incorporate customer-driven

service management, computational risk management, and autonomic resource

management into the resource management system. The authors present an efficient online

resource management algorithm that is used in distributed environments for co-allocating

resources and supporting advance reservations.

The authors of [29] present an efficient online resource management algorithm that

is used in distributed environments for co-allocating resources and supporting advance

reservations. Data structures based on 2-dimensional trees are used to organize the

temporal availability of resources. The approach uses efficient range searches to identify

all the available resources within a specified time window that can be used for co-

allocation.

20

An adaptive resource co-allocation technique for a cloud environment is proposed

in [30]. The technique focuses on co-allocating CPU and memory resources and uses a

utility function driven approach to optimize resource allocation. More specifically, the

authors use a step-wise resource co-allocation approach that repeatedly optimizes the VM

placement in each control interval to ensure that load fluctuation can be captured.

The focus of [31] is on the resource provisioning problem for enriched cloud

services, which require co-allocating multiple resources in the cloud, including computing,

storage, and network resources. Two enriched cloud services are presented: a distributed

data storage service and a multicast data transfer service. The authors model and solve the

resource provisioning problem for these two services using mixed integer linear

programming where the constraints correspond to the QoS requirements of the services.

In [32], the authors focus on devising resource allocation techniques on clouds for

applications that require multiple resources (e.g., CPU, network bandwidth, memory and

storage). The proposed heuristic based approach includes an on-demand resource

allocation mechanism that automatically starts new VMs as required, as well as a load-

balancing mechanism to ensure that resources are utilized efficiently.

The authors of [33] focus on the problem of SLA-based resource allocation in a

cloud environment for multi-tier applications, where each tier provides a service to the next

tier and uses services from the previous tier. A heuristic algorithm based on force-directed

search for solving the resource allocation problem is presented. The algorithm optimizes

the allocation of processing, memory, and communication resources.

21

2.2.1.3 Techniques for Virtual Machine Provisioning and Placement

In this section, resource management techniques that investigate efficiently

provisioning and placing virtual machines (VMs) in a cloud datacentre are described.

In [34], the authors present a resource management framework that comprises two

key components: a VM provisioning manager and a VM placement manager. The VM

provisioning manager decides how much physical resources (CPU and memory) to allocate

to host applications, whereas the VM placement manager decides where to place the

application workload within the datacenter. Both the VM provisioning and the VM

placement problems are formulated as constraint satisfaction problems and solved using

constraint programming where the objective is to ensure that the applications hosted on the

cloud meet their SLAs, while also keeping energy costs minimized.

 The authors of [35] present an application service provider based resource

management technique. The proposed technique formulates the resource management

problem as a mixed integer linear optimization problem where the objective is to find the

number of VMs that should be allocated to an application to fulfil its SLA, while

minimizing the financial cost of provisioning the resources. In addition, the authors also

present reactive and proactive heuristic policies to approximate the optimal solution.

2.2.2 Resource Management on Clouds for Processing Workflows

Due to cloud computing becoming more prevalent, the various types of applications

and workflows executed on clouds have become more extensive. A representative set of

existing work related to resource management on clouds for processing workflows is

presented next. A workflow is usually modelled using a directed acyclic graph (DAG),

22

where each node in the graph represents a task in the workflow and the edges of the graph

represents the precedence relationships among the tasks.

 In [36], a strategy to schedule workflows in a hybrid cloud, which is a private cloud

that can request resources from a public cloud on a pay-per-use basis when required, is

described. The goal is to determine when and how many resources to request in order to

satisfy the deadline of an application while minimizing monetary costs. A Path Clustering

Heuristic algorithm is presented to find an initial schedule for the workflow that only

considers the resources in the private cloud. If the deadline of the workflow cannot be met,

the system decides what type of resources and how many resources to request from a public

cloud to ensure that the workflow can meet its deadline.

Scheduling multiple workflows, each one with their own QoS requirements, is the

focus of the research presented in [37]. The authors present a scheduling strategy called

Multiple QoS Constrained Scheduling Strategy of Multi-Workflows that considers the

overall performance of the system (i.e., QoS requirements of multiple users) and not just

the completion time of a single workflow.

In [38], a Particle Swarm Optimization (PSO) methodology is used to develop a

meta-heuristic based scheduling algorithm to minimize the total monetary cost of executing

a workflow application in the cloud. PSO is a stochastic optimization technique that is

frequently used in computational intelligence and can be used to solve combinatorial

optimization problems. The algorithm attempts to minimize both the execution cost as well

as the data transmission (communication) cost of executing workflows in the cloud.

A technique for scheduling workflows on clouds with user-defined QoS

requirements such as financial budget constraints and reliability constraints is presented in

23

[39]. Users submitting the workflow can specify a QoS parameter that they prefer to be

optimized, such as make span minimization or monetary cost minimization. Similar to [38],

the proposed technique uses a set-based PSO approach where the objective of the technique

is to schedule workflows from various users such that as many QoS requirements can be

satisfied as possible.

 The authors of [40] present a multi-objective optimization framework for workflow

task allocation and scheduling on public clouds. The framework uses an extensible cost

model and heuristic algorithms to determine the number of virtual machines that should be

provisioned to execute a workflow, while also considering QoS parameters such as

workflow runtime, communication overhead, and overall financial cost. Both single and

multi-objective evolutionary algorithms are used by the framework to perform the resource

allocation and scheduling of the workflows.

A heuristic based workflow scheduling algorithm for service-oriented grids, called

Partial Critical Paths (PCP), is presented in [41]. The objective of PCP is to minimize the

financial cost of provisioning resources for workflow execution, while meeting a user-

defined deadline. In [42], the authors adapt the PCP algorithm for a cloud environment and

propose two workflow scheduling algorithms based on PCP: a single-phase algorithm

called IaaS Cloud Partial Critical Paths (IC-PCP) and a two-phase algorithm called IaaS

Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2). A simulation-based

performance evaluation of the algorithms is conducted on a closed system using a batch of

synthetic workflows that are based on real scientific applications. The simulation results

show that both algorithms are effective, but IC-PCP performs better than IC-PCPD2 in

most cases.

24

2.3 MapReduce

As mentioned in Section 1.2, a popular multi-stage application that this thesis

considers is MapReduce. Modern large-scale processing systems should be capable of

processing large volumes of data (often referred to as Big Data) that are prevalent in

today’s world. The abundance of data in today’s world is a result of the numerous sources

of data available, such as:

 scientific data (e.g., health-related data, weather data, and satellite data)

 industrial/organizational data (e.g., financial data, manufacturing data, and retail

data)

 business intelligence data (e.g., sales data, customer behaviour data, and product

data)

 system data (e.g., system logs, network logs, and status files)

In addition, with the advent of the Internet of Things paradigm leading to a popularity of

smart facilities and cyber-physical systems such as sensor-equipped bridges, smart

buildings, and industrial machinery [43], a new source of Big Data (from sensors, for

example) has emerged. Analyzing this Big Data for making meaningful decisions and

obtaining knowledge and insights is important in various types of environments, including

enterprise and scientific applications as well as cyber-physical systems.

MapReduce [12] is a programming model, originally proposed by Google, whose

purpose is to simplify performing massively distributed parallel processing so that very

large and complex data sets can be processed and analyzed efficiently. When dealing with

a large volume of data, it is necessary to distribute the computation among multiple

25

machines to enable parallel processing and reduce the overall processing time. However,

there are a number of challenges associated with using parallelism, including how to

perform communication and coordination among the different machines, and how to

handle and recover from errors and machine failures. In addition, developing and

debugging/testing an application that runs on a distributed system is more difficult and

complex than developing an application that runs on a single machine. One of the benefits

of MapReduce is that it provides an abstraction to hide the complex details and issues of

parallelization.

Various companies and institutions use MapReduce, typically in conjunction with

cloud computing, for large scale data processing (e.g., sorting, indexing, and grouping) and

analyzing very large and complex data sets (i.e., facilitating Big Data analytics)

[44][45][46]. This includes data mining applications (e.g., web crawling), artificial

intelligence applications (e.g., machine learning), and scientific applications (e.g.,

bioinformatics). For example, Google has previously used MapReduce applications to

analyze web documents to generate search indices for its web search engine, and Facebook

uses MapReduce to analyze its users’ activities and the success of advertisements on its

website [47]. Thus, it is common for companies and institutions to submit MapReduce jobs

to a private cluster or a cloud for processing. In both cases, effective resource management

techniques are required to handle the matchmaking and scheduling of the submitted

MapReduce jobs as described in more detail in Section 2.5.

 A MapReduce job is characterized by multiple phases of execution, and in the map

phase and the reduce phase there are multiple tasks, as illustrated in Figure 2.1. Many

computations are expressed using the MapReduce programming model. A classic example

26

is the URL access frequency application that processes the logs of web servers to count the

number of distinct URL accesses [12]. This application is a variation of the well-known

WordCount MapReduce application [12]. The input that needs to be processed is the logs

of the Web server. The first step is to split the input data into blocks with a default size of

64 MB, which are called splits (refer to Figure 2.1). Next, in the map phase, map tasks,

which execute a user-defined map function, are created to process each of the splits. The

map tasks are independent from each other and can be executed in parallel, possibly on

different resources. In the URL access frequency application, the map function reads each

URL and generates a set of intermediate key/value pairs in the form: {URL, 1}. This

key/value pair indicates that one instance of a URL is found. Note that the intermediate

dataset generated by the map phase can contain multiple duplicate key/value pairs (e.g.,

{www.carleton.ca, 1} can appear multiple times). In the shuffle phase, the intermediary

key/value pairs with the same key are grouped together as shown in Figure 2.1 and then

passed on to the reduce phase.

During the reduce phase, reduce tasks, which execute a user-defined reduce

function, process the sorted intermediate key/value pairs to generate the final output, which

is typically an aggregate or summary of the original input data that is smaller and more

meaningful. Similar to the map tasks, the reduce tasks are independent from one another

and can be executed in parallel, possibly on different resources. Note that reduce tasks

cannot complete their execution until all the map tasks have finished executing. In the URL

access frequency application, the reduce function sums all the values with the same key to

emit the output dataset: {URL, total count}. Therefore, the final output will be a list of

URLs and total number of times each URL is accessed.

27

Input
Data

Mapper

Mapper

Mapper

Split 0

Split 1

Split 2

Reducer

Reducer

Reducer

Part 0

Part 1

Part 2

Output
Data

Map Phase Shuffle Phase Reduce Phase

Map Tasks Reduce Tasks

Figure 2.1. Example of a MapReduce job [48].

2.4 Apache Hadoop

Apache Hadoop [25][48] is an open-source software framework (written in Java)

that implements the MapReduce programming model (described in the previous section).

Hadoop is designed for executing data-intensive distributed computing applications (i.e.,

Big Data applications), including web analytics applications, scientific applications,

applications to perform data mining in social networks, and applications to process and

analyze enterprise data [44][49]. The applications that are most suitable for Hadoop are

those that require processing data that can be complex, unstructured, and be in a variety of

different formats (e.g., XML, JSON, CSV, text, and more) in a parallel (distributed)

manner. The Hadoop software framework contains three main sub-frameworks: Hadoop

Common, Hadoop Distributed File System (HDFS), and Hadoop MapReduce. Hadoop

Common provides utility functions including remote procedure call facilities and object

serialization libraries that are leveraged by the HDFS and MapReduce frameworks. HDFS

28

is a distributed file system that is based on the Google File System [50], a distributed file

system created by Google. HDFS provides redundant storage for the input data required by

Hadoop jobs, and it also stores the intermediary data and output data generated by Hadoop

jobs. Lastly Hadoop MapReduce is an implementation of Google’s MapReduce

programming model [12].

 A set of machines (where each machine is called a node) that runs Hadoop is

referred to as a Hadoop cluster (see Figure 2.2). A typical Hadoop cluster comprises a

single master node and one or more slave nodes. The master node is responsible for

maintaining the HDFS and assigning MapReduce tasks to slave nodes for execution. The

slave nodes perform work (e.g., read/write to HDFS or execute MapReduce tasks) assigned

by the master node. In the original Hadoop MapReduce architecture (MRv1) [51], the

master node executes two processes (which are called Hadoop daemons): NameNode and

JobTracker. Each slave node also executes two Hadoop daemons: DataNode and

TaskTracker. Note that a discussion on the second version of the Hadoop MapReduce

architecture (MRv2) is provided in Section 2.4.1.

Client

JobTracker

NameNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

Master node

Slave nodes

HDFS

MapReduce

Figure 2.2. Example of a Hadoop cluster using MRv1 [51].

29

The NameNode and DataNodes are the Hadoop daemons in charge of managing

HDFS. Each file that is written to HDFS is split into blocks of 64 MB (default value) and

each block is stored on the storage device of the node where a DataNode is running. In

addition, each block is replicated three times (default value) and stored on different

DataNodes to provide data redundancy and availability. It is the job of NameNode to keep

track of which DataNode stores the blocks of each file in the system (which is called the

metadata of the HDFS). Another important function of NameNode is to direct DataNodes

to perform HDFS block operations (creation, deletion, and replication). DataNodes keep

in constant contact with NameNode to receive I/O instructions, and they also handle read

and write requests from HDFS clients.

An example illustrating how HDFS works is presented in Figure 2.3. Note that in

this example, the block replication factor is two. As shown in the illustration, NameNode

maintains the metadata of HDFS, and the file named ‘file.txt’ is composed of two blocks:

Block 1A and Block 1B, which are each replicated two times. Block 1A is stored on

DataNode 1 and DataNode 2, and Block 1B is stored on DataNode 1 and DataNode 3.

JobTracker provides the connection between the applications that are submitted by

users and the Hadoop cluster, and it has the following responsibilities: initialize jobs and

prepare them for execution, determine when the map and reduce tasks of jobs should be

executed and which TaskTrackers should execute them (i.e., perform matchmaking and

scheduling), as well as monitor all the tasks that are currently running. JobTracker is also

responsible for managing TaskTrackers, which operate as the JobTracker’s slaves and have

the primary purpose of executing the map and reduce tasks that JobTracker assigns to them.

Each TaskTracker periodically sends polling/update messages (called heartbeats) to

30

NameNode – HDFS metadata

/users/nlim/file.txt
Block 1A

Block 1B

DataNode 1

DataNode 2

DataNode 1

DataNode 3

/users/nlim/file.txt
Block 1A

Block 1B

DataNode 1

DataNode 2

DataNode 1

DataNode 3

/users/nlim/file2.txt

Block 2A

Block 2B

Block 2C

DataNode 2

DataNode 3

.

.

.

/users/nlim/file2.txt

Block 2A

Block 2B

Block 2C

DataNode 2

DataNode 3

.

.

.

Filename File Blocks Location of Blocks

NameNode – HDFS metadata

/users/nlim/file.txt
Block 1A

Block 1B

DataNode 1

DataNode 2

DataNode 1

DataNode 3

/users/nlim/file2.txt

Block 2A

Block 2B

Block 2C

DataNode 2

DataNode 3

.

.

.

Filename File Blocks Location of Blocks

DataNode 2

1A 2A ...

DataNode 2

1A 2A ...

DataNode 1

1A 1B ...

DataNode 1

1A 1B ...

DataNode 3

1B 2A ...

DataNode 3

1B 2A

Figure 2.3. Example of HDFS.

JobTracker to update its progress on the tasks it is currently executing (if any) as well as to

receive new tasks to execute. If JobTracker does not receive a heartbeat message from a

TaskTracker within one minute (default value), JobTracker assumes that the TaskTracker

has failed and remaps all the tasks that are assigned to the failed TaskTracker to other

available TaskTrackers in the cluster. Each TaskTracker in the Hadoop cluster has a map

task capacity (or number of map task slots) and a reduce task capacity (or number of reduce

task slots), which specify the maximum number of map tasks and maximum number of

reduce tasks, respectively, that the TaskTracker can execute in parallel at any point in time.

An illustration of the connection between JobTracker and TaskTrackers is shown

in Figure 2.4. As shown in the figure, JobTracker maintains a list of active jobs and

completed jobs. There are two active jobs in the example system, and JobTracker has

assigned TaskTracker1 two map tasks to execute: Map Task 1 from Job B (Map B1) and

Map Task 2 from Job C (Map C2).

31

JobTracker

Job B

Map 1

Map 2

Job C

...

 Active Jobs Tasks

TaskTracker 2

...

TaskTracker 2

...

TaskTracker 1

Map
B1

...

TaskTracker 1

Map
B1

...

TaskTracker 3

...

TaskTracker 3

...

Reduce 1
...

Map 1

Map 2
...

Reduce 1
...

Completed
Jobs

Job A

Completed
Jobs

Job A

Map
C2

Map
B2

Reduce
B1

Map
C1

Reduce
C1

...

Figure 2.4. Example of Hadoop MapReduce architecture v1.

2.4.1 Hadoop MapReduce Architecture Version 2 (MRv2)

The second version of the Hadoop MapReduce architecture (MRv2) is named Yet

Another Resource Negotiator [52]. The major change in MRv2 from MRv1 is the

introduction of a new hierarchical approach that replaces JobTracker and divides its

functionality into two main responsibilities: allocation of system resources and job

scheduling/monitoring. More specifically, JobTracker and TaskTracker from MRv1 are

replaced by three new components (or Hadoop daemons) in MRv2: ResourceManager,

NodeManager, and ApplicationMaster. Thus, a Hadoop cluster based on MRv2 has a single

ResourceManager daemon running on the master node, a NodeManager daemon executing

on each slave node in the cluster, and an ApplicationMaster daemon for each application

running on the cluster.

The ResourceManager daemon has two main components: Scheduler and

ApplicationManager. The Scheduler allocates resources (e.g., compute, memory, and

32

bandwidth) to each of the applications running on the cluster. In MRv2, the resources that

an application requires to execute is defined based on the abstract notion of a resource

container. A resource container defines an application’s resource requirements that can

include the following: number of CPU cores, memory size, disk size, and network

bandwidth. The ApplicationManager is responsible for accepting job submissions from

users, obtaining the resource container for starting the ApplicationMaster, and restarting

the execution of ApplicationMasters after application or hardware failures. The

ApplicationMaster is the Hadoop daemon responsible for negotiating resource containers

from the Scheduler for executing the client’s application. In addition, ApplicationMasters

also work in conjunction with the NodeManagers (of the slave nodes) to execute and

monitor the status/progress of the applications, as well as to track and monitor the status

and usage of the resource containers. Overall, the changes made in MRv2 improve Hadoop

by enhancing reliability and scalability, and enabling greater resource sharing through

multi-tenancy.

2.5 Resource Management Techniques for Processing MapReduce Jobs

This section presents a representative set of work related to resource management

for MapReduce jobs that have a variety of different objectives, including reducing job

completion times, reducing data transmission between resources to minimize network

traffic, handling of heterogeneous resources, sharing of resources, and managing the

energy consumption of resources. Research with similar objectives are grouped into

separate categories and discussed in the respective subsections.

33

2.5.1 Techniques to Reduce Job Completion Times

The techniques described in this section focus on scheduling MapReduce jobs to

minimize job completion times and maintaining high resource utilization.

In [53], the authors present an abstraction of the MapReduce matchmaking and

scheduling problem by formulating it as an optimization problem using linear

programming where the objective is to find a schedule that minimizes the overall

completion time of the jobs in the cluster. Since using linear programming to solve such a

problem is NP-hard [54], optimal solutions are difficult and time-consuming to compute

even for offline versions on which the details of the batch of jobs to process are known

ahead of time. As such, the authors propose algorithms with heuristics to approximate the

optimal solutions within a factor of three of the optimal value.

The authors of [55] also model the MapReduce scheduling problem as a linear

program where the objective is to minimize the overall completion time of the jobs in the

cluster. Two types of jobs are considered. The first type is data-intensive jobs which require

performing data mining and analysis of very large data sets, including system logs and

historical data. The second type are computationally-intensive jobs, which are jobs that

involve running algorithms or operations with high processing complexity, such as

computations involving floating point operations. The modelling of the linear program is

based on the traditional job shop scheduling theory. A dispatch-rule based online

scheduling policy called LPT-θ that is based on existing algorithms is proposed to

approximate the optimal solution.

A MapReduce framework called Dynamically ELastic MapReduce (DELMA) that

is capable of dynamically adjusting the cluster size (i.e., adding and removing nodes from

34

the processing of a job) on the fly is presented in [56]. The main features of DELMA

include the following: (1) ability to adjust the cluster size dynamically without having to

restart jobs already executing; (2) ability to lower completion time of jobs by adding

voluntary or unutilized nodes to the cluster; and (3) ability to replace slow or faulty nodes

while a job is being processed.

In [57], a cloud service model for MapReduce named Cura is presented. The

objective of Cura is to provide cost-effective MapReduce services in the cloud by

implementing an efficient resource allocation scheme that reduces the resource usage cost

in the cloud. The core resource management schemes that Cura provides include cost-

aware resource provisioning, VM-aware scheduling, and online virtual machine

reconfiguration.

2.5.2 Data-Locality-Aware Techniques

MapReduce applications typically process very large datasets and frequent

transmission of data from one machine in the cluster to another machine in the cluster over

the network can severely reduce system performance due to limited network bandwidth in

the cluster. Therefore, it is beneficial to use a data-locality-aware system to limit the data

transfer between nodes as much as possible. A representative set of data locality-aware

techniques are discussed next.

In [58], a scheduling algorithm for workflows comprising multiple MapReduce

jobs with precedence relationships is presented. The proposed scheduling algorithm uses a

pre-data placement strategy that reduces data transmission over the network, and it also

adopts the list scheduling algorithm, which is a priority-based scheduling algorithm. The

basic idea of the list scheduling algorithm is to assign each job in the workflow a priority

35

and schedule the job with the highest priority first. The proposed technique addresses a

number of issues including: how to group datasets, where to place them, and how many

times to replicate the datasets.

The authors of [59] present a scheduling technique that takes advantage of data

locality when scheduling map tasks. The proposed technique attempts to schedule map

tasks on nodes that already contain the input data of the respective tasks (referred to as

local map tasks) in order to prevent time-consuming data transmission over the network.

More specifically, the technique gives each node in the cluster a chance to execute any

local map task in the queue before non-local map tasks are executed. Experimental results

demonstrate that the proposed technique achieves a lower average job response time in

comparison to that achieved by a FIFO scheduling technique.

A Locality-Aware Reduce Task Scheduler (LARTS) is presented in [60], which

considers data-locality when scheduling reduce tasks. LARTS considers the size and the

location of the input data for reduce tasks when making scheduling decisions with the goal

of minimizing unnecessary network traffic, which can in turn improve system performance.

Through experimentation, the authors showed that using LARTS over the traditional

Hadoop FIFO scheduler can lead to a 7% reduction in job execution times.

2.5.3 Techniques for Handling Heterogeneous Computing Environments

This section describes resource management techniques for heterogeneous

environments where the resources may have different processing, memory, and network

capacities.

In [61], a MapReduce framework called MApReduce with adaptive Load balancing

for heterogeneous and Load imbalAnced clusters (MARLA) is presented. MARLA aims

36

to address the problems that MapReduce implementations, such as Hadoop, have in

heterogeneous and load-imbalanced computing environments. The problem with the

traditional approach used in other frameworks is that in clusters with heterogeneous

resources, nodes that have a lower performance profile may be assigned a similar workload

(i.e., equal-sized data partition to process) to those nodes that may exhibit higher

performance. MARLA alleviates this problem by using a dynamic task scheduling

mechanism that allows each node in the cluster to request tasks at its own pace.

The authors of [62] also focus on resource management for MapReduce workloads

in a heterogeneous computing environment. More specifically, a load-balancing algorithm

whose purpose is to evenly distribute the workload among nodes with different processing

speeds is presented. The algorithm is based on genetic algorithm theory, which is an

artificial intelligence-based search heuristic that solves optimization problems by

simulating how natural evolution works.

In [63], the authors propose a new approach to solving the MapReduce resource

management problem on clouds where the system is characterized by heterogeneous

resources. The objective of the proposed approach is to minimize the total financial cost of

executing MapReduce jobs on the cloud. The authors model the resource management

problem as a constrained combinatorial optimization problem and solve the problem using

an innovative constructive algorithm.

2.5.4 Resource Sharing Techniques

Resource management techniques that focus on fairly sharing the resources of a

cluster among multiple users as well as techniques that borrow unused resources from other

clusters are described in this section.

37

The Fair Scheduler and Capacity Scheduler, which are two schedulers that are

included with Hadoop, focus on fairly sharing the resources of the cluster among multiple

users. The Fair Scheduler [64] is developed by Facebook and its objective is to ensure that

each job (on average) gets an equal share of the available resources in the cluster. The idea

is to prevent many small jobs from starving the execution of a long job and vice versa. The

Fair Scheduler groups jobs into pools and each pool is assigned a minimum share of the

cluster’s resources (e.g., a minimum number of map task slots and reduce task slots). The

Capacity Scheduler [65] is developed by Yahoo and its objective is similar to the Fair

Scheduler: share a large cluster among many different independent users (or

organizations). Jobs are submitted into queues where each queue is allocated a guaranteed

capacity, which is a proportion of the total task slots of the cluster. Note that the unused

capacity of a queue can be temporarily allocated to other queues when needed. The jobs

within a queue can also be prioritized, where the jobs with a higher priority gain access to

the queue's resources first.

A technique called resource stealing, which allows currently running tasks to use

the unutilized task slots of a node, which the authors refer to as residual resources, is

presented in [66]. The idea is that when there are available task slots on a node, the system

splits the input data of a task into two or more smaller blocks of data and creates an

additional sub-task to process each block of data to make use of the unutilized task slots.

In [67], a hierarchical MapReduce framework, which supports executing

MapReduce jobs on multiple clusters, such as clusters with unused resources, is described.

A hierarchical MapReduce programming model is also proposed where computations are

expressed with three functions: Map, Reduce, and GlobalReduce. The input to the

38

GlobalReduce function comprises the output from all the reduce tasks of a job, and is

executed on only one node in the cluster. By supporting the execution of MapReduce jobs

in multiple clusters, a more effective resource sharing can be achieved.

2.5.5 Techniques for Energy Management of Resources

This section presents resource management techniques that focus on green

computing issues in the context of MapReduce jobs: minimizing the energy consumed by

a distributed system, such as a cloud or cluster, when executing MapReduce jobs.

The authors of [68] investigate techniques to improve the energy-efficiency of

running MapReduce jobs in datacentres and computational grids without severely affecting

performance. The authors study the performance and energy-efficiency trade-offs of

Hadoop using various workloads. The system activity traces that were recorded during

experiments show that MapReduce computations involve a large number of I/O operations

(e.g., reading/writing a large volume of data from/to disks), as well as network I/O

operations) leading to low CPU utilization at various points in time. Through their study,

the authors have found that careful resource allocation to match an application’s degree of

parallelism and using the well-known dynamic voltage and frequency scaling technique

can improve energy-efficiency without a large performance cost.

The focus of [69] is also on the challenge of making the execution of MapReduce

jobs more energy-efficient. The authors consider a very bursty MapReduce workload with

distinct CPU, memory, and network requirements that is executed on a heterogeneous

datacentre. An online energy minimization path algorithm called Green MapReduce

Scheduler (GEMS) for scheduling MapReduce jobs is presented. GEMS reduces energy

39

consumption while maintaining a low task response time by using sleeping policies on the

compute servers and the network switches simultaneously.

2.5.6 Techniques for Handling MapReduce Jobs with Deadlines

This section presents a representative set of work describing techniques for

processing MapReduce jobs with deadlines. MapReduce jobs with an associated deadline

for completion have recently become important for latency-sensitive applications [70] such

as those used in the context of live business intelligence, personalized advertising,

spam/fraud detection, real-time analysis of event logs, and various additional real-time data

analytics applications. Business intelligence refers to analyzing the raw data of a business

or corporation so that effective business strategies can be developed and more informed

business decisions can be made. Event log analysis involves processing event logs to find

specific patterns, filter event occurrences, and group similar event occurrences together.

Such event log analysis can be used for various types of computing systems that have event

monitors to collect and signal event occurrences, including operating systems, database

management systems, and cyber-physical systems. More generally, allowing users to

specify deadlines, allows the system to prioritize jobs and ensure that time-critical jobs are

completed on time. In some situations, it is ideal to analyze the most up-to-date data and

receive the results in a timely manner so that the best decisions can be made. Thus, it is

common for various companies and institutions to submit MapReduce jobs with deadlines

to a cluster or a cloud for processing. An important component of this thesis is on devising

effective and efficient resource management techniques for processing an open stream of

MapReduce jobs with SLAs, where each SLA is characterized by an earliest start time, an

execution time, and a deadline.

40

The authors of [71] propose a Deadline Constraint Scheduler for Hadoop to process

jobs with deadlines. A job execution cost model is devised that considers parameters such

as the execution time of map tasks, the execution time of reduce tasks, and the size of the

input data to process. This model is used to perform a schedulability test to determine if a

submitted job can be completed before its deadline given the current available resources in

the cluster. If the job cannot meet its deadlines, users have the option of changing the

deadline requirements and resubmitting the job.

In [72], the authors investigate the problem of scheduling MapReduce workloads

comprising jobs with deadlines as well as jobs without deadlines. The authors present a

scheduler that adopts a sampling-based technique called Tasks Forward Scheduling (TFS)

to predict the execution times of map tasks and reduce tasks. TFS predicts the execution

times of tasks by initially executing a few tasks and then using the actual runtimes of these

initial tasks to predict the execution times of future tasks. In addition, the proposed

scheduler also leverages a resource allocation model named Approximately Uniform

Minimum Degree of Parallelism to dynamically control the execution of each job such that

the job executes at its minimum degree of task parallelism to meet its deadline. The idea is

to prevent a single job from monopolizing all the resources in the cluster and to allow more

jobs to be executed on the cluster in parallel.

In [70] two resource allocation policies based on earliest deadline first (EDF) are

presented. The first policy is called Minimum Resource Quota Earliest Deadline First

(MinEDF), which allocates the minimum number of task slots required for completing a

job before its deadline (similar to [72] described earlier). The second policy is called

Minimum Resource Quota Earliest Deadline First with Work-Conserving Scheduling

41

(MinEDF-WC). MinEDF-WC enhances MinEDF by adding the ability to dynamically

allocate and deallocate resources (task slots) from active jobs when required. This ability

to dynamically allocate and deallocate resources allows a machine with spare resources to

share its unused resources with other jobs that need them.

A policy for dynamic provisioning of public cloud resources to schedule

MapReduce jobs with deadlines is described in [73]. Initially, jobs are executed on a local

cluster, and if required, resources from a public cloud are dynamically provisioned to meet

the job’s deadline. The authors present a resource provisioning policy that aims to

minimize the number of resources that are provisioned from the cloud since provisioning

resources from the cloud incurs a financial cost.

The authors of [74] investigate resource management algorithms for minimizing

the cost of allocating virtual machines to execute MapReduce jobs with deadlines. Two

VM provisioning strategies are proposed: (1) List and First-Fit (LFF) and (2) Deadline-

aware Tasks Packing (DTP). The LFF approach sorts the pricing policies of VMs according

to either increasing order of unit cost or decreasing order of VM performance. Each map

task is assigned to its own VM and reduce tasks are assigned to one of the VMs already

provisioned for map tasks. In the DTP approach, the idea is to assign the map tasks and

reduce tasks of jobs to execute on existing VMs as much as possible until a job cannot meet

its deadline, in which case a new VM is provisioned to execute the job.

In [75], the authors focus on the joint considerations of workload balancing and

meeting deadlines for MapReduce jobs. Scheduling algorithms are proposed that are based

on integer linear programming and solved with a linear programming solver using a

rounding approach. Moreover, a new MapReduce scheduler for processing MapReduce

42

jobs with deadlines based on bipartite graph modelling called the Bipartie Graph Modeling

MapReduce Scheduler (BGMRS) is presented in [76]. BGMRS considers nodes with

varying performance (e.g., those present in a heterogeneous cloud computing environment)

and is able to obtain the optimal solution of the scheduling problem by transforming the

problem into a well-known graph problem: minimum weighted bipartite matching.

2.6 Handling Error/Inaccuracies in User-estimated Job Execution

Times

Estimates of job runtimes provided by users are often error prone/inaccurate and

users tend to overestimate the runtimes of their jobs [16][17][18]. The error/inaccuracy in

user-estimated execution times can be detrimental to system performance. This is because

a matchmaking and scheduling algorithm makes decisions based on a user’s estimated

execution times, and thus errors/inaccuracies can diminish the quality of the resource

management decisions that are made [77][78]. A representative set of work describing

techniques for handling error associated with user estimates of job execution times is

presented next.

In [77], a middleware framework for grids that provides robustness by handling

error/inaccuracies in user-estimated job execution times is presented. The authors describe

a pre-scheduling mechanism based on overbooking, which can prevent unnecessary

rejection of jobs when the user-estimated execution times are overestimated. Overbooking

allows a small proportion of jobs to miss their deadlines, which means that even if the

schedulability analysis determines a job cannot meet its deadline, the job can still be

accepted as long as the proportion of late jobs remains lower than the overbooking

threshold. Note that other works (see [79] and [80], for example) have also used a similar

43

overbooking mechanism to handle jobs with overestimated execution times. The authors

also present a Schedule Exceptions Manager that monitors the resource schedule and

adapts the resource schedule when there are overestimated/underestimated job execution

times.

The authors of [81] present a Soft Advance Reservation (SAR) technique for grids

subjected to advance reservation requests. The SAR technique relaxes the requirement that

all advance reservation requests, which are typically characterized by an earliest start time,

an execution time, and a deadline for completion, must meet their deadlines. In addition, a

technique for handling errors associated with user-estimates of job runtimes is also

presented. The technique described adopts a history-based approach where the previous

two requests submitted by the same user is used to compute a system-generated estimated

runtime for the current request.

In [82], the authors present a technique to handle error in user-estimated job

execution times for a popular scheduling algorithm, named First-come-first-serve (FCFS)

with backfilling, used in parallel supercomputing environments. First, the algorithm

calculates a system-generated prediction of the job runtime and uses this value for

scheduling. The system-generated predicted runtime is calculated using the most recent

historical data (e.g., average runtime of the two previous submitted jobs from the user). If

the system’s prediction of the job runtime is too short, it is extended, and the job can run

until it finishes or until it reaches the user-estimated runtime, which serves as the kill-time

of the job. Using the historical data of the job runtimes at various degrees has also been

used by other researchers (see [83], [84], and [85], for example) to predict the runtime of

future requests.

44

The research presented in [86] also concerns improving scheduling algorithms

based on backfilling, specifically focusing on how to handle jobs with underestimated

execution times. Similar to [82], the improved algorithm does not abort jobs with

underestimated runtimes. Instead, the jobs can run for an extended period if it does not

cause other jobs to be delayed. If extending the job’s runtime does affect other requests in

the system, the job is aborted. Experimental results show that the improved backfilling

algorithm reduces the number of aborted requests significantly.

The research in [78] also investigates the effect of job execution time estimation

error on algorithms that depend on user-estimated job runtimes such as backfilling

algorithms and the shortest job first algorithm. The authors present techniques for adjusting

the user-estimated runtimes based on historical data of the accuracy of previous user

estimates of job runtimes. More specifically, the user-estimation accuracy (denoted R) is

defined as the ratio of the request’s actual runtime over the user estimation of the request

runtime. The objective is to generate more accurate job runtimes to allow the scheduler to

make more intelligent scheduling decisions for improving system performance. A number

of different schemes are presented for determining which kind of historical data to use to

calculate R, including a user-based scheme that uses historical data from the same user, a

project-based scheme that uses the historical data from the same project, and a combined

scheme that uses both these types of historical data.

2.7 Comparison of Thesis Research with Related Work

A wide variety of issues regarding resource management on clouds for processing

jobs with SLAs are described in the literature and were reviewed in the previous sections.

Most of the work in the literature has only addressed meeting deadlines for jobs that require

45

a single resource or handling a batch workload that comprises a fixed number of jobs

executing on the system. To the best of our knowledge, none of the related works focus on

the problem of meeting an end-to-end SLA (characterized by an earliest start time, an

execution time, and an end-to-end deadline) for multi-stage jobs that require service from

multiple resources, such as workflows and MapReduce jobs, on an open system subjected

to a stream of job arrivals. This is the focus of attention for this thesis.

With respect to MapReduce jobs, none of the existing works have dealt with all the

aspects of the problem that this thesis concerns. The works described in Section 2.5.1 to

Section 2.5.5 do not consider jobs with deadlines, but instead focus on other aspects of

matchmaking and scheduling of MapReduce jobs. Moreover, the works described in

Section 2.5.6, which do consider MapReduce jobs with deadlines, do not consider jobs

with SLAs characterized by an earliest start time, which is important in the context of

advance reservation requests. Furthermore, the techniques described in Section 2.5.6

(except [70]) do not handle workloads comprising an open stream of job arrivals, instead a

batch workload comprising a fixed number of jobs is used. Note that the resource

management techniques described in this thesis are compared with the techniques

described in [70] (see Section 4.5). Additionally, the default schedulers that Hadoop [25]

come installed with, including the FIFO, Capacity, and Fair schedulers, do not support jobs

with deadlines. FIFO simply schedules jobs in a first-in first-out manner whereas the

Capacity and Fair schedulers (which are described in Section 2.5.4) focus on fairly sharing

the cluster’s resources among multiple users. Other third party Hadoop schedulers, such as

the adaptive scheduler [87], dynamically alter the number of resources when required,

whereas this thesis concerns systems with a fixed number of resources.

46

A key contribution of this thesis is presenting techniques to handle

error/inaccuracies in user-estimated job execution times that are submitted as part of the

SLA of the job. In particular, techniques are presented for processing MapReduce jobs with

inaccurate job execution times. None of the techniques described in Section 2.5.6, which

consider MapReduce jobs with deadlines, handle errors/inaccuracies with user-estimates

of job runtimes. On the other hand, the techniques described in Section 2.6 do consider the

handling of errors associated with user-estimated job runtimes but these techniques do not

deal with all the aspects of the problem that this research focuses on: matchmaking and

scheduling an open stream of MapReduce jobs with SLAs. Most of the work on techniques

for handling errors/inaccuracies in user-estimated job runtimes focus on scheduling

algorithms used in parallel supercomputing environments, including first-come-first-serve

with backfilling, and do not concern resource management for environments that process

MapReduce applications. Moreover, there is a wide body of research that describes

techniques for predicting the runtimes of the jobs such as those described in [83][84][85].

However, previous investigations have shown that the system predicted runtimes can still

be error prone [77]. The techniques described in this thesis can tolerate errors/inaccuracies

in user-estimated job runtimes, whether provided by the user or generated by the system,

to avoid degradation in system performance.

In summary, this thesis focuses on investigating issues in resource management on

clouds that have not been addressed in the current state of the art: handling workloads

characterized by an open stream of multi-stage jobs with SLAs and effectively handling

errors associated with user-specified execution times in such workloads.

47

Chapter 3 Resource Management Techniques for Processing a

Batch of MapReduce Jobs with SLAs

In this chapter, resource management techniques for processing a batch of

MapReduce jobs with SLAs are described. More specifically, the resource management

techniques that are presented formulate and solve the matchmaking and scheduling

problem as an optimization problem. The rest of the chapter is organized as follows. First,

the problem description and model is presented in Section 3.1. Next, Section 3.2 provides

an overview of the approach for solving the resource management problem. The focus of

Section 3.3 and Section 3.4 are on describing the formulation of the resource management

problem using optimization techniques. In Section 3.5, the experiences in implementing

the optimization models using various software packages are discussed. Section 3.6 and

Section 3.7 present and discuss the performance evaluation of the resource management

techniques. Lastly, a summary and discussion of the chapter is provided in Section 3.8.

3.1 Problem Description and Model

This section provides a model for matchmaking and scheduling MapReduce jobs

with SLAs comprising an earliest start time, an execution time, and an end-to-end deadline.

The workload comprises a set (batch) of MapReduce jobs to execute, 𝐽 =

 {𝑗𝑜𝑏 1, 𝑗𝑜𝑏 2, … , 𝑗𝑜𝑏 𝑛} where n is the number of jobs in the set. Each job j (j = 1, 2, …,

n) in the set J has the following attributes:

 A set of map tasks: 𝑇𝑗
𝑚𝑝 = {𝜏𝑗,1 , 𝜏𝑗,2, … , 𝜏𝑗, 𝑘𝑗

𝑚𝑝} where 𝑘𝑗
𝑚𝑝

denotes the number

of map tasks in job j.

48

 A set of reduce tasks: 𝑇𝑗
𝑟𝑑 = {𝜏𝑗,1 + 𝑘𝑗

𝑚𝑝 , 𝜏𝑗,2 + 𝑘𝑗
𝑚𝑝 , … , 𝜏

𝑗,𝑘𝑗
𝑟𝑑 + 𝑘𝑗

𝑚𝑝} where 𝑘𝑗
𝑟𝑑

denotes the number of reduce tasks in job j.

 An earliest start time (or release time) (𝑠𝑗), which is the earliest time at which job

j can start to execute.

 Deadline (𝑑𝑗) by which the job should be completed (i.e., soft deadline). A job

with a soft deadline is permitted to miss its deadline; however, the desired system

objective is to minimize the number of jobs that do miss their deadlines.

A set called AT is defined as the union of 𝑇𝑗
𝑚𝑝

 and 𝑇𝑗
𝑟𝑑 for all the jobs j in J (j = 1,

2, …, n): AT = ⋃ (𝑇𝑗
𝑚𝑝 ∪ 𝑇𝑗

𝑟𝑑)𝑗∈𝐽 . Thus, AT contains all the tasks of all the jobs. Each

task t (𝑡 ∈ 𝐴𝑇) is either a map task or a reduce task and is characterized by an execution

time (in seconds), 𝑒𝑡, and a resource capacity requirement (𝑞𝑡) that specifies the number of

resources a task needs to execute. A typical map and reduce task only requires executing

on one resource [48], and therefore 𝑞𝑡 is set to 1. The execution times of the map tasks

includes the time required to read the input data, and the execution times of the reduce

tasks includes the time required to exchange data (e.g., intermediate keys) between the map

phase and reduce phase.

The set of MapReduce jobs, J, is executed on a distributed/parallel computing

environment, which is represented by a set of resources, 𝑅 = {𝑟𝑒𝑠 1, 𝑟𝑒𝑠 2, … , 𝑟𝑒𝑠 𝑚}

where m is the number of resources in the system. Such an environment can represent a

private cluster, or a set of nodes acquired a priori from a cloud (e.g., Amazon EC2) for

processing the MapReduce jobs arriving on the system. Each resource r in R (r =1, 2, ...,

m) is modelled after a Hadoop TaskTracker (described in Section 2.4) where each resource

49

has a map task capacity (number of map task slots), 𝑐𝑟
𝑚𝑝

, and a reduce task capacity

(number of reduce task slots), 𝑐𝑟
𝑟𝑑. The map task and reduce task capacities specify the

maximum number of map tasks and reduce tasks, respectively, that each of the resources

can execute in parallel at any point in time.

The requirements for matchmaking and scheduling the set of jobs J on to the set of

resources R are summarized next. Each task t in AT can only be scheduled to start at or

after job j’s earliest start time, sj. Secondly, each task t in AT can only be mapped to a single

resource r where t executes on r for et time units. For a job j, all the map tasks of job j must

complete executing before the reduce tasks of job j can start executing. Furthermore, at

each point in time, the capacity limits of the resources cannot be violated (i.e., a resource

cannot be assigned to run more tasks in parallel than its capacity). The objective of the

system is to minimize the number of jobs that miss their deadlines. Note that the laxity of

a job can be used to determine how stringent the job’s deadline is, and it can be used to

help a system prioritize which jobs to execute first. A discussion on the laxity of jobs is

provided in the upcoming sub-section.

3.1.1 Laxity of Jobs

The laxity (also called slack time) of a job is the extra time that a job has for meeting

its deadline if it starts executing at its earliest start time, and it is used as an indicator for

how stringent the deadline of a job is. The laxity of a job j (denoted Lj) is calculated as

follows:

𝐿𝑗 = 𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 (3.1)

where dj is the deadline of job j, sj is the earliest start time of job j, and SETj is the sample

execution time of job j. SETj is calculated with the user-specified task execution times of

50

the job. More specifically, SETj can be calculated in one of three ways: (1) maximum job

execution time—assumes the job is executed on a system with a single resource (denoted

SETj
max), (2) minimum job execution time—assumes the job is executed at its maximum

degree of parallelism (denoted SETj
min), or (3) execution of the job when it executes at is

maximum degree of parallelism on a set of resources R with m resources (denoted SETj
R).

SETj
R is determined by mapping job j on to a set of resources that represent the resources

in R, assuming that job j is the only job in the system. The tasks of job j are mapped by

using the “ready tasks with the highest execution time first”. Tasks are considered ready

when all of their preceding tasks have completed executing and are mapped in non-

increasing order of their execution times. Each task is scheduled to start executing at its

earliest possible time on the m resources.

3.2 Overview of the Approach

The matchmaking and scheduling problem (described in the previous section) is

formulated and solved as an optimization problem using mixed integer linear programming

(MILP) [13] and constraint programming (CP) [14]. Both MILP and CP are well-known

theoretical techniques that can solve optimization problems and have been shown to be

effective in solving planning and scheduling problems, such as the traditional job shop

scheduling problem [88]. Thus, the use of MILP and CP lead to an optimal solution in the

sense that the schedule that is generated results in the number of jobs that miss their

deadlines being minimized. Both MILP and CP have the same general modelling structure:

decision variables, objective function, and constraints. The decision variables are initially

unknown and are assigned values once the problem is solved (i.e., they are the output of

the model). The objective function is a mathematical function that generates the value that

51

needs to be optimized (minimized or maximized). Lastly, the constraints are a set of

mathematical formulas that restrict the values that the decision variables can be assigned.

Solving the optimization model involves assigning values to the decision variables to

optimize the value generated by the objective function, while ensuring that none of the

constraints are violated.

MILP is a subfield of mathematical programming (also referred to as mathematical

optimization) where the model has the following characteristics: (1) some of the decision

variables must be integers and (2) the objective function and constraints are mathematically

linear [13]. The theoretical basis for MILP and mathematical optimization in general is

numerical algebra [89]. To solve MILP problems, techniques such as cutting-planes

(constraint relaxations) and Branch and Bound are used. The theoretical foundation for CP

is different than that of MILP. CP was developed by computer science researchers in the

mid-1980s by combining knowledge and techniques from artificial intelligence, logic and

graph theory, and computer programming languages [14]. Search algorithms, including

back-tracking and local search [14], are commonly used to solve CP models. The general

idea in these search algorithms is to use logical inferences to assign values to the decision

variables and then evaluate if the new values of the decision variables produce a better

output (higher value if maximizing or lower value if minimizing) for the objective function.

Unlike MILP models, CP models natively support a variety of arithmetic operators

and logical constraints such as integer division and the ‘implies’ constraint [90]. To

formulate logical constraints in a MILP model, the ‘big-M’ formulation technique [13] is

typically used. In addition, CP also defines a general set of specialized constraints, called

global constraints, that model frequently used patterns seen in optimization problems [91].

52

For example, one such constraint is the cumulative constraint, which is often used in

scheduling problems to ensure that the capacity of each resource is not violated at any point

in time. One of the limitations of CP models is that, natively, the decision variables can

only be discrete (i.e., integer or Boolean) [14], whereas MILP models can support both

discrete and continuous decision variables.

Figure 3.1 provides an illustration of the approaches that are used to solve the

matchmaking and scheduling problem. As described in Section 3.1, the input required by

the resource management model consists of a set of jobs J and a set of resources R. The

matchmaking and scheduling problem that is formulated using CP is called the CP Model

and is discussed in detail in Section 3.3. Similarly, the matchmaking and scheduling

problem that is formulated using MILP is called the MILP Model and is described in

Section 3.4. Three implementations of the MILP Model and CP Model using different

software packages are considered:

 Approach 1: the MILP Model is implemented and solved using LINGO [92]

(commercial software).

 Approach 2: the CP Model is implemented using MiniZinc/FlatZinc [93] and

solved using Gecode [94] (both open source software).

 Approach 3: the CP Model is implemented and solved using IBM ILOG CPLEX

Optimization Studio (abbreviated CPLEX) [15] (commercial software).

The output produced after solving the resource management model includes the

following: (1) the assigned resource and scheduled start time for the tasks of each job, (2)

the completion time of the batch of jobs, and (3) the number of jobs that miss their

deadlines. The measurements that are made on the system to evaluate the different

53

approaches is the processing time required by the respective CP or MILP solver to produce

the output. In general, the complexity of solving a MILP or CP problem is NP-Complete

but state-of-the art solvers can make optimizations to solve problems in polynomial time

[14]. Since commercial solvers, such as IBM CPLEX [15], are proprietary and their

algorithms are often unknown, it is difficult to theoretically define the complexity of

solving the problem. Thus, the complexity of the algorithms is evaluated empirically using

experimentation as described in Section 3.6.

APPROACH 1

MILP Model LINGO

Implements
 and Solves

Set of
Resources, R

Workload:
Set of Jobs, J

INPUT

Set of
Resources, R

Workload:
Set of Jobs, J

INPUT

APPROACHES

Executes on

Executes
on

Output Schedule
for Workload

OUTPUT

No. of Late
Jobs

Completion
Time

Output Schedule
for Workload

OUTPUT

No. of Late
Jobs

Completion
Time

Processing
Time of
Solver

MEASUREMENTS

Processing
Time of
Solver

MEASUREMENTS

APPROACH 3

CP Model IBM CPLEX
Executes on

APPROACH 2

CP Model
Minizinc and

Gecode

APPROACH 2

CP Model
Minizinc and

Gecode

Implements
 and Solves

Implements
 and Solves

Figure 3.1. Overview of approaches for solving the resource management problem using

optimization techniques.

This chapter of the thesis is motivated by the following issues. The first is how to

employ the existing theory on MILP and CP for devising efficient resource management

algorithms that can minimize the number of jobs missing their deadlines on a closed system

subjected to a batch workload comprising MapReduce jobs with deadlines. The second

issue is the development of efficient implementations of the algorithms using commercial-

54

off-the-shelf and open source software packages that produce an acceptable system

overhead accrued during the execution of the resource management algorithms.

3.3 Formulation of the CP Model

The formulation of the CP Model is presented in Table 3.1. Recall from Section 3.1

that the input required by the CP Model comprises a set of resources R and a set of jobs J.

In addition, a set AT contains all the tasks of all the jobs in J. The decision variables of the

CP Model are outlined:

 xtr: A binary variable for matchmaking, which is set to 1 if a task t is assigned to a

resource r; otherwise, xtr is set to 0. There is an xtr variable for all combinations of

task t in AT and resource r in R. Thus, the number of xtr decision variables is equal

to the product of the number of tasks in AT and the number of resources in R.

 at: An integer variable for scheduling, which specifies the assigned (or scheduled)

start time of a task t. There is an at variable for each task t in AT.

 Nj: A binary variable that is set to 1 if job j misses its deadline. Each job j in J has

an Nj variable that is initialized to 0.

Note that an integer variable is used for at because CP does not support real values as

discussed in the previous section. Although time is a continuous variable, discrete time

values can be considered by changing the unit of time. For example, if the execution of a

task takes 3.8 minutes, the time can be converted into an integer value by changing the unit

of time to seconds (i.e., 228 seconds). In some cases, if the lengths of times are very

different (e.g., 0.8 sec versus 1000 sec), it may not be ideal to change the unit of time

because the converted values can be quite large: 0.8 sec becomes 800 ms and 1000 sec

becomes 100000 ms. In this case, it may be more appropriate to round the non-discrete

55

time values to the nearest higher integer. For instance, the 0.8 sec can be rounded up to 1

sec.

Table 3.1. CP Model.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑁𝑗

𝑗∈𝐽

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

∑ 𝑥𝑡𝑟

𝑟∈𝑅

= 1 ∀ 𝑡 ∈ 𝐴𝑇 (1a)

(𝑎𝑡𝑚𝑝 ≥ 𝑠𝑗 ∀𝑡𝑚𝑝 ∈ 𝑇𝑗
𝑚𝑝

) ∀ 𝑗 ∈ 𝐽 (2a)

(𝑎𝑡𝑟𝑑 ≥ 𝑚𝑎𝑥
𝑡𝑚𝑝∈𝑇

𝑗
𝑚𝑝

 (𝑎𝑡𝑚𝑝 + 𝑒𝑡𝑚𝑝) ∀𝑡𝑟𝑑 ∈ 𝑇𝑗
𝑟𝑑) ∀𝑗 ∈ 𝐽 (3a)

(𝑚𝑎𝑥
𝑡𝑟𝑑∈𝑇𝑗

𝑟𝑑
 (𝑎𝑡𝑟𝑑 + 𝑒𝑡𝑟𝑑) > 𝑑𝑗 ⟹ 𝑁𝑗 = 1) ∀𝑗 ∈ 𝐽 (4a)

(
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 ({𝑎𝑡|𝑥𝑡𝑟 = 1} ∀𝑡 ∈ 𝑇𝑚𝑝, {𝑒𝑡|𝑥𝑡𝑟 = 1} ∀𝑡 ∈ 𝑇𝑚𝑝,

 {𝑞𝑡|𝑥𝑡𝑟 = 1} ∀𝑡 ∈ 𝑇𝑚𝑝, 𝑐𝑟
𝑚𝑝)

) ∀𝑟 ∈ 𝑅

where 𝑇𝑚𝑝 = ⋃ (𝑇𝑗
𝑚𝑝)𝑗∈𝐽

(5a)

(
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 ({𝑎𝑡|𝑥𝑡𝑟 = 1} ∀𝑡 ∈ 𝑇𝑟𝑑, {𝑒𝑡|𝑥𝑡𝑟 = 1} ∀𝑡 ∈ 𝑇𝑟𝑑,

 {𝑞𝑡|𝑥𝑡𝑟 = 1} ∀𝑡 ∈ 𝑇𝑟𝑑, 𝑐𝑟
𝑟𝑑)

) ∀𝑟 ∈ 𝑅

where 𝑇𝑟𝑑 = ⋃ (𝑇𝑗
𝑟𝑑)𝑗∈𝐽

(6a)

(𝑥𝑡𝑟 ∈ {0, 1} ∀ 𝑡 ∈ 𝐴𝑇) ∀𝑟 ∈ 𝑅 (7a)

𝑁𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 (8a)

𝑎𝑡 ∈ ℤ ∀ 𝑡 ∈ 𝐴𝑇 (9a)

Table 3.1 shows that the objective function of the CP Model states that the number

of late jobs should be minimized. This is accomplished by minimizing the sum of all the

Nj variables. Recall that Nj is set to 1 if a job j misses its deadline. A description of the

constraints of the CP Model is provided next. Constraint (1a) states that each task t in AT

can only be assigned to a single resource. This is accomplished by summing all the xtr

56

variables of a given task t and asserting that the sum is equal to 1. Ensuring that the map

tasks for each job j in J (stored in set Tj
mp) has an assigned (or scheduled) start time (at)

that is at or after the job j’s earliest start time (sj) is captured by constraint (2a). Constraint

(3a) enforces that the reduce tasks for each job j in J (stored in set Tj
rd) are scheduled to

start after all the map tasks of the respective job j are finished executing. The time at which

all the map tasks finish executing is equal to the completion time of the latest finishing map

task (LFMT). To find the LFMT, constraint (3a) iterates through all the map tasks of a

given job j (stored in Tj
mp) and uses the max function to find the task with the highest

completion time, where the completion time of a task t is equal to the sum of at and t’s

execution time (et). Note that the max function returns the maximum value from a given

set of values.

Ensuring that the Nj for all the jobs that miss their deadlines is set to 1 is the purpose

of constraint (4a). A job j misses its deadline (dj) if the completion time of the latest

finishing reduce task (LFRT) exceeds dj. The completion time of the LFRT is calculated

in a similar manner to how the completion time of the LFMT is calculated. The difference

is that the job j’s reduce tasks (stored in Tj
rd) are passed to the max function instead of job

j’s map tasks. Note that the CP Model makes use of the logical operator, implies (=>) in

constraint (4a). The next two constraints (5a) and (6a) are the resource capacity constraints

and impose that the map and reduce task capacities of each resource in R are not violated

at any point in time. These constraints are formulated using the CP global constraint

function, cumulative [91]. For each point in time, the cumulative function sums up the

number of executing tasks at the given time point and ensures that this number does not

exceed the resource capacity limit. Four parameters are required by the cumulative

57

constraint: a set of scheduled start times of the tasks, a set of execution times of the tasks,

a set of the resource requirements of the tasks, and the capacity of the resource. There are

two cumulative constraints for each resource r in R: one for resource r’s map task slots and

one for resource r’s reduce task slots. For a particular constraint, only the tasks that are

assigned to that resource (i.e., xtr = 1) are included as input for the constraint. Lastly, the

remaining constraints (7a) to (9a) define the domain of the decision variables, which are

the valid values that the decision variables can be assigned.

Complexity of the CP Model: The number of decision variables and the number of

constraints in the CP Model are directly proportional to the number of jobs, number of

tasks, and number of resources in the input sets J, AT, and R, respectively. The number of

decision variables was discussed earlier and the number of constraints is discussed next.

For each task t in AT, there is a constraint (1a) and a constraint (9a). Furthermore, for each

map task of each job in J, there is a constraint (2a), and for each reduce task of each job in

J, there is a constraint (3a). There is also a constraint (4a) and a constraint (8a) for each job

in J. Moreover, for each resource in R, there is a constraint (5a) and a constraint (6a). Lastly,

the number of constraint (7a) in the CP Model is equal to the product of the number of

resources in R and the number of tasks in AT. In the experiments performed (refer to

Section 3.7), the CP Model was observed to give rise to a reasonable memory requirement

and CPU time requirement.

3.4 Formulation of the MILP Model

 The MILP Model is presented in Table 3.2, and it uses a time-indexed formulation

[95], which is a commonly used model for formulating scheduling problems using discrete

time (i.e., integer values for time). Recall from the previous section that although time is a

58

continuous variable, discrete time values can be used by changing the unit of time or by

rounding the values. The discrete time values are contained in a set I called the time range.

Similar to the CP Model, the input required by the MILP Model is a set of resources (R)

on which to execute the set of jobs (J), and there is a set AT that contains all the tasks of

all the jobs in J. The MILP Model uses the following decision variables:

 xtri: A binary matchmaking and scheduling variable that is 1 if a task t is assigned

to start executing on a resource r at time i; otherwise, xtri is 0. There is an xtri

variable for each combination of tasks t in AT, resource r in R, and times i in I.

 Nj: A binary variable that denotes if a job misses its deadline. Nj is set to 1 if job

j misses its deadline; otherwise Nj is set to 0. There is an Nj variable for each job

j in J, and Nj is initially set to 0 for all the jobs.

The objective function of the MILP Model is identical to that of the CP Model:

minimize the number of jobs that miss their deadlines. Furthermore, the constraints of the

MILP Model have the same functionality as that of the CP Model (shown in Table 3.1);

however, the MILP Model’s constraints are expressed differently. This is because the

MILP Model uses a single decision variable for matchmaking and scheduling (xtri),

whereas the CP Model defines a separate decision variable for matchmaking (xtr) and for

scheduling (at). In addition, the CP Model leverages CP’s global constraints and native

support for mathematical operators such as the ‘implies’ operator (⟹). A walkthrough of

the MILP Model’s constraints is provided next.

Constraint (1b) specifies that each task t in AT is assigned to a single resource only.

Similar to constraint (1a), this is accomplished by summing all the xtri variables for each

task t and ensuring that the sum is equal to 1. Guaranteeing that the scheduled start time of

59

all the map tasks of each job j in J is after job j’s earliest start time (sj) is captured by

constraint (2b). Constraint (2b) iterates through all the map tasks of each job j in J (stored

in Tj
mp) and finds the xtri variable for the task that is set to 1. Recall that constraint (1b)

ensures that each task t has only one xtri variable equal to 1. Thus, the term (i | xtri = 1)

identifies the scheduled start time of task t on resource r, which is at time i. Constraint (3b)

enforces that the reduce tasks of all the jobs are scheduled to start only after all the job’s

map tasks are completed. This is accomplished by iterating through all the reduce tasks of

each job j (stored in Tj
rd) and ensuring that the start time of the reduce task is at or after the

completion time of the latest finishing map task (LFMT) of job j. The completion time of

the LFMT is calculated using the max function as in the case of constraint (3a), discussed

in the previous section.

Constraint (4b) states that Nj, which is initially set to 0, should be set to 1 if job j

misses its deadline. A job j misses its deadline if the completion time of the latest finishing

reduce task (LFRT) of job j is after its deadline (dj). The completion time of the LFRT is

calculated using the max function, as described in the previous section. To ensure that Nj is

set to 1 if job j misses its deadline, the left-hand side of the constraint is set to the product

of Nj and dj, and it is asserted to be greater than or equal to the right-hand side of the

constraint, which is set to the completion time of the LFRT minus dj (see Constraint (4b)

in Table 3.2). For example, given a scenario where a job j has dj = 30 sec, and job j’s

completion time is 35 sec, which means the job missed its deadline. In this case, the right-

hand side of the constraint evaluates to 5 sec and the left-hand side of the constraint

evaluates to 0 (since Nj is initially set to 0). To satisfy constraint (4b) (i.e., make the left-

hand side of the constraint greater than or equal to the right-hand side), Nj must be changed

60

to 1. This in turn makes the left-hand side of the constraint evaluate to 30, and the constraint

will be satisfied since 30 is greater than 5.

Table 3.2. MILP Model.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑁𝑗

𝑗∈𝐽

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

(∑ ∑ 𝑥𝑡𝑟𝑖 = 1

𝑟∈𝑅𝑖∈𝐼

) ∀ 𝑡 ∈ 𝐴𝑇 (1b)

([(𝑖| 𝑥𝑡𝑟𝑖 = 1) ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼 ≥ 𝑠𝑗] ∀𝑡 ∈ 𝑇𝑗
𝑚𝑝) ∀𝑗 ∈ 𝐽 (2b)

([

(𝑖| 𝑥𝑡𝑟𝑖 = 1) ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼 ≥

𝑚𝑎𝑥
𝑡𝑚𝑝∈𝑇𝑗

𝑚𝑝
((𝑖| 𝑥𝑡𝑚𝑝𝑟𝑖 = 1) ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼 + 𝑒𝑡𝑚𝑝)] ∀𝑡 ∈ 𝑇𝑗

𝑟𝑑) ∀𝑗 ∈ 𝐽 (3b)

(𝑁𝑗𝑑𝑗 ≥ 𝑚𝑎𝑥
𝑡∈𝑇𝑗

𝑟𝑑
 ((𝑖| 𝑥𝑡𝑟𝑖 = 1) ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼 + 𝑒𝑡) − 𝑑𝑗) ∀𝑗 ∈ 𝐽 (4b)

∑ ∑ 𝑥𝑡𝑟𝑖′𝑞𝑡 ≤ 𝑐𝑟
𝑚𝑝

𝑖′∈𝐼𝑡𝑟𝑖
∗𝑡∈𝑇𝑚𝑝

∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼

where 𝐼∗
𝑡𝑟𝑖 = {𝑖′|𝑖 − 𝑒𝑡 < 𝑖′ ≤ 𝑖},

𝑇𝑚𝑝 = ⋃ (𝑇𝑗
𝑚𝑝

)𝑗∈𝐽
(5b)

∑ ∑ 𝑥𝑡𝑟𝑖′𝑞𝑡 ≤ 𝑐𝑟
𝑟𝑑

𝑖′∈𝐼𝑡𝑟𝑖
∗𝑡∈𝑇𝑟𝑑

 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼

where 𝐼∗
𝑡𝑟𝑖 = {𝑖′|𝑖 − 𝑒𝑡 < 𝑖′ ≤ 𝑖},

𝑇𝑟𝑑 = ⋃ (𝑇𝑗
𝑟𝑑)𝑗∈𝐽

(6b)

𝑥𝑡𝑟𝑖 ∈ {0, 1} ∀ 𝑡 ∈ 𝐴𝑇, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼 (7b)

𝑁𝑗 ∈ {0, 1} ∀ 𝑗 ∈ 𝐽 (8b)

𝑖 ∈ ℤ (9b)

Ensuring that the map and reduce task capacities of each resource are not violated

at any point in time is captured by constraints (5b) and (6b), respectively. Constraints (5b)

and (6b) use an integer set 𝐼∗
𝑡𝑟𝑖 that is defined to contain the scheduled start time of task

t, if at time i, t is still executing on resource r. The purpose of 𝐼∗
𝑡𝑟𝑖 is to ensure that only

61

tasks still executing at time i are included in the calculations to determine the number of

tasks that are executing on a resource at time i. The total number of tasks executing on a

resource r, at any point in time, must not exceed the capacity of the resource. As shown in

constraints (5b) and (6b) in Table 3.2, 𝐼∗
𝑡𝑟𝑖 is a set of integers defined as follows: {𝑖′| 𝑖 −

𝑒𝑡 < 𝑖′ ≤ 𝑖} where 𝑖′ represents the values in the set 𝐼∗
𝑡𝑟𝑖. The following sample task t1 is

used to explain the use of 𝐼∗
𝑡𝑟𝑖: task t1 has an execution time et1 of 5 sec, and the decision

variable xtri = 1 has the following values for its indices: t is t1, r is r1, and i is 23 sec. This

means that task t1 is assigned to start executing on resource r1 at time 23 sec. Given the

values for t1 described and the current time of interest is 25 sec, the set 𝐼∗
𝑡𝑟𝑖 with the

indices t, r, and i equal to t1, r1, 25, respectively (i.e., 𝐼∗
𝑡1,𝑟1,25) has the following values

{21, 22, 23, 24, 25}. As can be observed, the set of numbers 𝐼∗
𝑡1,𝑟1,25 does contain the

scheduled start time of t1, which is at time 23 sec because at time 25 sec, task t1 is still

executing on r1. Conversely, if the current time of interest is set to 30 sec, the set

𝐼∗
𝑡1,𝑟1,30 = {26, 27, 28, 29, 30} does not contain the scheduled start time of task t1 (23 sec)

because by that time task t1 has already finished executing. Lastly, constraints (7b) to (9b)

specify the valid domain of the decision variables, which restrict the values that the

respective decision variables can have.

3.4.1 Comparison of the MILP Model and the CP Model

Overall, it is observed that the constraints in the CP Model (refer to Table 3.1) are

expressed in a more intuitive and simple manner. Expressing the constraints using MILP,

as shown in Table 3.2, is more complex. For example, in the formulation of the CP Model,

constraint (4a) simply uses the logical operator ‘implies” (⟹) to set Nj to 1 if job j misses

its deadline. Furthermore, to formulate constraint (5a) and (6a), the CP Model uses the

62

global constraint, cumulative [91]. Conversely, the formulation of the corresponding MILP

Model’s constraints: (4b), (5b), and (6b) requires using more complex mathematical

formulas that are not as intuitive.

The fact that the MILP Model has a single decision variable for matchmaking and

scheduling (xtri) also makes the expression of the constraints that use the assigned (or

scheduled) start time of a task more complicated (e.g., see constraints (2b), (3b), and (4b)).

Conversely, the CP Model defines a decision variable for matchmaking (xtr) and another

decision variable for scheduling (at). This simplifies the formulation of the CP Model’s

corresponding constraints: (2a), (3a), and (4a), which can directly reference the scheduled

start time of a given task t using at.

3.5 Design and Implementation Experience

 As outlined in Section 3.2, three approaches are used to implement the CP Model

and MILP Model. This section presents the experience in implementing the CP Model and

MILP Model using the various software packages. Overall, it is determined that all three

software packages have an associated learning curve period; however, configuring,

implementing, and executing the models using LINGO and IBM CPLEX are easier

compared to using MiniZinc/Gecode because both LINGO and CPLEX provide a feature-

rich integrated development environment (IDE), whereas MiniZinc/Gecode only provide

a command-line interface.

3.5.1 Approach 1: MILP Model Implemented Using LINGO

LINGO is a tool used to build, model, and solve optimization problems (through

mathematical programs) developed by LINDO Systems Inc. [92]. LINGO provides a built-

in algebraic modeling language for expressing optimization models and a powerful and

63

efficient solving engine capable of solving a range of mathematical optimization problems,

including linear, non-linear, and integer problems.

An important feature in the implementation of the MILP Model using LINGO is

captured in how constraint (4b) is implemented. LINGO provides an If-Then-Else flow

of control construct, which performs a similar role to the if-else statements used in

general programming languages such as Java and C. The If-Then-Else construct could

have been used to simplify the implementation of constraint (4b) whose purpose is to set

the decision variable Nj to 1 if the job j misses its deadline; however, it was determined that

using the If-Then-Else construct to implement constraint (4b) changed the program from

a mixed integer linear program (MILP) into a mixed integer non-linear program (MINLP).

MINLPs are generally more complex and require more time to solve compared to MILPs

[92], and this leads to a longer time before a solution is found. Thus, the use of the If-

Then-Else construct is avoided in the implementation of the MILP Model. Refer to

Appendix A.I for a more detailed discussion of implementing the MILP Model using

LINGO.

3.5.2 Approach 2: CP Model Implemented Using MiniZinc and Gecode

In Approach 2, the CP Model is implemented with MiniZinc 1.6 [93][96], which is

an open-source CP modeling language that is designed to efficiently model and express

constraint programming problems. To solve the MiniZinc model, it is first converted to a

FlatZinc [93] model. FlatZinc is a low-level language that is designed to be easily translated

to a form which CP solving engines can use. One such solving engine that supports solving

FlatZinc models is Gecode 3.7.3 (short for Generic Constraint Development Environment)

[94]. Gecode is an open-source tool implemented in C++ for solving CP problems.

64

A novelty of the implementation of the CP Model using MiniZinc is the devising

of a modified cumulative constraint for implementing constraints (5a) and (6a). The

original cumulative constraint provided by MiniZinc [93] cannot be used because it is not

able to handle the two different task types present in MapReduce jobs: map tasks and

reduce tasks. Thus, a modified cumulative constraint, called mr_cumulative, is devised to

ensure that map tasks and reduce tasks are only scheduled on the map task slots and reduce

task slots of the resources, respectively, and to ensure that the capacities of the resources

are not violated at any point in time. The required parameters for the mr_cumulative

constraint are presented:

predicate mr_cumulative(array[int] of var int: startTime,
 array[int] of int: execTime,

 array[int] of int: resourceReq,
 array[int] of int: resourceCapacity,
 array[int, int] of var int: x,
 array[int] of int: type,
 int: taskType)

The first four parameters: startTime, execTime, resourceReq, and resourceCapacity are

arrays that contain the start time of the tasks, the execution time of the tasks, the resource

requirement of the tasks, and the capacity of the resources, respectively. These four

parameters are the original parameters in the cumulative function provided by MiniZinc.

The new parameters added to the mr_cumulative constraint include: a matchmaking

variable x (recall Section 3.3), a type attribute of the tasks that indicates whether the task

is a map task (type = 0) or a reduce task (type = 1), and a variable taskType that indicates

if the constraint should be computed for map tasks (taskType = 0) or for reduce tasks

(taskType = 1). Another change made in mr_cumulative is that it ensures the resource

capacities are not violated for all the resources in R within the function, which means that

mr_cumulative only needs to be invoked once. Conversely, the cumulative constraint

65

provided by MiniZinc only checks a single resource within the function, and thus needs to

be invoked once for each resource.

A code snippet of the mr_cumulative constraint is shown:

forall (r in Resources) (
 forall(i in Times) (
 resourceCapacity[r] >=
 sum(t in Tasks where type[t] == taskType) (
 x[t,r]*resourceReq[t] *
 bool2int(startTime[t] <= i /\ i < startTime[t] +
 execTime[t]))
)
);

The mr_cumulative constraint iterates through all the resources in the Resources set, and

for each resource it ensures that at each time point in the Times set the capacity of the

resource is equal to or exceeds the number of tasks that are running at that point in time.

Note that the values of the integers in the Times set range from the lower bound of the task

start times to the upper bound of the task completion times. The matchmaking variable, x,

is used to ensure that only tasks mapped to the resource of interest are included in the sum.

Recall that xtr is 1 if task t is assigned to resource r, and each task can only be assigned to

one resource. The bool2int library function is used to convert a Boolean value to an

integer, where true is equal to 1 and false is equal to 0. The inequality that is passed to the

bool2int function is used to ensure that only tasks that are still executing at the time of

interest, i, are included in the resource capacity calculations. More specifically, a task is

still running at time i if the scheduled start time of the task is less than or equal to i and i is

less than the completion time of the task. A more in-depth discussion of implementing the

CP Model using MiniZinc is provided in Appendix A.II.

66

3.5.3 Approach 3: CP Model Implemented Using CPLEX

In Approach 3, the CP Model is implemented and solved using IBM CPLEX 12.5

[15]. More specifically, CPLEX’s Optimization Programming Language (OPL) [97] is

used to implement the CP Model. OPL is an algebraic language explicitly designed for

expressing optimization problems, and therefore it can provide a natural representation of

optimization models that is more compact and less complex to implement compared to

using general-purpose programming languages such as Java or C. The implementation of

the CP Model using OPL is referred to as the OPL Model. The OPL Model is solved using

CPLEX’s CP Optimizer constraint programming solving engine, which provides

specialized variables, constraints, and other mechanisms for modelling and solving

scheduling problems efficiently [98][99]. For example, the CP Optimizer provides a built-

in decision variable data type called interval that can be used to represent tasks (or

activities) that need to be scheduled. The interval data type has five inherent attributes:

start time, duration, end time, optionality, and intensity. The start time, duration, and end

time attributes function as their names imply. The optionality attribute is used to indicate

whether the interval is required to be present in the solution provided by the solving engine.

For example, the optionality attribute can be used to model optional tasks that are not

required to be executed for the solution to be valid, but can be executed if the constraints

are not violated. Lastly, the intensity attribute defines the resource usage or utility of a task

over its interval.

A key feature of the implementation of the CP Model using OPL is that it makes

use of CPLEX’s interval decision variable data type, which allows the system to use the

optimized library functions and constraints that CPLEX provides, such as the alternative

67

constraint and pulse function [98]. This in turn allows the system to efficiently solve the

CP Model by reducing processing time and memory requirements [99]. The CP Model’s

decision variables, at and xtr, are implemented using CPLEX’s interval data types as

follows:

dvar interval taskIntervals [t in Tasks] size t.execTime
dvar interval xtr [o in Options] optional

The taskIntervals and xtr variables represent the CP Model’s at and xtr decision

variables, respectively. Note that the keyword dvar is used to declare a decision variable

in OPL. In the first line, the component [t in Tasks] specifies that taskIntervals is an

array and there is an interval variable for each task in the input set Tasks. Each interval

variable contains the task’s start time, end time, and execution time. The size keyword

specifies the duration of the interval variable, which in this case is set to the execution

time of the task, execTime.

The second line defines that the decision variable xtr is an array of intervals, and

each element in the array is associated with a tuple in the Options set, which is a set that

contains Option tuples. The Option tuple and Options set are defined as follows:

tuple Option {
 Task task;
 Resource resource;
};
{ Option } Options = { <t,r> | t in Tasks, r in Resources };

The Option tuple represents a single xtr decision variable, and it has two attributes: Task

and Resource, which are also tuples themselves. The Options set is a derived set that

contains all the possible combinations of tuples of the form <Task, Resource>. Going

back to the declaration of the xtr decision variable, it is observed that the intervals

contained in xtr are declared to be optional, which allows only a subset of the intervals

68

to be present in the solution generated by the CP Optimizer. By default, if an interval is

not defined to be optional, the CP Optimizer is required to assign a start time and end

time for the interval. Refer to Appendix A.III for a more comprehensive discussion of

implementing the CP Model using IBM CPLEX.

3.6 Performance Evaluation of the Resource Management Techniques

for Processing a Batch of MapReduce Jobs with SLAs

 To evaluate the effectiveness and efficiency of the three approaches, simulation

experiments are conducted on a closed system using various batch workloads where each

batch comprises of multiple MapReduce jobs to execute. Such an experimental

environment that is based on a closed system is similar to what is used by [53][71][72] and

is apt for evaluating and comparing the performance of the modeling techniques and

solvers. The goal of the performance evaluation is to determine which of the three

approaches can solve the matchmaking and scheduling problem for a batch of MapReduce

jobs with SLAs most efficiently, as well as to determine the size of workload that each

approach is capable of handling.

A separate set of experiments is performed for evaluating the performance of each

approach. The inputs used for a given set of experiments include a set of jobs, J, and a set

of resources, R, on which to execute J. The MILP/CP solver program that is used by a

given approach to solve the MILP/CP Model is executed on a PC that is described in

Section 3.6.1. Each experiment concludes after successfully matchmaking and scheduling

all the jobs in the batch. At the end of a successful experimental run the output that is

produced includes the following: a schedule for the system (i.e., the assigned resource and

scheduled start time for each task of each job in J), the time required to complete the

69

execution of the batch of MapReduce jobs, and the number of jobs that miss their deadlines.

The processing time required by the MILP/CP solver to produce the output is measured by

using the respective solver’s built-in timing utilities.

The rest of this section is organized as follows. In Section 3.6.1, the experimental

setup, including the metrics used in the performance evaluation, are described. Following

this, a description of the system and workload parameters that are used in the experiments

is provided in Section 3.6.2.

3.6.1 Experimental Setup

The simulation experiments are conducted on a PC running on Windows 7

Professional with a 3.2 GHz Intel Core 2 Duo CPU and 6.00 GB of RAM. Note that in the

experiments, only the execution of the jobs on the resources is simulated. The generation

and solving of the MILP Model and the CP Model are performed by executing the

respective CP/MILP solver on the PC described. The performances of the three approaches

are evaluated using the following metrics:

 Batch workload completion time (C): The time at which all the jobs in the batch

workload finish executing.

 Processing time overhead (PO): The time required for the solver to read the input

data (job, task, and resource sets), generate the model, solve the model, and

produce the output.

 Number of jobs that miss their deadlines (N).

The values of the performance metrics, N and C, are produced as output by the simulation

run. On the other hand, the value of PO is measured using the built-in timers of the

respective software packages (LINGO, Gecode, and CPLEX). It is expected that lower

70

values of PO can be achieved and larger workload sizes can be processed if the MILP/CP

solvers of the respective approaches are executed on a system with a faster CPU and more

memory. Each experiment is repeated a sufficient number of times such that the confidence

intervals at a confidence level of 95%, which are shown in the figures (refer to Section 3.7)

as bars originating from the mean value, are less than approximately ±5%.

3.6.2 System and Workload Parameters for Batch Workloads

Table 3.3 outlines the system and workload parameters for the simulation

experiments. The workloads are synthetic workloads that are generated in a similar manner

as workloads used by other researchers in similar investigations. For example, the Large 2

workload is adapted from [53], whereas the other workloads are derived by using the same

distributions as those used in [53]. Each workload shown in Table 3.3 is characterized by

a number of parameters, which are described next. In the ‘Jobs’ column, n is defined as the

number of jobs in the batch. The earliest start time and deadline of a job j is represented by

sj and dj, respectively. The earliest start time of the jobs are generated using a discrete

uniform (DU) distribution. The deadline of each job j is calculated as the sum of sj and the

product of SETj
max and an execution time multiplier, em. Recall from Section 3.1.1 that

SETj
max is the maximum execution time of job j (i.e., the tasks of the job are executed

sequentially on a single resource). The parameter em is used to determine the laxity of the

job and is generated using a uniform distribution (U). To ensure that dj is an integer, the

ceiling function is used at the end of the calculation. Depending on the type of workload,

the number of map tasks (𝑘𝑗
𝑚𝑝

) and the number of reduce tasks (𝑘𝑗
𝑟𝑑) of a job j are either

generated using DU distributions or are fixed values. The next column, ‘Task Execution

Times’, specifies the execution times of map tasks (𝑚𝑒) and reduce tasks (𝑟𝑒). Since CP

71

does not support real values (recall the discussion in Section 3.3), the task execution times

are set to be integers and various DU distributions are used to generate the execution times.

The last column, ‘Resources’, defines the number of resources (m) in the resource set, R.

In addition, for each resource r in R, the number of map task slots (𝑐𝑟
𝑚𝑝) and reduce task

slots (𝑐𝑟
𝑟𝑑) is specified.

Table 3.3. System and Workload Parameters for the Batch Workloads.

Workload
Jobs, J

(sj and dj in sec)

Task Execution Times

(sec)
Resources, R

Small 1

n = 5
sj ~ DU(1, 50)

dj ~⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 5)⌉

𝑘𝑗
𝑚𝑝

 = 10, 𝑘𝑗
𝑟𝑑 = 3

𝑚𝑒 ~ DU(1, 15)
𝑟𝑒 ~ DU(1, 50)

m = 10
𝑐𝑟

𝑚𝑝
 = 2

 𝑐𝑟
𝑟𝑑 = 2

Small 2

n = 5
sj ~ DU(1, 50)

dj ~⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉

𝑘𝑗
𝑚𝑝

~ DU(1,15)

𝑘𝑗
𝑟𝑑~ DU(1, 𝑘𝑗

𝑚𝑝
)

𝑚𝑒 ~ DU(1, 15)
𝑟𝑒 ~ DU(1, 75)

m = 25
𝑐𝑟

𝑚𝑝
 = 2

 𝑐𝑟
𝑟𝑑 = 2

Medium

n = 10
sj ~ DU(1,50)

dj ~ ⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉

𝑘𝑗
𝑚𝑝

 = 10

𝑘𝑗
𝑟𝑑 = 5

𝑚𝑒 ~ DU(1, 25)
𝑟𝑒 ~ DU(1, 75)

m = 15
𝑐𝑟

𝑚𝑝
 = 2

 𝑐𝑟
𝑟𝑑 = 2

Large 1

n = 2
s1 = 0, s2 = 500

dj ~ ⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉

𝑘𝑗
𝑚𝑝

 = 100

𝑘𝑗
𝑟𝑑 = 30

𝑚𝑒 ~ DU(1, 15)
𝑟𝑒 ~ DU(1, 50)

m = 25
𝑐𝑟

𝑚𝑝
 = 4

 𝑐𝑟
𝑟𝑑 = 4

Large 2
(adopted from

[53])

n = 50
sj ~ DU(1, 1500)

dj ~ ⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉

𝑘𝑗
𝑚𝑝

~ DU(1, 100)

𝑘𝑗
𝑟𝑑~ DU(1, 𝑘𝑗

𝑚𝑝
)

𝑚𝑒 ~ DU(1, 10)

𝑟𝑒 = ⌈
∑ 𝑒𝑡𝑡∈𝑇𝑗

𝑚𝑝

𝑘𝑗
𝑟𝑑 ⌉

m = 50
 𝑐𝑟

𝑚𝑝
 = 2

𝑐𝑟
𝑟𝑑 = 2

The simulation experiments are performed using various batch workloads with

different characteristics, such as the number of jobs in the batch, the number of tasks in

72

each job, and the execution times of the tasks, to investigate the impact of different

workload characteristics on system performance. For example, in the Small 1 workload

there are 5 jobs, each job with 10 map tasks with execution times varying from 1 sec to 15

sec and 3 reduce tasks with execution times varying from 1 sec to 50 sec. On the other

hand, the Large 2 workload comprises 50 jobs with each job having a varying number of

map tasks from 1 to 100 and a varying number of reduce tasks from 1 to 𝑘𝑗
𝑚𝑝

. Thus, on

average the Large 2 workload has about 3750 tasks and the Small 1 workload has 65 tasks.

3.7 Results of the Performance Evaluation

The following sub-sections present and discuss the simulation results of the three

approaches devised to process a batch of MapReduce jobs with SLAs. Note that all three

approaches focus on meeting deadlines of the jobs in the workload and their primary

objective is to minimize N. Ensuring that C is small is a secondary objective that can be

considered given that the primary objective is achieved. The discussion of the experimental

results focus on C and PO since all three approaches are observed to be able to generate a

schedule for the system that minimizes N (i.e., all three approaches achieve the same value

of N for a given workload).

3.7.1 Small and Medium Workloads

Figure 3.2 and Figure 3.3 present the values of C and PO, respectively, for the three

approaches when using the small and medium workloads. Note that Approach 2 is not able

to generate a solution for the Medium workload even after executing the solver for a couple

of hours (indicated by the missing bars in the graphs). This may be due to the limitations

of the solver from being able to match make and schedule such a large number of tasks

73

(leading to a model that contains a large number of decision variables and constraints) on

the system experimented with.

As expected, the results show that for all three approaches, the increase in the size

of the workload (e.g., number of jobs and tasks) gives rise to an increase in PO and C

because of the higher contention for resources. From Figure 3.3, it is observed that

Approach 3 achieves the lowest PO (less than 0.47 sec) (note that the bars are small and

may not be visible in the figure); however, it also generates a schedule that produced a

slightly higher C. This can be attributed to the solver used in Approach 3 (IBM CPLEX)

generating the first schedule that optimizes the objective function (minimizing N) without

focusing on minimizing C. The lower PO achieved by Approach 3 is attributed to the

mechanisms that CPLEX’s CP Optimizer solving engine provides to efficiently solve

matchmaking and scheduling problems, including the use of the interval decision variables

and functions to operate on those variables [98].

Figure 3.2. Results of C when using the small and medium workloads.

0

50

100

150

200

250

300

350

Small 1 Small 2 Medium

C
(s

ec
)

Workload

Approach 1 Approach 2 Approach 3

74

Another observation that is made from Figure 3.3 is that the approaches that

implement the CP Model (i.e., Approaches 2 and 3) achieve a lower PO compared to

Approach 1, which implements the MILP Model. The reason for this behaviour can be

attributed to the large number of decision variables that the solver for the MILP Model has

to generate and solve. Recall that the MILP Model uses a decision variable xtri, and there

is an xtri variable for each combination of tasks in AT, resources in R, and time points in I.

In the CP Model, there are fewer decision variables because separate decision variables are

used for matchmaking, xtr and scheduling, at.

Figure 3.3. Results of PO when using the small and medium workloads.

3.7.2 Large Workloads

The results of C and PO when executing the large workloads are shown in Figure

3.4 and Figure 3.5, respectively. It is observed that Approach 2 is not able to handle these

larger workloads (indicated by missing bars in the graphs) for the same reasons as

discussed for the Medium workload. In addition, Approach 1 is not able to generate a

0

20

40

60

80

100

120

140

160

180

200

Small 1 Small 2 Medium

P
O

 (
se

c)

Workload

Approach 1 Approach 2 Approach 3

75

schedule for the Large 2 workload (indicated by missing bars in the graphs). When

attempting to generate solutions for the larger workloads with Approaches 1 and 2, the

system eventually ran out of memory and the solver would crash. The solvers of Approach

1 and Approach 2 cannot handle such a large number of decision variables and constraints

on the system experimented with. The results demonstrate that for the Large 1 workload,

Approach 3 outperforms Approach 1 in terms of PO and C for reasons similar to those

discussed in Section 3.7.1.

Figure 3.4. Results of C when using the large workloads.

To enable Approach 1 to successfully process the Large 1 workload, the granularity

of I is reduced to decrease the number of decision variables in the model. Recall that

Approach 1 uses a set of integers (I), which defines the range of time (or time points) when

jobs can be scheduled to start executing on a resource. For example, the time range can be

chosen from time 0 to the maximum completion time of the workload, which is generated

by executing each job sequentially on the resources. The granularity of I can be changed

0

500

1000

1500

2000

2500

3000

Large 1 Large 2

C
 (

se
c)

Workload

Approach 1 Approach 2 Approach 3

76

to restrict when jobs can start to execute. For example, the granularity of a set I = {1, 2, 3,

…, 100} can be made coarser as follows: I = {2, 4, 6, …, 100}. Note that such a change

reduces the number of members of I by 50%. The more values in I, the longer it takes for

Approach 1’s solver (LINGO) to generate and solve the MILP Model because of the large

number of decision variables that need to be processed. Recall that the MILP Model has a

decision variable, xtri, for each combination of tasks t in AT, resources r in R, and time

points i in I. As such, the number of variables that are present in the MILP Model increases

as the number of tasks, or number of resources, or number of time points increase.

Figure 3.5. Results of PO when using the large workloads.

For the experiment where Approach 1 processes the Large 1 workload, the set I is

set to have 100 time points with an interval of 25 sec between each time point as follows:

{0, 25, …, 2500}. If the granularity of I is not reduced, the MILP Model would contain a

very large number of decision variables and the system would not have enough memory to

find a solution and generate a schedule for the system. A disadvantage of making the

0

200

400

600

800

1000

1200

1400

1600

Large 1 Large 2

P
O

 (
se

c)

Workload

Approach 1 Approach 2 Approach 3

77

granularity of I coarser is that it can cause C to increase because some tasks cannot be

scheduled to start executing at their earliest possible start times. For example, if a job j has

sj equal to 27 sec and there is an interval of 25 sec between time points, the tasks of job j

cannot be executed until time 50 sec. Figure 3.4 shows that C for Approach 1 is over 2500

sec, which is about three times longer than the C achieved by Approach 3. Therefore, the

results show that for Approach 1, there is a trade-off between being able to process large

workloads and achieving a small C.

3.7.3 Summary of Simulation Results

 This section summarizes the key observations made from analyzing the results of

the experiments.

 Approach 1: Approach 1 does not perform well in the experiments compared to the

other two approaches. Along with Approach 2, Approach 1 did generate a schedule that

produced the lowest C when using the small workloads; however, Approach 1 is measured

to have a higher PO compared to Approach 2. In addition, when using the Medium

workload, Approach 1 achieves a C that is 11.5% lower compared to the C achieved by

Approach 3, but Approach 1’s PO is also 375% higher compared to Approach 3’s PO.

Lastly, when using the Large 1 workload, Approach 1 is outperformed by Approach 3 in

terms of both C and PO. Thus, for the system and workload parameters experimented with,

it is not recommended that Approach 1 be used unless PO is not a concern. If, in addition

to meeting deadlines, reducing the completion times for the batch is important, Approach

1 may be suitable to use in situations in which the matchmaking and scheduling for the

jobs can be performed ahead of time (e.g., offline).

78

Approach 2: Approach 2 is only able to handle the smaller workloads (less than 150

tasks) on the system experimented with. When processing the large workloads, Approach

2 could not generate a schedule because the system would eventually run out of memory

and the solver would crash. As discussed, along with Approach 1, Approach 2 generates a

schedule with the lowest C when using the small workloads. Even though Approach 2’s

PO is lower compared to Approach 1’s PO, Approach 2’s PO is still over 100 times higher

than the PO achieved by Approach 3. Thus, when using the small workloads, there is a

trade-off between having a lower C (achieved using Approach 2) versus a lower PO

(achieved using Approach 3). Similar to Approach 1, Approach 2 can be considered for

processing small workloads when matchmaking and scheduling can be performed at a time

prior to when the batch becomes ready to execute.

Approach 3: The experimental results demonstrate that Approach 3 has the best

overall performance. Regardless of the size of the workload experimented with, it achieves

a much lower PO compared to the other two approaches. However, when using the small

workloads, Approach 3 has a slightly higher C compared to the other approaches. For

example, when using the Small 2 workload, Approach 3 has a C that is 81% higher

compared to the C achieved by Approach 1 and Approach 2. Approach 3, however, does

achieve a PO that is over 100 times smaller compared to the PO measured for Approach 1

and Approach 2. On many systems satisfying the deadlines is sufficient and achieving a

small batch completion time (C) is only a secondary objective. Furthermore, Approach 3

can process the larger workloads (i.e., Large 2 workload) that the other two approaches

cannot handle. In fact, the experiments described in Section 3.7.2 indicate that Approach 3

can handle workloads containing over 1000 tasks.

79

3.8 Summary and Discussion

In this chapter, the problem of matchmaking and scheduling a batch of MapReduce

jobs with SLAs is formulated and solved using MILP and CP. The MILP Model and CP

Model that are devised are implemented and solved using three approaches:

 Approach 1: MILP Model implemented and solved using LINGO [92]

 Approach 2: CP Model implemented using MiniZinc/FlatZinc [93] and solved

using Gecode [94]

 Approach 3: CP Model implemented and solved using IBM CPLEX [15].

Note that the objective of each approach is to generate a schedule that minimizes the

number of jobs that miss their deadlines. Moreover, this chapter also described our

experiences with using the various optimization techniques and software packages to

formulate and solve the matchmaking and scheduling problem. A significant learning curve

is associated with using the software in each of the respective approaches; however,

configuring, implementing, and executing the models using Approaches 1 and 3 are easier

compared to using Approach 2 because both LINGO and CPLEX provide a feature-rich

integrated development environment, whereas MiniZinc and Gecode only provide

command-line interfaces.

 A number of simulation experiments are performed using various batch workloads

to evaluate the performance of the three approaches. Insights into system behaviour and

performance are gained from analyzing the results of the experiments, which are

summarized next.

 Superiority of Approach 3: In all the experiments conducted, Approach 3 achieves

the lowest PO; however, it also generated a schedule that produces a slightly

80

higher C in some experiments. In addition, Approach 3 is the only approach

capable of processing the large workloads that have over 1000 tasks (refer to

Section 3.7.2).

o When using the small workloads, Approach 1 and Approach 2 achieve a

lower C compared to Approach 3; however, the PO achieved by these

approaches is much higher (over 100 times higher) compared to the PO

achieved by Approach 3.

 Superiority of CP: The results of the experiments show that Approaches 2 and 3,

which use CP, achieve a smaller PO compared Approach 1, which uses MILP. In

addition, from the experiences in using MILP and CP to formulate the

matchmaking and scheduling problem, it is found that using CP is simpler and

more intuitive compared to using MILP.

Based on the results of the experiments, it is found that Approach 1 and Approach

2 are most useful in cases where the workloads are small (a few hundred tasks) and there

is sufficient time to perform the resource management decisions (e.g., offline, where

processing time is not a concern). On the other hand, because of its lower processing

overhead, it is expected that Approach 3 can be used to devise a resource management

technique that can handle an open stream of MapReduce jobs with SLAs. Having a low

processing overhead is an important feature to consider when there is an open stream of

job arrivals because a low matchmaking and scheduling overhead is key to efficiently

process jobs that are continuously arriving on the system. Furthermore, Approach 3 is the

only approach able to process the large workloads, comprising over 1000 tasks. Thus, a

constraint programming based approach is chosen for devising a resource management

81

technique for processing an open stream of MapReduce jobs with SLAs, which is described

in Chapter 4.

82

Chapter 4 MapReduce Constraint Programming based Resource

Management Technique for Open Systems

This chapter concerns resource management on open systems that are subjected to

a continuous stream of MapReduce jobs with SLAs arriving on the system. The

experimental results from Section 3.7 showed the superiority of using the CP Model

implemented using IBM CPLEX, including its more intuitive and simple formulation of

constraints, lower processing overhead, and its ability to handle larger workloads. This

motivated the investigation of a novel MapReduce Constraint Programming based

Resource Management technique (referred to simply as MRCP-RM) that can effectively

perform matchmaking and scheduling of an open stream of MapReduce jobs with SLAs.

Similar to Chapter 3, the SLA for the job comprises an earliest start time, an execution

time, and an end-to-end deadline. However, a key difference between the techniques

described in Chapter 3 and MRCP-RM is that MRCP-RM can process an open stream of

job arrivals whereas the techniques described in Chapter 3 can only be used in a closed

system subjected to batch workloads with a fixed number of jobs.

The rest of the chapter is organized as follows. Section 4.1 presents an overview of

the MRCP-RM technique including a discussion of the modifications made to the OPL

Model. A detailed description of the MRCP-RM algorithm is then provided in Section 4.2.

The performance optimizations devised to reduce the processing time overhead of the

MRCP-RM technique are described in Section 4.3. Following that, the experiments

conducted to evaluate the performance of the MRCP-RM technique are described in

Section 4.4. A discussion of the results of the experiments are then presented in Section

83

4.5 and Section 4.6. Lastly, a summary and discussion of the chapter is provided in Section

4.7.

4.1 Overview of the MRCP-RM Technique

Figure 4.1 presents a diagram showing an environment deploying the MRCP-RM

technique. Users submit MapReduce jobs to the system which are placed in the job queue.

If the resource manager is available (i.e., not busy mapping another set of jobs), it invokes

the MRCP-RM algorithm, which is described in more detail in Section 4.2, to perform

matchmaking and scheduling (collectively called mapping). MRCP-RM not only maps all

the newly submitted jobs in the job queue, but it also remaps the tasks of jobs that have

been previously scheduled but have not started executing. This is performed to provide the

most flexibility in matchmaking and scheduling to minimize the number of late jobs. For

example, to minimize the number of late jobs, a newly submitted job with an earlier

deadline may need to be scheduled in the place of a previously scheduled job that has a

later deadline. The MRCP-RM technique uses IBM CPLEX [15] to generate an OPL

Model, which is an implementation of the CP Model using IBM’s Optimization

Programming Language (OPL) [97]. Recall the discussion of the CP Model and the OPL

Model described in Section 3.3 and Section 3.5.3, respectively. More specifically, an OPL

Model is created that has new constraints added for each of the tasks that have started but

not completed executing. To solve the OPL Model, MRCP-RM uses IBM CPLEX’s CP

Optimizer solving engine [98]. Once a solution is found, a schedule will be generated that

indicates which resources that tasks should be assigned to (matchmaking) and when the

tasks on a particular resource should start executing (scheduling).

84

An implementation of the MRCP-RM technique is developed using Java and

NetBeans IDE [100]. This implementation is used to conduct the experiments described in

Section 4.4. The Job, Task, and Resource entities of the resource management model (recall

Section 3.1) are implemented as Java classes. The implementation of MRCP-RM also

leverages the Java implementation of the IBM ILOG OPL API and IBM ILOG Concert

Technology API (abbreviated Concert API) [97] to create and solve the OPL Model using

the CP Optimizer solving engine.

Distributed Computing Environment

Resource
Manager using

MRCP-RM

Resource
Manager using

MRCP-RM

CPLEX CP
Optimzer
CPLEX CP
Optimzer

ilog.concert
ilog.opl
ilog.cp

ilog.concert
ilog.opl
ilog.cp

<<uses>><<uses>>

. . .Resource 1Resource 1 Resource mResource m

Submit jobsSubmit jobs

UsersUsers

Job Queue

Job 3Job 3 Job 2Job 2 Job 1Job 1Job 3 Job 2 Job 1

<<solve>><<solve>>

OPL ModelOPL Model

<<create>><<create>>

Figure 4.1. Example of a system deploying the MRCP-RM technique.

4.1.1 Modifications to the OPL Model

A few modifications to the OPL Model are made to support the MRCP-RM

algorithm. The first change is the introduction of a new attribute of type integer, named

isRunning, to the Task tuple. This new attribute is set to 1 to indicate that a task is currently

running on a resource and cannot be rescheduled or assigned to a new resource; otherwise,

85

isRunning is set to 0. In addition, the implementation of constraint (2a) is modified to

make use of the new isRunning attribute as follows:

forall (j in Jobs) {
 forall(t in Tasks: t.parentJob == j.id && t.isRunning == 0) {
 startOf(taskIntervals[t]) >= j.earliestStartTime;
 }
}

Recall from Section 3.3 that the purpose of constraint (2a) is to enforce that the scheduled

start time of a job’s tasks is after the earliest start time of the job. As shown, the constraint

iterates through all the jobs in the Jobs set, and for each job, it examines each Task t in the

Tasks set that have a value of parentJob equal to the id of the current job being examined.

The parent job attribute of the Task tuple identifies which job the task belongs to. For

example, if the parent job attribute of a task is 2, it means that this task belongs to the job

with an id equal to 2. The new addition is that the constraint now only needs to check the

scheduled start times of tasks that are not currently running (i.e., isRunning is 0). The tasks

that are already running (i.e., isRunning is 1) already have had their scheduled start times

checked previously when the tasks were initially scheduled on the system, and thus, they

do not need to be checked again. Note the use of OPL’s startOf() function [98] in the

constraint, which returns the start time of the supplied interval variable.

4.2 MRCP-RM Algorithm

Algorithm 4.1 presents the MRCP-RM algorithm. A visual representation and a

high-level overview of the algorithm in the form of a flowchart is also provided in Figure

4.2. The input required by the algorithm is a set of jobs J on which to map on to a set of

resources R. The first phase of the algorithm checks the earliest start time of each job j in

J to see if its earliest start time is less than the current time, and if this is true, the earliest

86

start time of the job is set to the current time (see lines 1-4 of Algorithm 4.1 and step 1 of

Figure 4.2). The reason why some jobs have an earliest start time in the past is because

these jobs were previously scheduled but have not started or completed executing.

The second phase of the algorithm checks the status/state of each task currently

scheduled on the system (lines 5-6 of Algorithm 4.1 and steps 2 and 3a of Figure 4.2) to

see if the task is: (1) scheduled to execute at a later time (line 7 of Algorithm 4.1 and step

4a of Figure 4.2), (2) finished executing (line 13 of Algorithm 4.1 and step 4b of Figure

4.2) , or (3) currently running (line 10 of Algorithm 4.1 and step 4c of Figure 4.2). To

accomplish this, the MRCP-RM algorithm processes each resource r in R, and for each

resource r, it checks when each of the tasks assigned to resource r are scheduled to execute.

Note that each resource keeps its list of scheduled tasks sorted by non-decreasing order of

the respective scheduled start time of the tasks. When MRCP-RM finds that a task t’s

scheduled start time is greater than the current time (i.e., the task has not started running),

task t and the remaining scheduled tasks on the resource that t is scheduled on do not need

to be processed at this point. Thus, MRCP-RM breaks out of the loop so that it can check

the scheduled tasks of the next resource in R (line 8 of Algorithm 4.1).

Tasks that have started executing need to be further processed by the MRCP-RM

algorithm (line 9 of Algorithm 4.1). More specifically, each task is checked to see whether

or not it has completed executing. If the task has finished executing (i.e., the task’s expected

completion time is less than or equal to the current time) (line 13 of Algorithm 4.1), the

task is marked as complete and it is removed from its parent job’s task list (line 14 of

Algorithm 4.1 and step 4b of Figure 4.2). Furthermore, if all the tasks of the job have

finished executing, the algorithm also records that the job has completed executing (lines

87

15-16 of Algorithm 4.1 and steps 5-7 of Figure 4.2). On the other hand, if the task has not

completed executing (i.e., the task’s expected completion time is greater than the current

time) (line 10 of Algorithm 4.1), the MRCP-RM algorithm adds a new constraint to the

OPL Model to specify the scheduled start time, scheduled completion time, and assigned

resource of the currently running task (line 11 of Algorithm 4.1 and step 4c of Figure 4.2).

For example, if the first task of job 3 (denoted t3_1) is currently running on resource r1

and has a scheduled start time and completion time equal to 11 to 30 time units, the

following constraint is added to the OPL Model:

forall (o in Options : o.resource.id == 1 && o.task.id == "t3_1")
{

 startOf(xtr[o]) == 11 && endOf(xtr [o]) == 30;
}

The purpose of adding these constraints to the OPL Model is to inform the CP

Optimizer of the scheduled time interval and assigned resource of the currently running

tasks. This will prevent the CP Optimizer from scheduling other tasks on the resource at

the same time intervals where tasks are already running (if the resource does not have the

capacity to execute more than one task). In addition, the task’s isRunning attribute is set

to true (line 12 of Algorithm 4.1) to inform the CP Optimizer that the task is currently

running and it does not need to enforce constraint (2a) for this task. Recall from Section

3.3 that constraint (2a) ensures that each task t of each job j in J has a scheduled start time

that is after the earliest start time of the job. Constraint (2a) does not need to be enforced

for tasks that are already executing because the scheduled start times of these tasks were

already checked when they were first scheduled on the system. Moreover, since a job’s

earliest start time may have been changed to the current time (recall lines 1-4 of Algorithm

4.1), currently running tasks will not be able to satisfy constraint (2a) because their

88

scheduled start time is in the past (i.e., before the current time). Thus, as described in

Section 4.1.1, constraint (2a) is changed to only check the earliest start times of tasks that

are not currently running.

Algorithm 4.1: MRCP-RM Algorithm

Input: a set of jobs J and a set of resources R

Output: none

1: for each job j in J do

2: if job j’s earliest start time is less than the current time then

3: Set job j’s earliest start time to the current time.

4: end for

5: for each resource r in R do

6: for each task t in resource r’s scheduled tasks list do

7: if task t’s start time is greater than the current time then

8: break

9: else //task t has started executing

10: if task t’s end time is greater than the current time then

11: Add a new constraint to the OPL Model that specifies task t’s

 scheduled start time, scheduled end time, and assigned resource.

12: Set task t’s isRunning field to true.

13: else

14: Record that task t is complete and remove t from its parent job’s

 tasks list.

15: if all the tasks in t’s parent job have completed executing then

16: Remove the job from J.

17: end if

18: end if

19: end for

20: end for

21: Create a new OPL Model and attach the data source containing J and R.

22: Generate and solve the OPL Model.

23: Extract and save the values of the decision variables (scheduled start time and

assigned resource for each task).

After all the tasks are processed (line 20 of Algorithm 4.1 and step 3b of Figure

4.2), the third phase of the MRCP-RM algorithm is started. This involves using CPLEX’s

Java APIs to generate and solve the new OPL Model with new constraints added for each

of the tasks that have started but not completed executing (lines 21-22 of Algorithm 4.1

89

and steps 3b and 8 of Figure 4.2). After finding a solution to the OPL Model, the values of

the decision variables, which indicate the assigned resource and the scheduled start time of

each task, are used to generate the new schedule for the system (line 23 of Algorithm 4.1

and step 9 of Figure 4.2). A more detailed description of how CPLEX’s Java APIs [97],

which includes the following packages: ilog.concert, ilog.cp, and ilog.opl, are used

to create and solve the OPL Model is provided in Appendix B.I.

4.2.1 Complexity of the MRCP-RM Algorithm

The time complexity analysis for the MRCP-RM algorithm is described in this

section. The execution time of the first phase of the algorithm (see lines 1-4) is linearly

proportional to the number of jobs in J. Next, the execution time of the second phase of the

algorithm (see lines 5-20) is proportional to the number of tasks scheduled in the system.

The highest and most significant component of the execution time of the MRCP-RM

algorithm comes from using CPLEX to solve the OPL Model (see lines 21-23). The overall

time complexity of the MRCP-RM algorithm is thus dominated by that of the CPLEX

based solution of the CP Model. In general, the complexity of solving a CP problem is NP-

Complete but state-of-the art solvers can make optimizations to solve problems in

polynomial time [14]. Since commercial solvers such as IBM CPLEX [15] are proprietary

and their algorithms are unknown, it is difficult to theoretically define the complexity of

solving the CP Model. Thus, the complexity of the algorithm is evaluated empirically

through experimentation as discussed later in the performance evaluation sections.

Moreover, Section 4.6.6 discusses the scalability of the algorithm.

90

End

4b. t has completed
executing Remove t

from its job’s
task list.

Are all of the job’s
tasks complete?

Remove job
from system.

6a. Yes

Add a new
constraint to OPL

Model.

4c. t is currently
executing

Solve OPL Model.

Extract solution to create
a new schedule for the

system.

6b. No

8.

9.

10.

5.

7.

Set of
Jobs J

Set of
Resources R

Start

1.

Update earliest
start time of jobs.

 Is there a task t
in the system that has

not been checked?

2.

What is
the state of task

t?

3a. Yes

4a. t has not started executing

Create OPL
Model.

3b. No

Figure 4.2. Flowchart of the MRCP-RM algorithm.

91

4.3 Performance Optimizations for the MRCP-RM Technique

This section describes two performance optimizations introduced to reduce the

MRCP-RM technique’s matchmaking and scheduling overhead, which includes the time it

takes to use IBM CPLEX to generate and solve the OPL Model.

4.3.1 Performance Optimization 1: Separating the Matchmaking and

Scheduling Operations

The first performance optimization (denoted POpt1) involves separating the

matchmaking and scheduling operations. During preliminary testing, it was found that

separating the matchmaking and scheduling operations in the MRCP-RM algorithm can

reduce the time required for the CP Optimizer to generate and solve the OPL Model. The

idea is to consolidate the number of resources in R into a single combined resource. This

single combined resource contains the map task capacity (or number of map task slots) and

reduce task capacity (or number of reduce task slots) of all the resources in the system. For

example, consider a scenario where the system has 50 resources and each resource r in R

has 𝑐𝑟
𝑚𝑝

 = 2 and 𝑐𝑟
𝑟𝑑 = 2. In this scenario, the single combined resource r1 has 𝑐𝑟1

𝑚𝑝 = 100

and 𝑐𝑟1
𝑟𝑑 = 100. For a batch of 25 jobs where each job comprises 75 map tasks and 25 reduce

tasks and a system with 50 resources where each resource has 2 map task slots and 2 reduce

task slots, it takes the MRCP-RM algorithm approximately 1 minute to solve the OPL

Model. On the other hand, when using a single combined resource (i.e., 1 resource with

100 map task slots and 100 reduce task slots), it only takes the MRCP-RM algorithm

approximately 15 seconds to find a solution to the OPL Model. This can be attributed to

the CP Optimizer having fewer decision variables and constraints to process.

92

A description of how POpt1 is used in conjunction with the MRCP-RM algorithm

is provided next. The first step is to use the MRCP-RM algorithm (described in Section

4.2) to solve an OPL Model using a single combined resource that represents all the

resources in R. The schedule that is generated is referred to as the single resource schedule,

and it contains the scheduled start time of each task of each job in J, but it does not contain

matchmaking information (i.e., which resources that the tasks are assigned to). The second

step is to use the Split Single Resource Schedule algorithm to assign the tasks from the

single resource schedule to the resources in the original set of resources R. This is

accomplished by performing the following operations. First, the algorithm moves the map

tasks and reduce tasks from the single combined resource to a set of single capacity map

resources (MR) and a set of single capacity reduce resources (RR), respectively. As the

names suggest, each resource in MR has only one map task slot (i.e., 𝑐𝑟
𝑚𝑝 = 1) and each

resource in RR has only one reduce task slot (i.e., 𝑐𝑟
𝑟𝑑 = 1). Second, the algorithm creates

new resources to represent the original resources in R and assigns tasks to each of the new

resources created. More specifically, each resource is assigned map tasks and reduce tasks

from the single capacity resources in MR and RR, the numbers of which are equal to

resource r’s map task capacity and reduce task capacity, respectively. A detailed discussion

of the Split Single Resource Schedule algorithm is provided in Appendix B.II.

 An example of invoking the Split Single Resource Schedule algorithm to partition

a single combined resource that has 100 map task slots and 100 reduce task slots into 50

resources with at least one map task slot and 30 resources with at least one reduce task slot

is described. First, the Split Single Resource Schedule algorithm creates 100 single

capacity map resources and 100 single capacity reduce resources. The map tasks and

93

reduce tasks from the single combined resource are then assigned to the single capacity

resources. Next, the Split Single Resource Schedule algorithm creates 50 resources, each

with ⌊100/50⌋ = 2 map task slots, and 30 out of the 50 resources will have reduce task

slots. More specifically, each of these 30 resources will have at least ⌊100/30⌋ = 3 reduce

task slots. Since there are 100 − 30 ∗ 3 = 10 remaining reduce task slots, 10 out of the 30

resources will have an additional reduce task slot, and thus, these 10 resources will have a

total of 4 reduce task slots. Each new resource r is then assigned map tasks from 𝑐𝑟
𝑚𝑝

single capacity resources in MR and assigned reduce tasks from 𝑐𝑟
𝑟𝑑 single capacity

resources in RR.

4.3.2 Performance Optimization 2: Handling Earliest Start Time of Jobs

The second performance optimization, referred to as POpt2, focuses on optimizing

the processing of jobs with earliest start times that are greater than their arrival times. After

performing a number of preliminary experiments, it was found that when the workload

comprises a large number of jobs that have earliest start times in the future (i.e., jobs that

have arrived on the system but cannot start executing because their earliest start times have

not yet past), the time required to perform the matchmaking and scheduling operations

increases substantially. It was found that the main cause for this is that MRCP-RM maps

the tasks of newly arriving jobs as well as the tasks of previously scheduled jobs that have

not started executing. Recall from Section 4.1 that this is performed to provide the most

flexibility in matchmaking and scheduling the jobs such that the number of late jobs is

minimized. In general, when there are more tasks to map, the time required to generate and

solve the OPL Model increases because there are more decision variables and constraints

to process. To reduce this overhead, a mechanism is implemented to only start

94

matchmaking and scheduling jobs when the current time is greater than or equal to the

job’s respective earliest start time, sj. Jobs that arrive and have their sj in the future are

placed in a queue of jobs that are to be mapped at a later time. This in turn prevents MRCP-

RM from having to continuously map jobs that cannot execute yet, reducing the

matchmaking and scheduling overhead.

4.4 Performance Evaluation of the MRCP-RM Technique

To investigate the effectiveness and efficiency of the MRCP-RM technique, an in-

depth simulation-based performance evaluation using synthetic workloads is conducted.

Simulation is used because it provides the flexibility to systematically change the system

and workload parameters. Both synthetic and real workloads have been used by researchers

in performance evaluation of resource management algorithms [101]. Although real

workloads are representative of real systems, they are inflexible in the sense that they

cannot be modified easily to answer “what if” questions. Synthetic workloads, on the other

hand, allow researchers to directly vary the different parameters that can affect

performance and thereby permit the investigation of the impact of varying a given

parameter on system performance. Note that a performance evaluation of the constraint

programming based resource management technique using a real workload is described in

Chapter 5.

First, simulation experiments are conducted to compare the performance of MRCP-

RM with that of a technique called MinEDF-WC [70] (see Section 4.4.2), which has

objectives similar to the MRCP-RM technique, using a synthetic workload based on

MapReduce jobs used by Facebook (referred to as the Synthetic MapReduce Workload –

Facebook). Second, experiments are performed to investigate the effect of various system

95

and workload parameters on the performance of the MRCP-RM technique. A Generic

Synthetic MapReduce Workload (described in Section 4.4.3) is used in these experiments.

Note that this performance evaluation focuses on the relative performance of the MRCP-

RM technique compared to that of the MinEDF-WC technique [70] and understanding the

performance trends as captured in the degree of change in the performance metrics in

response to changes in the system and workload parameters.

The rest of this section is organized as follows. The experimental setup and the

metrics used in the performance evaluation are described in Section 4.4.1. Descriptions of

the two workloads used in the simulation experiments are then described in Section 4.4.2

and Section 4.4.3.

4.4.1 Experimental Setup

The simulation experiments are executed on a PC running Windows 8 Professional

64-bit on an Intel Core i5-4670 CPU (3.40 GHz) equipped with 16 GB of RAM. The

following performance metrics are used to evaluate the MRCP-RM technique:

 Proportion of late jobs (P) = 𝑁 / 𝑛 where N is the number of late jobs in an

experiment and n is the total number of jobs processed in an experiment.

 Average job turnaround time (T): The turnaround time of a job j is equal to CTj–

sj where CTj is the completion time of job j and sj is the earliest start time of job j.

Thus, 𝑇 = [∑ (𝐶𝑇𝑗 − 𝑠𝑗)𝑗∈𝐽]/𝑛 where J is the set of jobs processed in an

experiment.

 Average job matchmaking and scheduling time (O): A measure of the processing

time incurred by executing the MRCP-RM algorithm, including the time required

for generating and solving the OPL Model. 𝑂 = (∑ 𝑜𝑗𝑗∈𝐽)/𝑛 where oj is the

96

matchmaking and scheduling time of job j and is measured using Java’s

System.nanoTime()[102] method. Note that there is a distinction between the

metric PO used in Chapter 3 and the metric O that is used in this chapter. PO

indicates the processing overhead for an entire batch of jobs, whereas O is the

average processing overhead per job executed in the open system.

In the simulation experiments, only the execution of the workload on the resources and the

arrival of jobs are simulated. The MRCP-RM algorithm and the CP Optimizer solving

engine are executed on the PC described earlier. Thus, O is a measured value, whereas P

and T are generated as output from the simulation run. The O-by-T ratio (O/T) is used as

an indicator for the processing overhead of the resource management algorithm. O/T is an

appropriate indication of the processing overhead because it puts the measured values of

the algorithm runtimes (O) into context by considering the value of O relative to the mean

job turnaround time (T).

Each simulation experiment is run long enough to ensure that the system operates

at a steady state. In addition, each experiment is repeated a sufficient number of times such

that the confidence intervals, at a 95% confidence level, for T and O are less than ±1% and

±5% of their respective average values for most cases. This resulted in a reasonable time

for running the simulation experiments. The resulting accuracy of the simulation results is

deemed to be adequate for the nature of the investigation, which focuses on examining the

trend in the variation of a given performance metric in response to changes in the system

and workload parameters.

97

4.4.2 Synthetic MapReduce Workload—Facebook

The Synthetic MapReduce Workload—Facebook is generated from workload

traces collected on a production Hadoop cluster at Facebook in October 2009 [103]. This

production Hadoop cluster processes and analyzes event logs from the Facebook social

network for a wide variety of different applications, including business intelligence, spam

detection, and ad content optimization. In addition to these production jobs that run

periodically on the cluster, the cluster also processes many different experimental jobs

submitted by analysts and engineers working at Facebook. These experimental jobs can

include time-consuming and compute-intensive machine learning computations or smaller

(1-to-2 minute) ad hoc queries that are submitted via a SQL interface. For example, such

ad hoc query based jobs can include text search jobs and aggregation jobs. A text search

job is used to find a specific string in the supplied input data, whereas the aggregation job

is used, for example, to compute advertisement revenue from each IP address in a set of IP

addresses [103].

The Synthetic MapReduce Workload—Facebook is chosen to conduct experiments

in this research because it is based on a real-world MapReduce workload from a production

Hadoop cluster, and it is also used by [70], which describes a resource management

technique that has similar objectives to this research. As shown in Table 4.1, the Synthetic

MapReduce Workload—Facebook comprises 1000 jobs and each job has a specified

number of map tasks (𝑘𝑗
𝑚𝑝

) and a specified number of reduce tasks (𝑘𝑗
𝑟𝑑). Most of the jobs

(68%) in the workload have 13 or fewer tasks, and 4% of the jobs are very large and have

over 1000 tasks. The execution times of the map and reduce tasks are generated using

LogNormal, LN(μ, σ2), distributions where μ is the mean and σ2 is the variance [70]. More

98

specifically, the execution times of the map and reduce tasks (in milliseconds) are

generated using LN(9.9511, 1.6764) and LN(12.375, 1.6262), respectively. Job arrivals are

generated using a Poisson process and each job type has an equal probability of arriving

on the system until the number of jobs that have arrived reaches its limit (see “Number of

Jobs” column in Table 4.1). The earliest start time of a job j (sj) is equal to its arrival time,

and the deadline of a job j (dj) is generated as follows: dj = sj + SETj
R * U(1, 2). Recall from

Section 3.1.1 that SETj
R is the time it takes to execute job j on R, assuming job j is the only

job executing on R. The symbol U(1, 2) represents a uniform distribution where “1” and

“2” are the lower-bound (inclusive) and upper-bound (inclusive) of the distribution,

respectively. In line with [70], the system used to execute this workload consists of 64

resources where each resource has one map task slot and one reduce task slot.

Table 4.1. Job Information for the Synthetic MapReduce Workload—Facebook [70].

Job Type 𝒌𝒋
𝒎𝒑

 𝒌𝒋
𝒓𝒅 Number of Jobs

1 1 0 380
2 2 0 160
3 10 3 140
4 50 0 80
5 100 0 60
6 200 50 60
7 400 0 40
8 800 180 40
9 2400 360 20

10 4800 0 20

4.4.3 Generic Synthetic MapReduce Workload

Table 4.2 presents the system and workload parameters for the Generic Synthetic

MapReduce Workload. This workload is adapted from [53] and is a workload that can

generate jobs with a different number of tasks and different execution times. In addition,

this workload provides the ability to systematically vary workload parameters such that

99

their effect on system performance can be investigated. The selection of parameter values

and the distributions used to generate the jobs in this workload are based on [53] and [70].

In line with [70], the job arrivals are generated using a Poisson process with arrival rate, λ.

The values of λ are chosen to subject the system to different levels of system load that leads

to an average resource utilization on the default number of resources (refer to Table 4.2)

ranging from low (approximately 5%) to high (approximately 80%). The attributes of each

job j that arrives on the system are generated as follows. First, the earliest start time of job

j (sj) can be its arrival time (atj) or a future time after atj, depending on a random variable

rv, which follows a Bernoulli distribution with parameter p. The parameter p is the

probability that a job j has sj greater than atj. The parameter smax is the upper-bound of the

discrete uniform distribution (DU) used to generate the value that is added to atj for

calculating the sj of jobs that have sj greater than atj. The number of map tasks (𝑘𝑗
𝑚𝑝

) and

reduce tasks (𝑘𝑗
𝑟𝑑) are also generated using DU distributions as shown in Table 4.2.

A job j’s deadline (dj) is generated as the sum of sj and the product of SETj
R and an

execution time multiplier, em. Recall from Section 3.1.1 that SETj
R is the execution time of

job j when it is executed at its maximum degree of parallelism on a set of resources R with

m resources. The parameter em is used to determine the laxity (or slack time) of the job

and is generated using a uniform distribution (U) where “1” is the lower-bound and emmax

is the upper-bound of the distribution. Note that the ceiling function is used to round dj up

to the nearest integer. Moreover, the execution times of the map and reduce tasks of a job

are generated using DU distributions as shown in Table 4.2. The parameter memax is the

upper-bound of the DU distribution used to generate the map task execution times. Note

that the map task execution times include the time required to read the input data, and the

100

reduce task execution times include the time required to exchange data (e.g., intermediate

keys) between the map phase and reduce phase. Lastly, the number of resources (m) that

are used to execute the jobs in the system and the map and reduce task capacities

(𝑐𝑟
𝑚𝑝

and 𝑐𝑟
𝑟𝑑) of each resource r is specified. The parameters 𝑐𝑟

𝑚𝑝
and 𝑐𝑟

𝑟𝑑 denote the

number of map tasks and reduce tasks, respectively, that a resource r can run in parallel at

a given point in time.

Table 4.2. System and Workload Parameters for the Generic Synthetic MapReduce

Workload.

Parameter Values
Default
Value

Job

Arrival rate, λ (jobs/sec) λ = {0.001, 0.01, 0.015, 0.02} λ = 0.01

Earliest start time, sj (sec)

𝑠𝑗 = {
𝑎𝑡𝑗, 𝑟𝑣 = 0

𝑎𝑡𝑗 + 𝐷𝑈(1, 𝑠𝑚𝑎𝑥) 𝑟𝑣 = 1

where rv ~Bernoulli(p)
p = {0.1, 0.5, 0.9}
smax = {1, 5, 25} * 104

p = 0.5
smax = 50000

No. of Map Tasks, 𝑘𝑗
𝑚𝑝

 𝑘𝑗
𝑚𝑝

~ DU(1, 100) -

No. of Reduce Tasks, 𝑘𝑗
𝑟𝑑 𝑘𝑗

𝑟𝑑~ DU(1, 𝑘𝑗
𝑚𝑝

) -

Deadline, dj (sec)
𝑑𝑗 = ⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗

𝑅 ∗ 𝑒𝑚⌉ where

em ~ U(1, emmax) and emmax = {2, 5, 10}
emmax = 5

Task

Map task execution time, me

(sec)
me ~ DU(1, memax)
where memax = {10, 50, 100}

memax = 50

Reduce task execution time, re
(sec)

re = ⌈(3 ∗ ∑ 𝑒𝑡)/𝑡∈𝑇𝑗
𝑚𝑝 𝑘𝑗

𝑟𝑑⌉ + 𝐷𝑈(1, 10) -

Resource
Number of Resources, m m = {25, 50, 100} m = 50

Capacity 𝑐𝑟
𝑚𝑝

= 𝑐𝑟
𝑟𝑑 = 2 -

Note: DU = discrete uniform distribution, U = uniform distribution

The distributions used for the workload parameters: 𝑘𝑗
𝑚𝑝

, 𝑘𝑗
𝑟𝑑

, me, and re are

adopted from [53], whereas the parameter dj (that is not used in [53]) is generated using a

similar approach to [70]. Note that the related works [53] and [70] do not consider jobs that

101

have sj greater than atj (i.e., they only considered jobs with sj equal to atj). This research

investigates jobs with sj equal to atj as well as jobs with sj greater than atj. To examine how

the individual parameters: λ, p, smax, emmax, memax, and m affect system performance, factor-

at-a-time experiments, where one parameter is varied and the other parameters are kept at

their default values (shown in the third column of Table 4.2), are conducted.

4.5 Comparison with Related Work

This section discusses the results of the simulation experiments conducted to

compare the performance of the MRCP-RM technique with that of the MinEDF-WC

technique [70] (recall Section 2.5.6), which has objectives similar to the MRCP-RM

technique: matchmaking and scheduling an open stream of MapReduce jobs with

deadlines. In order to make a valid comparison between the MRCP-RM and MinEDF-WC

techniques, simulation using the Synthetic MapReduce Workload—Facebook (described

in Section 4.4.2) is used to obtain the values of P and T for each technique. The same

system and workload parameters used in the simulation-based performance evaluation of

the MinEDF-WC technique described in [70] are also used in the simulation experiments

of the MRCP-RM technique. In each simulation experiment that corresponds to a specific

arrival rate, 100 simulation runs are performed that produced an interval less than ±10% of

the mean value of P and an interval less than ±1.5% of the mean value of T at a confidence

level of 95%. The mean value for the respective performance metric is the average

computed over the 100 simulation runs.

A comparison of the MRCP-RM and MinEDF-WC techniques in terms of P and T

are shown in Figure 4.3 and Figure 4.4, respectively. The results show that the MRCP-RM

technique achieves a significantly lower P (up to 93% lower) and a similar T in comparison

102

Figure 4.3. MRCP-RM vs MinEDF-WC: effect of λ on P.

Figure 4.4. MRCP-RM vs MinEDF-WC: effect of λ on T.

to the P and T, respectively, achieved by the MinEDF-WC technique presented in [70].

Note that the jobs in the Synthetic MapReduce Workload—Facebook have stringent

deadlines (i.e., emmax is 2). This means that jobs need to be executed as close as possible to

0

0.2

0.4

0.6

0.8

1

1.2

1/10000 1/5000 1/2500 1/2000

P
 (

%
)

λ (jobs per sec)

MRCP-RM MinEDF-WC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1/10000 1/5000 1/2500 1/2000

T
(s

ec
)

λ (jobs per sec)

MRCP-RM MinEDF-WC

103

their earliest start times to meet their deadlines. The results demonstrate the superiority of

the MRCP-RM technique when using the Synthetic MapReduce Workload—Facebook.

4.6 Effect of System and Workload Parameters

This section focuses on analyzing the effect of various system and workload

parameters on the performance of the MRCP-RM technique (referred to simply as MRCP-

RM). The experiments are conducted using the Generic Synthetic MapReduce Workload

(described in Section 4.4.3) and the workload and system parameters that are investigated

are outlined in Table 4.2. In the graphs presented in the following sub-sections, the

confidence intervals at a 95% confidence level, which are observed to be less than ±5% of

the respective mean value in most cases, are shown as bars originating from the mean value.

Note that in this section, the values of P and T are shown in the same figure (see Figure

4.5, for example) with P displayed as a bar graph that uses the scale on the left Y-axis and

T displayed as a sequence of points that uses the scale on the right Y-axis.

4.6.1 Effect of Job Arrival Rate

 As expected, P, T, and O increase with the job arrival rate (λ) as depicted in Figure

4.5 and Figure 4.6. The increase in λ increases the rate of jobs arriving on the system, which

in turn leads to a high contention for resources. The high contention for resources means

that MRCP-RM is not able to schedule all the jobs to start executing at their earliest start

times. This means that some jobs need to be delayed, which in turn leads to an increase in

T, and it also can cause some jobs to miss their deadlines, increasing P. The reason for O

increasing can be attributed to jobs arriving on the system more frequently causing MRCP-

RM to have more jobs to match make and schedule each time it is invoked. This in turn

causes MRCP-RM to have to generate and solve an OPL Model with more decision

104

variables and constraints, which requires more processing time and thus an increase in O

is observed.

Figure 4.5. MRCP-RM: effect of λ on P and T.

Figure 4.6. MRCP-RM: effect of λ on O.

0

50

100

150

200

250

300

350

400

450

500

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.001 0.01 0.015 0.02

T
(s

ec
)

P
 (

%
)

λ (jobs per sec)

P T

0

0.05

0.1

0.15

0.2

0.25

0.001 0.01 0.015 0.02

O
 (

se
c)

λ (jobs per sec)

105

Another reason for why O increases with λ is described. When λ is high, jobs arrive

on the system more frequently, causing a situation where MRCP-RM regularly observes

that there are multiple tasks that have been scheduled but not finished executing. This in

turn increases the model generation and solving times because of the additional decision

variables and constraints that need to be processed for each task in the system. At lower λ,

this situation does not occur as often because tasks have more time to finish executing

before new jobs arrive. Note that it is observed that O is still small compared to T, even at

higher values of λ. For example, O/T, which is an indicator of the processing overhead, is

observed to increase from 0.005% to 0.04% as λ increases from 0.001 to 0.02 jobs per sec.

4.6.2 Effect of Task Execution Times

 Increasing memax, the upper-bound of the execution time of map tasks (me), not only

increases the average me, but it also increases the average execution time of reduce tasks

(re). This is because of the relationship between re and me as shown in Table 4.2 . Thus,

the overall execution time of a job that comprises both map tasks and reduce tasks increases

as memax increases. The results presented in Figure 4.7 and Figure 4.8 show that P, T, and

O all increase with memax. T is expected to increase with memax because as memax increases

the required execution times of the jobs submitted to the system also increase. Furthermore,

since jobs have high execution times, they remain in the system for a longer period of time,

leading to a higher contention for resources and P increasing. Recall that MRCP-RM

creates and solves a new OPL Model when jobs arrive and adds a new constraint to the

OPL Model for each task that has started but not completed executing. In general, adding

more decision variables and constraints increases the model generation and solving times,

which causes O to increase. However, as captured in Figure 4.8, O is still observed to be

106

much smaller than T. O/T is observed to remain lower than 0.02% when memax is changed

from 10 sec to 100 sec.

Figure 4.7. MRCP-RM: effect of memax on P and T.

Figure 4.8. MRCP-RM: effect of memax on O.

0

100

200

300

400

500

600

700

800

900

1000

0

0.5

1

1.5

2

2.5

10 50 100

T
(s

ec
)

P
 (

%
)

memax (sec)

P T

0

0.05

0.1

0.15

0.2

0.25

10 50 100

O
 (

se
c)

memax (sec)

107

4.6.3 Effect of Earliest Start Time of Jobs

Figure 4.9 and Figure 4.10 show that P, T, and O tend to decrease as smax increases.

At higher values of smax, MRCP-RM has more flexibility in scheduling jobs because the

execution of jobs does not overlap as often. For instance, some jobs have earliest start times

closer to their arrival times whereas other jobs have earliest start times further ahead in the

future. This allows jobs to be scheduled to start executing at different points in time, which

results in a lower contention for resources. In other words, more jobs can start executing at

their earliest start times, resulting in a lower P and T. The low contention for resources also

contributes to O decreasing because MRCP-RM has less jobs to process at a given point in

time.

Figure 4.9. MRCP-RM: effect of smax on P and T.

Figure 4.11 and Figure 4.12, in which p (the probability that a job has an earliest

start time that is greater than its arrival time) is varied, shows a similar trend in performance

as observed in Figure 4.9 and Figure 4.10. However, it is observed that the decrease in P

0

50

100

150

200

250

300

350

400

450

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10000 50000 250000

T
(s

ec
)

P
 (

%
)

smax (sec)

P T

108

and O as p increases is not as substantial compared to the decrease in P and O as smax is

increased. This is because the range of earliest start times for the jobs in the experiments

where p is investigated is not as large as those used in the experiments where smax is

investigated.

Figure 4.10. MRCP-RM: effect of smax on O.

Figure 4.11. MRCP-RM: effect of p on P and T.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

10000 50000 250000

O
 (

se
c)

smax (sec)

0

50

100

150

200

250

300

350

400

450

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.5 0.9

T
 (

se
c)

P
 (

%
)

p

P T

109

Figure 4.12. MRCP-RM: effect of p on O.

4.6.4 Effect of Job Deadlines

The impact of emmax on the performance of MRCP-RM is depicted in Figure 4.13

and Figure 4.14. Recall from Table 4.2 that the deadline of a job j (dj) is calculated as dj =

sj + SETj
R * U(1, emmax) where sj is the earliest start time of job j, SETj

R is the execution

time of job j when it executes at its maximum degree of parallelism on a set of resources R

(comprising m resources), and U(1, emmax) is the uniform distribution used to generate the

execution time multiplier for determining the laxity of the job. Thus, increasing emmax

increases the deadlines of the jobs, leading to jobs having more laxity (or slack time). As

expected, P increases with a decrease in emmax. This is because jobs have less slack time

(tighter deadlines) and are more susceptible to miss their deadlines when emmax is small.

Thus, in this situation jobs need to be executed at or close to their earliest start times so

that they can meet their deadlines; however, since there are multiple jobs contending for

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.1 0.5 0.9

O
 (

se
c)

p

110

resources, some jobs cannot be executed at their earliest start times, resulting in some of

these jobs missing their deadlines.

Figure 4.13. MRCP-RM: effect of emmax on P and T.

Moreover, as shown in Figure 4.13, it is observed that T does not significantly

change when emmax increases. This is because for the workload and system parameters

experimented with, only a small number of jobs are delayed to minimize P. A higher degree

in change in T is expected if λ is increased. This will result in more jobs being present in

the system and a higher contention for resources, which will lead to MRCP-RM delaying

the execution of some jobs, thus increasing the turnaround time of these jobs. From Figure

4.14, it is observed that O decreases as emmax increases. At smaller values of emmax (e.g.,

emmax is 2), O is observed to be quite high because jobs have stringent deadlines, which

causes MRCP-RM to require more time to perform matchmaking and scheduling of the

jobs to ensure that the number of late jobs is minimized.

0

50

100

150

200

250

300

350

400

450

0

0.5

1

1.5

2

2.5

3

3.5

4

2 5 10

T
(s

ec
)

P
 (

%
)

emmax

P T

111

Figure 4.14. MRCP-RM: effect of emmax on O.

4.6.5 Effect of the Number of Resources

Figure 4.15 and Figure 4.16 show that P, T, and O increase as m, the number of

resources in the system, decreases. P and T increase as m decreases because there are less

resources to execute jobs (leading to a high contention for resources), which causes some

jobs to be delayed for a long period of time. This prevents jobs with stringent deadlines

(i.e., small laxity) from being able to finish executing before their respective deadlines. As

shown in Figure 4.16, when there are fewer resources, O increases. The CP Optimizer

solving engine used by MRCP-RM can find an initial feasible solution quickly, but more

time is required to refine the initial solution and explore other possible feasible solutions

to find a schedule that minimizes the number of late jobs, which in turn causes O to

increase. More specifically, the CP Optimizer attempts to match make and schedule

different combinations of tasks on the limited number of resources to see if the number of

jobs that miss their deadlines can be reduced further.

0

0.02

0.04

0.06

0.08

0.1

0.12

2 5 10

O
 (

se
c)

emmax

112

Figure 4.15. MRCP-RM: effect of m on P and T.

Figure 4.16. MRCP-RM: effect of m on O.

4.6.6 Scalability of the MRCP-RM Technique

Some of the experiments described in the earlier sub-sections use high arrival rates

that generate a high contention for resources, leading to a resource utilization of

0

100

200

300

400

500

600

700

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

25 50 100

T
(s

ec
)

P
(%

)

m

P T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 50 100

O
 (

se
c)

m

113

approximately 80% for example, to show that the MRCP-RM technique remains effective

under high load (as indicated by the low values of P and O/T achieved in the results

presented in Section 4.6.1 to Section 4.6.5). Recall from Section 4.4.1 that O/T is an

indicator of the processing overhead as O/T puts the measured values of the algorithm

runtimes (O) into context by considering the value of O relative to the mean job turnaround

time (T). In addition to performing experiments using low arrival rates (generating a low

system load) and a small number of resources, high arrival rates (generating a high system

load) and a large number of resources are also used to investigate the scalability of the

MRCP-RM technique. The results of the experiments demonstrate that P remains less than

4% and the overhead of the algorithm is observed to be low: O remains lower than 0.57

sec and the O/T ratio is lower than 0.09%. Regarding the memory required for solving the

OPL Model, it is observed that for λ equal to 0.001, 0.01, 0.015, and 0.02 jobs per sec, the

average memory usage is 169, 489, 662, and 803 MB, respectively. This value is reasonable

for today’s servers, which typically have tens of GBs of RAM.

Using the experimental parameters outlined in Table 4.2 the following observations

are made with respect to O/T. For a given arrival rate (λ), as the number of resources in the

system (m) increases, O/T is observed to decrease due to less contention for resources (e.g.,

from 0.09% to 0.01% as m increases from 25 to 100) (refer to Section 4.6.5). On the other

hand, for a given m, as λ increases, O/T increases because of the higher contention for

resources (e.g., from 0.005% to 0.039% as λ increases from 0.001 to 0.02 jobs per sec)

(refer to Section 4.6.1). These results demonstrate that O/T will not continuously increase

if both m and λ increase. In other words, for a reasonable contention for resources (e.g., for

a resource utilization of 0.8), O/T is expected to be reasonable. Moreover, if a high value

114

of O is a concern for a given system, it is possible to configure and tune the IBM CP

Optimizer solving engine to reduce the time spent solving the OPL Model. For example,

one can set a time limit for finding a solution, or allow the solver to find a sub-optimal

solution which is within a given percentage of the optimal value.

4.7 Summary and Discussion

This chapter describes MRCP-RM, an effective and efficient matchmaking and

scheduling technique for processing an open stream of MapReduce jobs with SLAs on a

computing environment with a fixed number of resources, such as a private cluster or a set

of resources acquired a priori from a public cloud. The objective of MRCP-RM is to

minimize the number of jobs that miss their deadlines. To accomplish this, MRCP-RM

formulates the matchmaking and scheduling problem as an optimization problem and

solves it using constraint programming. An in-depth performance evaluation of MRCP-

RM is conducted and a number of insights into system behaviour are gained by analyzing

the experimental results as summarized next.

 Comparison with MinEDF-WC technique [70]: It is observed that MRCP-RM

achieves a lower P and has a similar T compared to MinEDF-WC. A reduction in

P as high as 93% and on average 82% is observed.

 Effectively controlling P: In most of the factor-at-a-time experiments conducted

(refer to Section 4.6), MRCP-RM is observed to achieve a very low P (less than

0.6%). However, in the experiments where jobs are susceptible to miss their

deadlines and the contention for resources is high (e.g., when emmax is small, or

m is small, or λ is high, or memax is high) P is still observed to be low: 3.46%,

3.89%, 1.7%, and 1.96%, respectively.

115

 Dependence of T on resource contention: T increases most significantly when

there is a high contention for resources (e.g., when λ is high, or m is small, or

memax is large), resulting in some jobs not being able to start executing at their

earliest start times. This demonstrates the relationship between T and the

contention for resources.

 Efficiency: In the factor-at-a-time experiments described in this chapter, MRCP-

RM is observed to have an O of less than 0.05 sec in all cases except when there

is a high contention for resources. However, for these cases, O is still observed to

be low: less than 0.57 sec.

o The main factor that causes an increase in O is the time it takes for the CP

Optimizer to generate and solve the OPL Model. In general, an OPL Model

that has more input data (e.g., a high number of jobs, tasks, and resources)

takes longer to solve due to the higher number of constraints and decision

variables that need to be processed.

 Scalability: O is observed to increase when the contention for resources is high

(e.g., high λ). However, O/T is observed to be less than 0.09% in all the factor-

at-a-time experiments conducted, demonstrating that the matchmaking and

scheduling overhead is small. MRCP-RM is thus observed to be scalable over the

wide range of system and workload parameters experimented with. It is expected

that for a reasonable range of contentions for resources, MRCP-RM can work

efficiently and achieve a reasonable O and O/T.

Overall, the results of the performance evaluation demonstrate that the MRCP-RM

technique can effectively and efficiently perform matchmaking and scheduling of an open

116

stream of MapReduce jobs with SLAs, leading to a small proportion of jobs missing their

deadlines and a low matchmaking and scheduling overhead over a wide-range of system

and workload parameters experimented with.

Further Improvement in Scalability: A direction for future work is the investigation

of whether using batching: performing matchmaking and scheduling for a subset of the

jobs (batch) that are currently in the queue, can be used to enhance the scalability of the

MRCP-RM technique even further. It is possible that using batching can be effective when

there is a very large number of jobs in the queue, leading to a large number of decision

variables and constraints that require a significant amount of time for solving the OPL

Model. However, using batching can also increase the processing overhead because

multiple OPL Models, one for each batch, need to be generated and solved. The trade-off

between the performance impacts of the increase in this processing overhead and the

potential reduction in the OPL Model solving times warrants further investigation.

Moreover, exploring how other resource allocation strategies, such as first-fit, worst-fit,

and random fit, impact system performance when using POpt1, which currently leverages

a best-fit resource allocation strategy and is described in Section 4.3.1, also forms an

interesting direction for future research.

117

Chapter 5 Hadoop Constraint Programming based Resource

Management Technique

The strong performance of the MRCP-RM technique in simulation experiments

(described in Section 4.5 and Section 4.6) motivates the work presented in this chapter,

which focuses on devising a revised version of the MRCP-RM technique and implementing

it on a real system: Hadoop [25]. Recall from Section 2.4 that Hadoop is a popular open-

source framework that implements the MapReduce programming model. In Hadoop, both

matchmaking and scheduling are performed by an entity referred to as the Hadoop Task

Scheduler [25]. The new technique, which is called the Hadoop Constraint Programming

based Resource Management technique (HCP-RM), is implemented in a new scheduler for

Hadoop named the Constraint Programming based Scheduler (abbreviated CP-Scheduler).

In addition to describing the HCP-RM algorithm, this chapter describes the experiences

and the challenges that are encountered in designing and implementing the CP-Scheduler

in Hadoop 1.2.1. Note that Hadoop 1.2.1 is used because it was the more stable and more

widely used version of Hadoop at the time this research started. However, it is possible to

adapt this work to other versions of Hadoop. The CP-Scheduler is devised to perform

matchmaking and scheduling of an open stream of Hadoop jobs with deadlines on a

Hadoop cluster where the objective is to minimize the number of jobs that miss their

deadlines. To the best of our knowledge, there is no existing research describing a CP-

based scheduler for Hadoop that can perform matchmaking and scheduling of an open

stream of Hadoop jobs with deadlines.

The rest of this chapter is organized as follows. Section 5.1 presents an overview

of the CP-Scheduler and the HCP-RM algorithm. In Section 5.2, a description of how

118

matchmaking and scheduling is performed in Hadoop is provided. The focus of Section 5.3

is on the design and implementation of the CP-Scheduler. Section 5.4 describes the HCP-

RM algorithm, including the technique devised to support data locality. In Section 5.5, the

performance evaluation of HCP-RM, including a description of the two workloads used in

the experiments, is provided. The results of the experiments are then presented and

discussed in Section 5.6. The focus of Section 5.7 is on the investigation into how error in

user-estimated execution times can affect system performance. With little existing work on

these issues in the context of Hadoop systems, the experimental results can lead to new

insights into system behaviour and performance. Lastly, in Section 5.8, a summary and

discussion of the chapter is provided.

5.1 Overview of the CP-Scheduler and the HCP-RM Algorithm

Figure 5.1 shows a Hadoop cluster deploying the CP-Scheduler, which implements

the HCP-RM algorithm. The Hadoop cluster comprises a single master node (NameNode

and JobTracker) and m slave nodes (DataNodes and TaskTrackers). Recall the discussion

of Hadoop provided in Section 2.4. Users submit Hadoop jobs to the JobTracker, which

uses the CP-Scheduler to match make and schedule the map and reduce tasks of the jobs

onto the TaskTrackers. More specifically, the HCP-RM algorithm of the CP-Scheduler

uses IBM CPLEX’s Java APIs to create and solve an optimization problem that models the

matchmaking and scheduling problem. The optimization problem is formulated using

constraint programming and it is referred to as the CP Model (refer to Section 3.3). The

implementation of the CP Model using CPLEX’s Optimization Programming Language

(OPL) is called the OPL Model (recall Section 3.5.3).

119

NameNode

<<solves>><<solves>>

Data

Node

Task

Tracker

Data

Node

Task

TrackerUsersUsers
Data

Node

Task

Tracker

Data

Node

Task

Tracker

Cloud

...

JobTracker

HCP-RM

JobTracker

HCP-RM

<<create>><<create>>

ilog.concert

ilog.opl

ilog.cp

ilog.concert

ilog.opl

ilog.cp

CPLEX CP

Optimzer

CPLEX CP

Optimzer

OPL

Model

OPL

Model

<<uses>><<uses>>

Master Node

NameNode

<<solves>><<solves>>

Slave Node 1

Data

Node

Task

Tracker

Slave Node 1

Data

Node

Task

Tracker

Submit jobsSubmit jobs

 Slave Node m

Data

Node

Task

Tracker

 Slave Node m

Data

Node

Task

Tracker

Cloud

...

JobTracker

CP-

Scheduler

JobTracker

CP-

Scheduler

<<create>><<create>>

ilog.concert

ilog.opl

ilog.cp

ilog.concert

ilog.opl

ilog.cp

CPLEX CP

Optimzer

CPLEX CP

Optimzer

OPL

Model

OPL

Model

<<uses>><<uses>>

Figure 5.1. Example of a Hadoop cluster deploying the CP-Scheduler.

A flowchart that provides a high-level overview of the HCP-RM algorithm that is

used by the CP-Scheduler is presented in Figure 5.2. The HCP-RM algorithm is invoked

by the JobTracker each time it receives a heartbeat message from a TaskTracker (recall

Section 2.4) to perform matchmaking and scheduling. The input required by the algorithm

is a TaskTracker to assign tasks too. The first step is to create the input data required by

the CP Model, which is a set of jobs to schedule, J, and a set of resources, R, on which J is

to be executed on (step 1). Note that J includes newly arriving jobs that have not been

scheduled as well as jobs that have been previously scheduled, but have not completed

executing. Next, the HCP-RM algorithm checks if there are any jobs in J (step 2). If J is

empty, meaning there are no new jobs to schedule and no jobs currently scheduled or

executing on the system, the algorithm ends (step 3b). Otherwise, the algorithm checks to

120

see if there are any new jobs to schedule in J, or any new resources in R (step 3a). Note

that the resources in R can change in two cases: (1) when new resources are added to R as

a result of new TaskTrackers being added to the Hadoop cluster, or (2) when resources are

removed from R because TaskTrackers that are part of the Hadoop cluster fail or crash. If

there is new input data, the algorithm creates and solves a new CP Model to perform

matchmaking and scheduling (step 4a). Checking for new input data in J and R is performed

to prevent unnecessarily creating and solving a CP Model (which is a source of overhead)

when a solution for the same input has already been found previously. In step 5, the solution

of the CP Model is used to assign tasks to the TaskTrackers for execution. The algorithm

then ends (step 6). A more detailed description of the HCP-RM algorithm is provided in

Section 5.4.

Create input
data for CP

Model

1. 2.

Use solution of CP
Model to assign

tasks to TaskTracker

3b. No

New CP input
data?

3a. Yes

4b. No4a. Yes

5.

Start
Any jobs to
schedule?

End

Invoke MRCP-RM
to create and

solve CP Model

6.

TaskTracker

Figure 5.2. Overview of the HCP-RM algorithm.

5.1.1 Challenges in Designing and Implementing the CP-Scheduler

The challenges encountered in designing and implementing the CP-Scheduler are

summarized. The main challenge is understanding the Hadoop source code to learn the

121

intricacies of how matchmaking and scheduling is performed in Hadoop and determining

which of the Hadoop classes need to be modified to implement a new scheduler (discussed

in Section 5.2). Some of the other challenges in devising the CP-Scheduler include:

 Determining how to create the input data for the OPL Model from the Hadoop

classes (see Section 5.3.2)

 Integrating IBM CPLEX into Hadoop’s source code (see Section 5.3.2)

 Investigating how to handle IBM CPLEX’s lack of support for long values to

represent timestamps (see Sections 5.3.3 and 5.4.2)

 Devising a technique to ensure that a specific TaskTracker executes the task it is

assigned in the solution of the CP Model (see Section 5.4)

 Solving a problem that was discovered during preliminary testing where the

reduce tasks for some MapReduce jobs stall and take a very long time to complete

(discussed in Section 5.4.3)

 Determining the Hadoop classes that need to be modified to support user-

specified job deadlines and to allow users to define the estimated task execution

times of their jobs (described in Appendix C.I and Appendix C.II)

5.2 Matchmaking and Scheduling in Hadoop

This section provides a discussion of how matchmaking and scheduling is

performed in Hadoop. Hadoop provides a pluggable scheduler framework [104] that allows

developers to implement custom schedulers using their own scheduling logic and

algorithms. Note that Hadoop uses the term scheduler to refer to the entity that performs

matchmaking and scheduling. The key to implementing a custom scheduler for Hadoop is

to extend Hadoop’s abstract class org.apache.hadoop.mapred.TaskScheduler and

122

implement the abstract method List<Task> assignTasks(TaskTracker tt). The

assignTasks() method returns a list of tasks (including both map and reduce tasks) that

the supplied TaskTracker should execute as soon as it receives the list. This list of tasks

can be empty meaning that there are no new tasks to assign to the TaskTracker at the

current time.

The Hadoop org.apache.hadoop.mapred.JobTracker class implements the

Hadoop JobTracker daemon (recall Section 2.4), which is responsible for matchmaking

and scheduling the MapReduce jobs that are submitted to the system. The JobTracker class

has a TaskScheduler private field named taskScheduler which stores the reference to the

TaskScheduler object. The TaskScheduler object contains the logic and algorithms used

to assign and schedule tasks on to TaskTrackers. More specifically, the JobTracker class

invokes taskScheduler.assignTasks() each time it receives and processes a heartbeat

message from a TaskTracker. Recall from Section 2.4 that heartbeats are the periodic status

messages that TaskTrackers send to JobTracker. More detail on the intricacies of

matchmaking and scheduling in Hadoop is provided next with a discussion on Hadoop’s

default scheduler, the FIFO (first-in first-out) Scheduler.

5.2.1 Hadoop FIFO Scheduler

Hadoop’s default FIFO scheduler is implemented in the

org.apache.hadoop.mapred.JobQueueTaskScheduler class (abbreviated JQTS), which

extends Hadoop’s TaskScheduler abstract class. The JQTS class keeps jobs that are ready

to execute in priority order and by default, this order is FIFO. There are two key classes

used by JQTS: (1) JobQueueJobInProgressListener (abbreviated JQ-JIPL) and (2)

EagerTaskInitializationListener (abbreviated ETIL). The JQ-JIPL class represents the

123

job queue manager, and by default, it sorts the jobs in the queue in FIFO order, but it is

possible to implement a custom ordering strategy such as ordering jobs by non-decreasing

order of their deadlines. JQ-JIPL extends Hadoop’s abstract class JobInProgressListener

(abbreviated JIPL), which is a class that is used by the JobTracker class to listen for when

a job’s state changes. The JIPL class has three key methods: jobAdded(), jobRemoved(),

and jobUpdated(), which are invoked when JobTracker sees that a job is added, removed,

or updated, respectively. For example, when a user submits a job to JobTracker, JQ-JIPL’s

jobAdded() method is invoked by the JobTracker class to add the submitted job to JQ-

JIPL’s queue.

The ETIL class prepares a submitted job for execution by initializing/creating the

job’s tasks, which includes creating the map tasks and assigning each one a block of data,

called a split, to process (recall Section 2.3). A thread pool with four worker threads is

deployed by the ETIL class to initialize jobs. Similar to the JQ-JIPL class, the ETIL class

extends the JIPL abstract class. Thus, as soon as a job is submitted to JobTracker, ETIL

places the submitted job into its job initialization queue called jobInitQueue, which by

default is sorted in FIFO order. The job remains in the queue until there is a worker thread

available to initialize the job.

5.3 Design and Implementation of the CP-Scheduler

This section discusses the design and implementation of the CP-Scheduler. Similar

to Hadoop’s default FIFO scheduler, the implementation of the CP-Scheduler starts with

creating a class called CP_Scheduler, which extends Hadoop’s TaskScheduler abstract

class. The CP_Scheduler class is placed in the org.apache.hadoop.mapred package and

a class diagram showing its key fields and methods is presented in Figure 5.3. A discussion

124

of the JobQueueManager and JobInitializer classes used by the CP-Scheduler is

provided next. The other fields and methods shown in Figure 5.3 are described in the

discussion of the HCP-RM algorithm (see Section 5.4).

+ CP_Scheduler()
+ assignTasks(tt : TaskTracker) : List<Task>
- generateAndSolve() : void
- createNewModelDefinition() : void
- addConstraints(modelText:String, r:Resource_CPS,
 t:Task_CPS) : void
- extractSolution(keepLateTasks : boolean) : void
- createResourcesForCP() : void
- createJobsToScheduleForCP() : void
- removeTask(t:Task_CPS) : void
- identifyLocalMapTasks(j:Job_CPS) : void

- REFERENCE_TIME : long
- jobQueueManager : JobQueueManager
- jobInitializer : JobInitializer
- oplFactory : IloOplFactory
- settings : IloOplSettings
- modelDef : IloOplModelDefinition
- cpSolver : IloCP
- oplModel : IloOplModel

CP_Scheduler

+ CP_Scheduler()
+ assignTasks(tt : TaskTracker) : List<Task>
- generateAndSolve() : void
- createNewModelDefinition() : void
- addConstraints(modelText:String, r:Resource_CPS,
 t:Task_CPS) : void
- extractSolution(keepLateTasks : boolean) : void
- createResourcesForCP() : void
- createJobsToScheduleForCP() : void
- removeTask(t:Task_CPS) : void
- identifyLocalMapTasks(j:Job_CPS) : void

- REFERENCE_TIME : long
- jobQueueManager : JobQueueManager
- jobInitializer : JobInitializer
- oplFactory : IloOplFactory
- settings : IloOplSettings
- modelDef : IloOplModelDefinition
- cpSolver : IloCP
- oplModel : IloOplModel

CP_Scheduler

Figure 5.3. Abbreviated class diagram of the CP-Scheduler.

The JobQueueManager and JobInitializer classes extend Hadoop’s JIPL class

and have similar functionality to the JQ-JIPL and ETIL classes (discussed in Section 5.2),

respectively. However, there are some modifications that are made to the classes, as

described next. In the JobInitializer class, the resortInitQueue() method is modified

to sort jobs in non-decreasing order of their deadlines (i.e., priority is given to the jobs with

an earlier deadline). Moreover, the JobQueueManager’s JobSchedulingInfoComparator

object is also modified so that jobs with an earlier deadline will be placed at the head of

the queue. Note that in Java, a Comparator is an interface used by Java collection objects

to sort elements of the collection in a specified order [105]. JobSchedulingInfo is a nested

125

class [106] implemented in the JobQueueManager that assembles all the necessary job-

related information (e.g., job id and deadline) required by the JobQueueManager to perform

its function. In Java, a nested class is a class defined within another class. Nested classes

are typically used to group together related classes and increase encapsulation.

The remainder of this section is organized as follows. First a discussion on the

modifications made to the CP Model to make it work efficiently with Hadoop is presented

in Section 5.3.1. A discussion of how IBM CPLEX is integrated in Hadoop is then provided

in Section 5.3.2. Lastly, in Section 5.3.3, the entity classes used by the CP-Scheduler are

described.

5.3.1 Modifications to the CP Model

This section discusses the modifications made to the CP Model (recall Section 3.3)

to make it work more effectively in a Hadoop environment. First, a set of integer decision

variables is added to the CP Model to represent the completion time of each job j in J

(denoted CTj). In addition, a new constraint is added to the CP Model to define the value

of CTj as follows:

(𝐶𝑇𝑗 = max
𝑡𝑟𝑑∈𝑇𝑗

𝑟𝑑
 (𝑎𝑡𝑟𝑑 + 𝑒𝑡𝑟𝑑)) ∀𝑗 ∈ 𝐽

This constraint states that the completion time of a job j (CTj) should be set to the

completion time of job j’s latest finishing reduce task.

The second modification that is made to the CP Model is to the objective function.

The original objective function of the CP Model only focuses on the minimization of the

number of late jobs; however, the new objective function presented here also considers

126

minimizing the maximum turnaround time of the jobs. The equation for the new objective

function is:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ((∑ 𝑁𝑗

𝑗∈𝐽

) + 1) × 𝑚𝑎𝑥𝑗∈𝐽(𝐶𝑇𝑗 − 𝑠𝑗)

The first part of the objective function aims to minimize the number of late jobs, whereas

the second part of the objective function is for minimizing the maximum turnaround time

of the jobs. This change is made because it was found that during preliminary experiments

tasks were not being distributed evenly among the TaskTrackers (resources) of the Hadoop

cluster. The net effect of the modified objective function is to minimize the number of late

jobs, while also trying to distribute the tasks evenly among the TaskTrackers (i.e., perform

load balancing) to lower the turnaround time of the jobs. This is confirmed to be achieved

by examining the output of preliminary experiments. Note that the reason for adding 1 to

the sum of Nj is to ensure that the CP Optimizer solving engine still minimizes the

maximum job turnaround time if there are no late jobs in the system (i.e., sum of Nj is equal

to 0).

5.3.2 Integration of IBM CPLEX with Hadoop

This section briefly discusses how IBM CPLEX [15], which is used to solve the

OPL Model, is integrated with Hadoop. Note that a more detailed discussion can be found

in Appendix C.III. To generate and solve the OPL Model, the CP-Scheduler imports IBM

CPLEX’s Java libraries, which includes the following Java APIs [97]: ILOG Concert

Technology, ILOG OPL, and ILOG CP. These APIs allow the CP-Scheduler to generate

and create the OPL Model and invoke CPLEX’s CP Optimizer solving engine. More

127

specifically, the Java library packages that are used by the CP-Scheduler are named

ilog.concert, ilog.opl, and ilog.cp.

Two additional classes are devised for the CP-Scheduler to aid in the integration of

CPLEX: OPLModelSource and OPLModelData. The OPLModelSource class stores the source

code of the OPL Model. On the other hand, the OPLModelData class is used by the CP-

Scheduler to create the input data for the OPL Model. More specifically, OPLModelData,

which extends the ilog.opl.IloCustomOplDataSource class [97], converts the

CP_Scheduler class’ resources and jobsToSchedule lists to a format that can be used by

the OPL Model (i.e., generates the OPL Model’s input sets: Jobs, Tasks, and Resources).

5.3.3 Entity Classes

Three entity classes, Job_CPS, Task_CPS, and Resource_CPS, are devised for the

CP-Scheduler. These classes represent how the CP-Scheduler views MapReduce jobs,

tasks, and TaskTrackers (resources), respectively, and store the necessary information

required by the CP-Scheduler to perform matchmaking and scheduling of MapReduce jobs.

An abbreviated class diagram showing the important fields, methods, and relationships of

the three entity classes with the CP_Scheduler class is presented in Figure 5.4. As shown

in the figure, the CP_Scheduler class maintains a list of jobs to schedule, called

jobsToSchedule, and a list of resources to execute the jobs, called resources.

The Job_CPS class contains information required by the CP-Scheduler to map jobs

onto TaskTrackers (resources). This information is retrieved from Hadoop’s

JobInProgress class and includes the following information about the job: id, earliest start

time (or release time), deadline, map tasks, and reduce tasks. The JobInProgress class

represents a MapReduce job that is being tracked by JobTracker and it stores all the

128

information for a MapReduce job including: the job’s map and reduce tasks, its state (e.g.,

running, succeeded, failed), as well as accounting information (e.g., launch time and finish

time). The releaseTime and deadline fields of the Job_CPS class store the number of

milliseconds elapsed from midnight, January 1, 1970 UTC, which is known as the Unix

Epoch [107]. Since the releaseTime field is constantly updated depending on when the

job is being scheduled (discussed more in Section 5.4), Job_CPS has an origReleaseTime

field that stores the release time of the job when the job is first received by JobTracker.

+ Resource_CPS(tts : TaskTrackerStatus)
+ addScheduledTask(t : Task_CPS) : void
+ removeScheduledTask(t : Task_CPS) : void
+ scheduledTaskCompleted(t : Task_CPS) : void
+ addLocalMapTask(t : Task_CPS) : void

- id : String
- numMapSlots : int
- numReduceSlots : int
- localMapTasks : List<Task_CPS>

Resource_CPS

+ Resource_CPS(tts : TaskTrackerStatus)
+ addScheduledTask(t : Task_CPS) : void
+ removeScheduledTask(t : Task_CPS) : void
+ scheduledTaskCompleted(t : Task_CPS) : void
+ addLocalMapTask(t : Task_CPS) : void

- id : String
- numMapSlots : int
- numReduceSlots : int
- localMapTasks : List<Task_CPS>

Resource_CPS

CP_SchedulerCP_Scheduler

+ Job_CPS(jip:JobInProgress)
+ normalizeAndConvertTimes(baseTime :
long) : void

- id : JobID
- releaseTime : long
- deadline : long
- origReleaseTime : long
- isTimeNormalized : boolean

Job_CPS

+ Job_CPS(jip:JobInProgress)
+ normalizeAndConvertTimes(baseTime :
long) : void

- id : JobID
- releaseTime : long
- deadline : long
- origReleaseTime : long
- isTimeNormalized : boolean

Job_CPS

+ Task_CPS(tip:TaskInProgress,
parentJob:Job_CPS, execTime:int)
+ addLocalResource(r : Resource_CPS)
: void

- id : TaskID
- executionTime : int
- isReduceTask : boolean
- numSlotsReq : int
- scheduledStartTime : int
- isExecuting : boolean
- localResources : List<Resource_CPS>

Task_CPS

+ Task_CPS(tip:TaskInProgress,
parentJob:Job_CPS, execTime:int)
+ addLocalResource(r : Resource_CPS)
: void

- id : TaskID
- executionTime : int
- isReduceTask : boolean
- numSlotsReq : int
- scheduledStartTime : int
- isExecuting : boolean
- localResources : List<Resource_CPS>

Task_CPS

 1..*

parentJob

mapTasks 1..*

parentJob

mapTasks

0..*assignedResource

schedMapTasks

0..*assignedResource

schedMapTasks

 0..*

jobsToSchedule

 0..*

jobsToSchedule

 0..*resources 0..*resources 0..*

parentJob

reduceTasks 0..*

parentJob

reduceTasks

0..*
assignedResource

schedRedTasks

0..*
assignedResource

schedRedTasks

Figure 5.4. Abbreviated class diagram of the CP-Scheduler’s entity classes.

129

The isTimeNormalized field indicates if the job’s releaseTime and deadline

fields are normalized, which involves performing the following calculations:

releaseTime = releaseTime – REFERENCE_TIME

deadline = deadline - REFERENCE_TIME

The REFERENCE_TIME variable is a field in the CP_Scheduler class that represents an epoch

and stores a timestamp that is taken when the CP-Scheduler starts to map its first job. The

releaseTime and deadline fields must be normalized because CPLEX does not support

values of type long; only int is supported. Normalization of the releaseTime and

deadline fields also includes converting the times from milliseconds to seconds in order

to keep the unit of time consistent with the task execution times, which are reported in

seconds. If the task execution times are reported using a different unit of time the

releaseTime and deadline fields can be converted accordingly. These calculations and

the time conversion is performed by invoking the normalizeAndConvertTimes() method.

The Task_CPS class stores the information that the CP-Scheduler uses for

matchmaking and scheduling the MapReduce tasks including the task’s: id, estimated

execution time (in seconds), task type, and the number of task slots (resource capacity)

required. All this information, except the estimated task execution times (discussed in

Appendix C.II), is retrieved from Hadoop’s TaskInProgress class. Once a task is mapped,

its assignedResource and scheduledStartTime fields are set to the resource that the task

is scheduled to execute on and the time the task is to start running, respectively. The

isExecuting field is set to true if the task is currently executing; otherwise, it is false. The

Task_CPS class also has a parentJob field that indicates the job that the task belongs to.

The Resource_CPS class contains TaskTracker information (retrieved from

Hadoop’s TaskTrackerStatus class), including id (hostname), the number of map task

130

slots, and the number of reduce task slots. The tasks that are assigned to the resource are

placed in either the schedMapTasks list or the schedRedTasks list, depending on the task

type. Note that both these lists keep tasks sorted by non-decreasing order of their scheduled

start times. The methods addScheduledTask() and removeScheduledTask() are used to

add and remove tasks from the scheduled tasks lists, respectively. The last method,

scheduledTaskCompleted(), is invoked when a task has completed its execution.

Completed tasks are moved from the scheduled tasks lists to the completed tasks lists. Note

that the other fields and methods shown in Figure 5.4 that have not yet been discussed, will

be described in the upcoming sections.

5.4 HCP-RM Algorithm

This section describes the data-locality-aware HCP-RM algorithm (see Algorithm

5.1), which is implemented in the CP_Scheduler class’ assignTasks() method. The

assignTasks() method is invoked by JobTracker each time it receives a heartbeat message

from a TaskTracker and its purpose is to assign tasks to the TaskTracker for execution.

Since MapReduce/Hadoop applications typically process a large amount of data, frequent

transmission of data from one machine in the Hadoop cluster to another machine in the

cluster over the network can deteriorate system performance due to network delays and

limited bandwidth in the cluster. Thus, it is beneficial to use a data-locality-aware system

that can limit the data transfer between nodes as much as possible. A data-locality-aware

system assigns tasks to execute on nodes that contain (or are close to) the input data of the

task to eliminate (or minimize) data transmission over the network. The technique that is

devised to support data locality is described in Section 5.4.1 and is used by the HCP-RM

algorithm.

131

Algorithm 5.1: HCP-RM Algorithm

Input: TaskTracker tt

Output: list of tasks for the supplied TaskTracker to execute, named assignedTasks

1: Get currently available map task slots and reduce task slots of tt.

2: call createResourcesForCP() returning hasNewResources

3: call createJobsToScheduleForCP() returning hasNewJobs

4: if CP-Scheduler’s jobsToSchedule list is empty then return empty list

5: if hasNewJobs = true or hasNewResources = true then

6: call generateAndSolve()

7: end if

8: res  Get Resource_ CPS object from CP-Scheduler’s resources list with the same

id as tt.

9: for each available map task slot in tt do

10: while there is a map task scheduled on res do

11: Task_CPS t  Get the map task with the earliest scheduled start

 time from res.

12: tip  t.getTaskInProgress()

13: if tip is complete then

14: call removeTask()

15: else

16: jip  t.getParentJob().getJobInProgress()

17: call jip.obtainSpecificMapTask(tip) returning mapTask

18: Add mapTask to assignedTasks.

19: break

20: end if

21: end while

22: end for

23: for each available reduce task slot in tt do

24: while there is a reduce task scheduled on res do

25: Task_CPS t  Get the reduce task with earliest scheduled start time

 from res.

26: tip  t.getTaskInProgress()

27: if tip is complete then

28: call removeTask()

29: else if t.getParentJob().getMapTasks().isEmpty() then

30: jip  t.getParentJob().getJobInProgress()

31: call jip.obtainSpecificReduceTask(tip) returning reduceTask

32: Add reduceTask to assignedTasks.

33: break

34: end if

35: end while

36: end for

37: return assignedTasks

132

A walkthrough of the HCP-RM algorithm is provided next. The input required by

the algorithm is a TaskTracker to assign tasks to, and the output is a list of tasks for the

supplied TaskTracker to execute (includes both map and reduce tasks). The first step (line

1) is to calculate the number of currently available map task slots and reduce task slots of

the supplied TaskTracker by subtracting the number of running tasks from the capacity of

the resource as shown:

availMapSlots = mapCapacity – runningMaps

availReduceSlots = reduceCapacity – runningReduces

The next step (lines 2-3) is to create the Resource_CPS list (called resources) and Job_CPS

list (called jobsToSchedule), which are required as input to the OPL Model. The

createResourcesForCP() method is invoked to create the resources list. More

specifically, the createResourcesForCP() method uses the JobTracker’s

activeTaskTrackers() method to retrieve a collection of TaskTrackerStatus objects,

which are then used to create Resource_CPS objects via its constructor (refer to Figure 5.4).

If the createResourcesForCP() method finds that the resources list has at least one new

resource added or at least one resource has been removed, it returns true; otherwise, false

is returned. Moreover, the jobsToSchedule list is created by invoking the

createJobsToScheduleForCP() method, which checks the JobQueueManager’s jobQueue

(a collection of JobInProgress objects) for new jobs that are ready to run (i.e., setup is

complete and tasks are initialized) and creates a new Job_CPS object for each new job

using the Job_CPS’ constructor. In addition, createJobsToScheduleForCP() invokes the

identifyLocalMapTasks() method, which is described in detail in Section 5.4.1, to

identify the resources that store the input data of each map task. This is required for making

133

the HCP-RM algorithm data-locality-aware. Note that the jobsToSchedule list includes

new jobs to schedule and jobs that have been previously scheduled but have not completed

executing. If there are new jobs added to the jobsToSchedule list,

createJobsToScheduleForCP() returns true; otherwise, false is returned.

The next step is to check if the CP-Scheduler’s jobsToSchedule list is empty. If

this condition is true, then an empty task list is returned (line 4). Otherwise, the algorithm

continues and if either the hasNewJobs or the hasNewResources flags are true, the CP-

Scheduler’s generateAndSolve() method (described in Section 5.4.2) is invoked to create

and solve an OPL Model (see lines 5-7). These two flags are used to prevent unnecessarily

invoking generateAndSolve(), which is a source of overhead, when a solution to the OPL

Model for the same input data (jobsToSchedule and resources) has already been found.

Once there is a solution to the OPL Model, either a new solution or a previously generated

solution, the next step is to retrieve the assigned map and reduce tasks for the supplied

TaskTracker. This is accomplished by retrieving the supplied TaskTracker’s corresponding

Resource_CPS object from the CP-Scheduler’s resources list (line 8), which is the

Resource_CPS object that has the same id as the supplied TaskTracker. The retrieved

Resource_CPS object is saved in a variable named res.

Each available map task slot of the supplied TaskTracker is then assigned a map

task to execute if there is one available (lines 9-22). This is accomplished by performing

the following operations. First, the map task (a Task_CPS object) with the earliest scheduled

start time is retrieved from res and saved in a variable t (line 11). The map task t’s

corresponding TaskInProgress (abbreviated TIP) object is then retrieved as shown in line

12. The status of task t is then checked to see if it has completed executing using the

134

retrieved TIP object. If this is true, the CP-Scheduler’s removeTask() method is invoked

(lines 13-14) to remove the task from the system. In addition, removeTask() also checks if

the job’s mapTasks and reduceTasks lists are empty (i.e., checks if the job has completed

executing). If this is true, the job’s releaseTime is set to its origReleaseTime, and the job

is moved from the CP-Scheduler’s jobsToSchedule list to the completedJobs list. On the

other hand, if the map task has not completed executing, the task is assigned to the supplied

TaskTracker tt for execution (lines 15-20). This is accomplished by invoking a new

method named obtainSpecificMapTask(TaskInProgress tip) that is implemented in

Hadoop’s JobInProgress class. As the name suggests, given a TaskInProgress object,

the obtainSpecificMapTask() method returns the corresponding Hadoop Task object

(i.e., Task object that has the same id as TaskInProgress). The Task object that is returned

is then added to the assignedTasks list.

The same logic captured in lines 9-22 is then applied to the TaskTracker’s reduce

task slots (see lines 23-36), except with one change to the else statement (line 15). The

else statement is changed to an else if statement that checks if all the map tasks of the

job have completed executing before the job’s reduce tasks are scheduled (line 29). This

needs to be performed because of a problem discovered during preliminary testing that is

described in Section 5.4.3. Moreover, a new obtainSpecificReduceTask() method is

implemented in Hadoop’s JobInProgress class that returns the reduce task (Task object)

with the same id as the supplied TIP and is used as shown in line 31. Lastly, the

assignedTasks list, which now contains the tasks that the supplied TaskTracker should

execute, is returned (line 37).

135

5.4.1 Technique to Support Data Locality

This section describes the heuristic technique devised for the HCP-RM algorithm

to support data locality. The technique increases the estimated execution time of non-local

tasks (which are tasks that execute on a resource that does not store the input data for the

tasks) by an estimated time taken to transfer the data from a resource containing the input

data of the task. This allows the system to know that a task has a lower estimated execution

time on a resource where its input data is stored locally compared to a resource that does

not have its input data stored locally. This should therefore make it more likely that jobs

are assigned to resources which contain their input data.

The HCP-RM algorithm uses a method called identifyLocalMapTasks() (see

Algorithm 5.2) to identify, for each map task in the supplied job, the resources that each

map task can execute on locally. A resource can provide local execution if the input data

of the task is stored locally on its disk. As described earlier, identifyLocalMapTasks() is

invoked by the createJobsToScheduleForCP() method (line 3 of Algorithm 5.1). The

createJobsToScheduleForCP() method invokes identifyLocalMapTasks() multiple

times: once for each job in the jobsToSchedule list. A walkthrough of

identifyLocalMapTasks() is provided next.

The input required by the method is a Job_CPS object, which is an object that

represents how the HCP-RM algorithm views a MapReduce job that has been submitted to

the system. The method processes each of the supplied job’s map tasks (line 1), and for

each map task t (represented by a Task_CPS object), the following operations are

performed. First, the resources (represented by Resource_CPS objects) where t’s input data

is located are retrieved and then saved in a list called localResources (line 2). This

136

operation is implemented by invoking the getSplitLocations() method of Hadoop’s

TaskInProgress class, which returns the hostnames of the TaskTrackers (resources) where

a task’s input data is stored. Next, the method iterates through each resource r in

localResources (line 3) and performs two operations. The first operation is to add the map

task t to resource r’s localMapTasks list (line 4), which is a list that stores all the map tasks

that r can execute locally. The second operation is to add r to t’s localResources list (line

5), which is a list that stores all the resources that can execute t locally. After all the map

tasks of the input job are processed the method ends.

Algorithm 5.2: CP-Scheduler’s identifyLocalMapTasks()

Input: Job_CPS job

Output: none

1: for each map task t in job do

2: localResources  Get the resources where t’s input data is located.

3: for each resource r in localResources do

4: r.addLocalMapTask(t)

5: t.addLocalResource(r)

6: end for

7: end for

The OPL Model (recall Section 3.5.3) that is solved by the HCP-RM algorithm is

modified to allow the execution time of a map task to be specified on a per resource basis.

Recall that the OPL Model uses a data type called tuple for grouping together related data.

More specifically, the OPL Model defines Job, Task, and Resource tuples (described in

detail in Appendix A.III) to represent MapReduce jobs, MapReduce tasks, and resources

(TaskTrackers), respectively. The OPL Model also defines a tuple called Option to

represent the xtr decision variable, which is a binary variable used for matchmaking (recall

Section 3.3). The variable xtr is set to 1 if task t is assigned to execute on resource r;

otherwise, xtr is set to 0. Similar to the xtr variable, the Option tuple contains two attributes:

137

a Task t and Resource r. A set of Option tuples named Options is derived to contain all

the possible combinations of tuples in the form <Task, Resource>. The change that is

made to the OPL Model to allow the execution time of a map task to be specified on a per

resource basis is removing the execution time attribute from the Task tuple and moving the

attribute to the Option tuple. The execution time attribute for the Option tuples are read

from a two-dimensional array called TaskExecutionTimes[Task, Resource], which

specifies the execution time for each task t in AT on each resource r in R.

The TaskExecutionTimes array is populated by the OPLModelData class. Recall

from Section 5.3.2 that the OPLModelData class is used by the HCP-RM algorithm to

convert the resources and jobsToSchedule lists to a format that the OPL Model can read

(i.e., generates the OPL Model’s input datasets: Jobs, Tasks, and Resources). If a map task

t can execute on a resource r where the input data is stored locally on its disk (referred to

as local execution), the estimated execution time is equal to the execution time of the map

task specified by the user (et). Conversely, if the map task executes on a resource where

the input data is not stored locally (referred to as non-local execution), the estimated

execution time is the sum of et and the time required to transfer the input data to the resource

(called the data transmission time). Note that the HCP-RM algorithm knows whether a

task t can execute on a resource r locally by checking the data in t’s localResources list

or r’s localMapTasks list, which are initialized by the identifyLocalMapTasks() method

described earlier.

5.4.2 Generate and Solve Method

The CP-Scheduler’s generateAndSolve() method is invoked by the HCP-RM

algorithm to generate and solve the OPL Model (see line 6 of Algorithm 5.1). A

138

walkthrough of generateAndSolve(), presented in Algorithm 5.3, is provided next. The

first step of the method is to check the value of the CP-Scheduler’s REFERENCE_TIME

variable (abbreviated RT). If RT is not already initialized (i.e., RT is equal to -1), RT is set to

the current system time, and in addition, the oplCurrentTime variable is set to 0 (lines 1-

3). Recall that RT is required to normalize the Job_CPS’ releaseTime and deadline fields

as discussed in Section 5.3.3. If RT is already initialized (i.e., RT is not equal to -1), then

oplCurrentTime is set to the current time minus RT and the oplCurrentTime is converted

into seconds (lines 4-7). The oplCurrentTime variable represents the current time in the

view of the OPL Model. IBM CPLEX does not support values of type long, and thus, the

current time value must be referenced from an epoch, which in this case is

REFERENCE_TIME.

In the next steps (lines 8-12), each job (represented by a Job_CPS object) in the CP-

Scheduler’s jobsToSchedule list has its releaseTime and deadline fields normalized with

respect to the REFERENCE_TIME and converted to seconds by invoking the Job_CPS’

normalizeAndConvertTimes() method (recall Section 5.3.3) (line 9). In addition, jobs that

have a releaseTime less than the oplCurrentTime have their releaseTime updated to

oplCurrentTime because a job cannot start executing in the past (lines 10-11). In line 13,

a new OPL Model definition object is created by invoking the CP-Scheduler’s

createNewModelDefinition() method, which is described in detail in Appendix C.IV.

This method adds a new constraint to the OPL Model for each task in the system that has

started executing but has not finished. This is needed for specifying that the task’s assigned

resource is occupied from the interval starting from the task’s scheduled start time to its

scheduled completion time. After a new model definition object is created, a new OPL

139

Model with input data from the CP-Scheduler’s jobsToSchedule and resources lists is

then generated and solved using IBM CPLEX (lines 14-15).

Algorithm 5.3: CP-Scheduler’s generateAndSolve()

Input: none

Output: none

1: if REFERENCE_TIME = -1 then

2: REFERENCE_TIME  System.currentTimeMillis()

3: oplCurrentTime  0

4: else

5: oplCurrentTime  System.currentTimeMillis() – REFERENCE_TIME

6: Convert oplCurrentTime to seconds.

7: end if

8: for each job j in CP-Scheduler’s jobsToSchedule list do

9: call j.normalizeAndConvertTimes (REFERENCE_TIME)

10: if oplCurrentTime > j.getReleaseTime() then

11: j.setTempReleaseTime(oplCurrentTime)

12: end for

13: call createNewModelDefinition()

14: Create a new OPL model and attach the data source containing the

 CP-Scheduler’s jobsToSchedule and resources list.

15: Generate and solve the OPL model.

16: call extractSolution()

After a solution to the OPL Model is found, the assigned resource and scheduled

start time of each task is retrieved and saved to its corresponding Task_CPS objects’

assignedResource and scheduledStartTime fields, respectively, by invoking the CP-

Scheduler’s extractSolution() method (line 16). In addition, the tasks (Task_CPS

objects) that are assigned to resource r (a Resource_CPS object) are added to r’s scheduled

map tasks list or scheduled reduce tasks list depending on its task type. The discussion

provided in Appendix B.I describes in more detail how the steps shown in lines 14-16 are

performed. In addition, Appendix B.I also discusses the purpose of the CP_Scheduler

class’ factory, settings, cpSolver, modelDef, and oplModel fields.

140

5.4.3 Stalling Problem for Reduce Tasks

During preliminary testing, it was found that in some situations the reduce tasks of

a job would be scheduled to execute on the system, but the reduce tasks would stall (i.e.,

would execute partially and then stop executing) and take a very long time to complete. It

was discovered that the reason why the reduce tasks were not being executed in a timely

manner is because by default Hadoop starts to schedule/execute reduce tasks of a job once

a few of its map tasks have finished executing (i.e., Hadoop does not wait until all the job’s

map tasks have completed before scheduling/executing the reduce tasks). This can be

problematic because if not all the map tasks of the job are completed, the reduce tasks also

cannot finish executing, and thus the reduce tasks remain idle and unnecessarily consume

the reduce task slots of TaskTrackers. This can in turn delay the execution of the reduce

tasks of jobs that already have their map tasks completed if there is no other available

reduce task slots to execute on.

 Note that it is possible for the reduce tasks of a job j to stall for a long period of

time because the CP-Scheduler may delay the execution of job j’s map tasks in order to

execute the map tasks of a newly arriving job with an earlier deadline. One approach to

solve this problem is to give execution priority to all of job j’s map tasks so that they can

execute before other map tasks. Initially, this approach was used and implemented by

adding constraints to the OPL Model that stated that map tasks should be scheduled to

execute at their originally scheduled times and not be rescheduled. However, further testing

showed that this solution is not ideal when it comes to minimizing the number of late jobs

because jobs that have an earlier deadline may have to wait to be executed, leading to these

jobs missing their deadlines. The solution that is used to avoid these problems is to prevent

141

the CP-Scheduler from assigning reduce tasks of a job j to TaskTrackers until all of job j’s

map tasks have completed executing (as shown in line 29 of Algorithm 5.1). This approach

guarantees that reduce tasks can complete their execution once they are scheduled on a

TaskTracker, and it also allows the tasks of jobs with an earlier deadline to be executed

first.

5.5 Performance Evaluation of the HCP-RM Technique

A rigorous performance evaluation of the HCP-RM technique (CP-Scheduler) is

conducted on a Hadoop cluster deployed on Amazon EC2, which is a public cloud that

provides Infrastructure-as-a-Service, to determine its effectiveness and to obtain insights

into system behaviour and performance. The performance of the HCP-RM technique is

compared to that of an Earliest Deadline First Hadoop scheduler (abbreviated EDF-

Scheduler). The comparison with the EDF-Scheduler is made to investigate if the HCP-

RM technique is more effective than the well-known EDF scheduling policy when

matchmaking and scheduling an open stream of MapReduce jobs with deadlines. The EDF-

Scheduler is implemented in Hadoop by defining a class called EDF_Scheduler in the

package org.apache.hadoop.mapred. More specifically, the implementation of the

EDF_Scheduler is based on the implementation of Hadoop’s default FIFO scheduler,

JobQueueTaskScheduler (discussed in Section 5.2.1) with changes that are made to the

JQ-JIPL and ETIL classes. In the ETIL class the resortInitQueue() method is modified

to sort the queue in non-decreasing order of job deadlines (i.e., priority is given to the jobs

with an earlier deadline). Similarly, the JQ-JIPL class’ JobSchedulingInfoComparator is

also modified to sort jobs in non-decreasing order of their deadlines.

142

The rest of this section is organized as follows. The experimental setup and the

performance metrics used to evaluate the HCP-RM technique and the EDF-Scheduler are

described in Section 5.5.1. Next, descriptions of the two workloads that are used in the

experiments are provided in Section 5.5.2 and Section 5.5.3.

5.5.1 Experimental Setup

The experiments conducted to evaluate the performance of the HCP-RM technique

and the EDF-Scheduler are performed on a Hadoop cluster deployed on Amazon EC2.

Amazon EC2 allows consumers to launch virtual machines (VMs) called instances. After

launching these instances, consumers can connect to the instance to deploy and run their

own applications. Amazon EC2 also provides various instance types, which are pre-

configured VMs that have predetermined CPU, memory, storage, and networking capacity.

The cost of running the instance depends on the type of instance deployed, and users are

charged by the hour.

The Hadoop cluster (recall Section 2.4) deployed on Amazon EC2 contains 1

master node and 10 slave nodes with each slave node configured to have one map task slot

and one reduce task slot each. The size of the Hadoop cluster is in line with the

experimental platforms used by other researchers (see [71] and [72], for example). Each

node in the cluster is an Amazon EC2 m3.medium instance, which is a fixed performance

instance that provides a good balance of compute, memory, and network resources [108].

Each m3.medium instance runs Ubuntu 13.04 and is launched with a 2.5 GHz Intel Xeon

E5-2670 v2 (Ivy Bridge) CPU and 3.75 GB of RAM.

For both the HCP-RM technique and the EDF-Scheduler, the following

performance metrics are used to evaluate the performance of the respective systems:

143

 Proportion of late jobs (P) (recall Section 4.4.1)

 Average job turnaround time (T) (recall Section 4.4.1)

 Average job matchmaking and scheduling time (O): O is measured using Java’s

System.nanoTime() [102] method and is calculated as the total processing time

required by the respective technique (i.e., HCP-RM technique or EDF-Scheduler)

to perform matchmaking and scheduling in an experiment divided by the total

number of jobs arriving on the system during the experiment.

To generate each of the values shown in the graphs presented in Section 5.6 and

Section 5.7, the experiments are run long enough to ensure the system reached a steady

state. Each experiment lasted about 24 hours and a subset of the experiments was run for a

higher length of time. No significant change is observed in the trends in variation of a

performance metric resulting from a variation of a given workload or system parameter.

Thus, the 24-hour long experiments are deemed adequate to evaluate the relative

performance between the HCP-RM technique and the EDF-Scheduler.

5.5.2 Hadoop WordCount Workload

The Hadoop WordCount Workload comprises an open stream of Hadoop

WordCount jobs with deadlines (recall the discussion of a WordCount job presented in

Section 2.3). WordCount is a benchmark that is commonly used to evaluate the

performance of a Hadoop cluster and has been used by a number of other researchers (see

[70], [72], and [73] for example). Furthermore, WordCount is representative of a class of

real world MapReduce jobs that focus on extracting a small amount of interesting data from

a large dataset [109]. The Hadoop WordCount Workload has three job types:

 small: processes 512 MB of data (8 text files of 64 MB each)

144

 medium: processes 1 GB of data (16 text files of 64 MB each)

 large: processes 2 GB of data (32 text files of 64 MB each)

The input data for each job type are e-books (in plain text format) that are obtained from

Project Gutenberg (www.gutenberg.org). For each job type, the number of map tasks in

the job is equal to the number of input files to process, and the number of reduce tasks is

set to 9, which is in line with the recommended value stated in the Hadoop documentation

[25]. Each map task requires processing 64MB of data, which is the default block size in

HDFS [25].

A JobSubmitter is implemented using Java to submit an open stream of

WordCount jobs at a specified arrival rate (λ) to the Hadoop cluster. In line with [70], the

arrival of jobs to the system is generated using a Poisson process, and the values of the

arrival rate (λ): 1/150, 1/140, 1/135, and 1/125 jobs per sec are chosen such that a moderate

to high resource utilization between approximately 80% to 95% is generated on the Hadoop

cluster described in Section 5.5.1. Each job type has an equal probability of being submitted

to the system. For consistency, the same predetermined seed for the random number

generator is used in the experiments for the HCP-RM technique and the EDF-Scheduler

such that the same sequence of jobs with the same respective arrival times is generated.

The other workload parameters are described next. The earliest start time of each job j (sj)

is set to its arrival time, and the deadline of each job j is calculated as: dj = sj + SETj
max *

em where SETj
max is the maximum execution time of the job j and em is the execution time

multiplier. The purpose of em is to give the job some slack time, and it is generated using

a uniform distribution within the interval [1, 3].

145

5.5.3 Hadoop Synthetic Workload

In addition to using the Hadoop WordCount Workload that captures the impact of

both CPU and I/O characteristics of the application on performance, a synthetic workload,

which is referred to as the Hadoop Synthetic Workload, is also used because it is flexible

and enables the investigation of the impact of varying a given workload parameter on

system performance. For example, using a synthetic workload, the effect of workload

parameters such as the execution time of the jobs, which cannot be directly and accurately

controlled using real workloads, can be investigated. The Hadoop Synthetic Workload is a

variation of the Generic Synthetic MapReduce Workload (described in Section 4.4.3), and

it is used to perform experiments on a real system such that the effect of various real system

overheads on the behaviour and performance of the system, which are difficult to reproduce

on simulation-based analyses, can be captured.

To perform experiments using the Hadoop Synthetic Workload, a new Hadoop

application called Simulate Execution Time (abbreviated SimExec) is devised. The map

and reduce tasks of SimExec jobs occupy the map/reduce task slots of the TaskTrackers

that they are assigned to execute on by sleeping for a specified amount of time (invoking

Java’s Thread.sleep() method [110]). The time that the tasks sleep for is used to simulate

the amount of time required for processing. Note that while the task is sleeping, no other

task can run on the task slot where a task has been assigned, until the task wakes up from

its sleep and informs the JobTracker that it has completed executing.

Table 5.1 summarizes the parameters for generating the Hadoop Synthetic

Workload. A Poisson process is used to generate the arrival of jobs at a specified rate (λ),

which is in line with [70]. The values of λ are chosen to subject the systems (HCP-RM and

146

the EDF-Scheduler) to moderate to high system load, leading to an average resource

utilization of between approximately 80% to 90% on the Hadoop cluster described in

Section 5.5.1. In these experiments the systems are not subject to a low system load

(resulting from low arrival rates). This is because a comparison of the effectiveness of the

resource management algorithms when the system load is low is uninteresting since a low

load generates a low contention for resources and is observed to lead to both algorithms

achieving a value of 0 for P. Thus, comparing the performance of the systems when the

system load is low was deemed inappropriate in evaluating the effectiveness of the resource

management algorithms.

The attributes of each job j that arrives on the system are generated as follows. The

earliest start time of a job j (sj) is set to the arrival time of the job (atj), which is in line with

Hadoop 1.2.1’s schedulers [25]. As shown in Table 5.1, the number of map tasks (kj
mp), the

number of reduce tasks (kj
rd), as well as the map task execution times (me) and reduce task

execution times (re) are generated using discrete uniform (DU) distributions similar to the

Generic Synthetic MapReduce workload. Note that for SimExec jobs, me and re represent

the time that a map task or a reduce task occupies the map task slot or reduce task slot of a

TaskTracker. During preliminary experiments, it was discovered that a TaskTracker

requires approximately 5 sec for initialization before the user-defined code of the map task

or the reduce task is executed. Thus, the amount of time that a map task of a SimExec job

needs to sleep for is calculated as the difference between me and the task setup time.

Similarly, the amount of time that a reduce task needs to sleep for is calculated as the

different between re and the task setup time. The sleep time of the tasks need to be

compensated for the task setup time so that the task occupies a task slot of a TaskTracker

147

for the time specified by me or re. Similar to the Generic Synthetic MapReduce workload,

a job j’s deadline (dj) is calculated as the sum of sj and the product of SETj
R

 (which is the

execution time when job j executes at its maximum degree of parallelism on R) and an

execution time multiplier (em). The parameter em is generated using a uniform distribution

(U) as follows: U(1, emmax) where emmax is the upper bound of em.

Table 5.1. System and Workload Parameters for the Hadoop Synthetic Workload.

Parameter Values
Default
Value

Job
Arrival rate, λ (jobs/sec) λ = {1/32.5, 1/30, 1/27.5} λ = 1/30

Earliest start time, sj (sec) sj = atj -

No. of Map Tasks, 𝑘𝑗
𝑚𝑝

 𝑘𝑗
𝑚𝑝

 ~ DU(1, 10) -

No. of Reduce Tasks, 𝑘𝑗
𝑟𝑑 𝑘𝑗

𝑟𝑑 ~ DU(1, 𝑘𝑗
𝑚𝑝

) -

Deadline, dj (sec)
𝑑𝑗 = ⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗

𝑅 ∗ 𝑒𝑚⌉ where

em ~ U(1, emmax) and emmax = {20, 25, 30}
emmax = 25

Task

Map task execution time, me

(sec)
me ~ DU(1, memax)

where memax = {15, 20, 25}
memax = 20

Reduce task execution time,

re (sec)
re =⌈(3 ∗ ∑ 𝑒𝑡)𝑡∈𝑇

𝑗
𝑚𝑝 𝑘𝑗

𝑟𝑑⁄ ⌉ + 𝐷𝑈(1,10) -

Note: DU = discrete uniform distribution, U = uniform distribution

The distributions used to generate kj
mp, kj

rd, me, and re are adopted from [53],

whereas dj (a parameter that is not used in [53]) is generated based on [70]. In addition, the

use of a Poisson process to generate job arrivals is in line with [70]. The values used in the

distributions are different from those described in Section 4.4.3 because they are adjusted

to keep in line with the smaller number of resources used in the Hadoop cluster compared

to that used in the simulation experiments described in Section 4.6. More specifically, the

values for λ are chosen to generate high resource utilization; however, since there are only

10 TaskTrackers (resources) in the Hadoop cluster, which is smaller than the 50 resources

148

used in the simulated system, memax is reduced and emmax is increased to generate a

reasonable workload. For similar reasons, the max value of the DU distribution that is used

for generating the number of map tasks is set to 10 instead of 100.

Factor-at-a-time experiments, where one parameter is varied and the other

parameters are kept at their default values, as shown in the “Default Value” column of

Table 5.1, are conducted to study the effect of the various workload parameters. The results

of these experiments are discussed in Section 5.6.1.

5.6 Results of the Performance Evaluation

This section discusses the results of the experiments conducted to compare the

performance of the HCP-RM technique (referred to simply as HCP-RM) with that of the

EDF-Scheduler (abbreviated EDFS) when using the Hadoop WordCount Workload (see

Section 5.6.1) and the Hadoop Synthetic Workload (refer to Section 5.6.2). Note that in the

figures that show the results of T and O (see Figure 5.8, for example), T is displayed as a

bar graph that uses the scale on the left Y-axis and O is displayed as a sequence of points

that uses the scale on the right Y-axis.

5.6.1 Results of Experiments Using the Hadoop WordCount Workload

Figure 5.5 and Figure 5.6 compare the performance of HCP-RM with that of EDFS

when using the Hadoop WordCount Workload (described in Section 5.5.2). As shown in

the figures, HCP-RM outperforms EDFS by a large margin in terms of P (up to 94% and

on average 72%) and T (up to 65% and on average 52%). This is a result of HCP-RM being

able to effectively interleave the execution of multiple jobs and efficiently make use of the

system’s resources such that the number of jobs that miss their deadlines is minimized. The

poor performance of EDFS with regards to P and T is attributed to its focus on only

149

mapping the job with the earliest deadline and not interleaving the execution of multiple

jobs. When the jobs have long execution times, not interleaving the execution of multiple

jobs tends to lead to more late jobs because it is possible for jobs with closer deadlines to

arrive on the system during the execution of another job with a later deadline. Thus, the

results demonstrate that EDFS cannot effectively handle an open stream of job arrivals,

and it may be more effective in matchmaking and scheduling a fixed number of jobs (e.g.,

a batch workload) because all the jobs in the workload are known ahead of time. Overall,

the results demonstrate that HCP-RM can effectively match make and schedule an open

stream of MapReduce jobs with deadlines.

Figure 5.5. HCP-RM vs EDFS: effect of λ on P when using the Hadoop WordCount

Workload.

Figure 5.6 (refer to sequence of points) shows that EDFS achieves a lower O (on

average 0.03 sec.) compared to HCP-RM (on average 9.04 sec). HCP-RM has a higher O

because it uses a more complex matchmaking and scheduling algorithm that requires

0

10

20

30

40

50

60

70

1/150 1/140 1/135 1/125

P
 (

%
)

λ (jobs per sec)

HCP-RM: P EDFS: P

150

generating and solving a constraint program using IBM CPLEX. Conversely, EDFS simply

maintains a job queue that sorts jobs in non-decreasing order of their respective deadlines

and chooses the first job in its queue to map. Thus, the O of EDFS tends to remain relatively

stable even when λ increases. However, it is observed that HCP-RM’s O tends to increase

with λ. The reason for this is because when λ increases, jobs arrive on the system more

frequently, leading to a higher contention for resources. This in turn causes HCP-RM to

have more jobs to map (and more decision variables and constraints to process) each time

it needs to generate and solve an OPL Model. Although HCP-RM’s O is higher compared

to that of EDFS, O/T, which is an indication of the processing overhead in relation to the

average job turnaround time, is still very low (less than 0.64%). This means that the O of

HCP-RM is acceptable for the given workload.

Figure 5.6. HCP-RM vs EDFS: effect of λ on T and O when using the Hadoop

WordCount Workload.

0

2

4

6

8

10

12

0

50

100

150

200

250

300

1/150 1/140 1/135 1/125

O
(s

ec
)

T
(s

ec
)

λ (jobs per sec)

HCP-RM: T EDFS: T HCP-RM: O EDFS: O

151

5.6.2 Results of Experiments Using the Hadoop Synthetic Workload

The results of the experiments using the Hadoop Synthetic Workload are presented

and discussed in this section. The effects of three workload parameters on system

performance are investigated: job arrival rate, task execution times, and job deadline.

5.6.2.1 Effect of Job Arrival Rate

As shown in Figure 5.7 and Figure 5.8, for both systems, P and T increase with λ

because at high values of λ there is a high contention for resources and not all the jobs are

able to start executing at their earliest start times. However, it is observed that HCP-RM

outperforms EDFS in terms of both P and T for all the values of λ experimented with. More

specifically, HCP-RM is observed to achieve a P and O that is on average 77% lower and

65% lower, respectively, compared to the P and O achieved by EDFS. However, the O

(refer to the sequence of points in Figure 5.8) of HCP-RM is observed to be on average 3.4

sec, which is much higher compared to the O achieved by EDFS (9 ms on average). As

described in Section 5.6.1, HCP-RM’s O increases with λ due to jobs arriving on the system

at a faster rate, which leads to the CP Optimizer having to solve an OPL Model with more

decision variables and constraints. In comparison to EDFS, HCP-RM puts more effort into

deciding how to map jobs onto resources to minimize P, leading to a higher O. The benefits

of this are captured in the superior performance demonstrated by HCP-RM with its lower

P and T, while still maintaining a small O/T (0.87% on average over all the values of λ

experimented with).

152

Figure 5.7. HCP-RM vs EDFS: effect of λ on P when using the Hadoop Synthetic

Workload.

Figure 5.8. HCP-RM vs EDFS: effect of λ on T and O when using the Hadoop Synthetic

Workload.

0

10

20

30

40

50

60

70

1/32.5 1/30 1/27.5

P
 (

%
)

λ (jobs per sec.)

HCP-RM: P EDFS: P

0

1

2

3

4

5

0

500

1000

1500

2000

1/32.5 1/30 1/27.5

O
(s

ec
)

T
(s

ec
)

λ (jobs per sec)

HCP-RM: T EDFS: T HCP-RM: O EDFS: O

153

5.6.2.2 Effect of Task Execution Times

As expected, when memax is increased, both P and T increase for both systems (refer

to Figure 5.9 and Figure 5.10) due to jobs executing on the resources for a longer period of

time, which in turn leads to a high contention for resources. Moreover, it is observed that

HCP-RM outperforms EDFS in terms of both P and T when memax is equal to 20 or 25 sec.

However, when memax is small (equal to 15 sec) EDFS achieves a slightly lower P

compared to HCP-RM (4.0% vs 4.4%). The slightly inferior performance of HCP-RM in

this case can be attributed to its high O having a larger impact on jobs with small execution

times, resulting in these jobs missing their deadlines.

Figure 5.9. HCP-RM vs EDFS: effect of memax on P when using the Hadoop Synthetic

Workload.

With regards to O (refer to the sequence of points in Figure 5.10), the relative

performance achieved by HCP-RM and EDFS is similar to that observed in the results

discussed earlier: the O achieved by HCP-RM is higher compared to the O achieved by

0

10

20

30

40

50

60

70

15 20 25

P
 (

%
)

memax (sec)

HCP-RM: P EDFS: P

154

EDFS, but the processing overhead as indicated by O/T, is still small (less than 0.8%). The

reason for the HCP-RM’s O increasing with memax can be attributed to jobs remaining in

the system for a longer period of time and potentially overlapping with the execution of a

higher number of jobs. This in turn increases the OPL Model generation and solving times

due to the higher number of constraints and decision variables that need to be processed.

Figure 5.10. HCP-RM vs EDFS: effect of memax on T and O when using the Hadoop

Synthetic Workload.

5.6.2.3 Effect of Job Deadlines

For both systems, Figure 5.11 and Figure 5.12 demonstrate that P decreases while

T tends to be stable as emmax increases. The superior performance of HCP-RM over that of

EDFS is demonstrated once again when emmax is varied. More specifically, it is observed

that HCP-RM outperforms EDFS in terms of both P (on average 58% lower) and T (on

average 65% lower). However, when considering O (refer to the sequence of points in

Figure 5.12), it is observed that EDFS achieves an O of 9 ms on average and outperforms

HCP-RM, which has an O of 2.92 sec on average. From Figure 5.12 (refer to the sequence

0

1

2

3

4

5

6

7

0

500

1000

1500

2000

2500

3000

15 20 25

O
(s

ec
)

T
(s

ec
)

memax (sec)

HCP-RM: T EDFS: T HCP-RM: O EDFS: O

155

Figure 5.11. HCP-RM vs EDFS: effect of emmax on P when using the Hadoop Synthetic

Workload.

Figure 5.12. HCP-RM vs EDFS: effect of emmax on T and O when using the Hadoop

Synthetic Workload.

of points), it is also observed that the HCP-RM’s O increases as emmax decreases. This is

because at low values of emmax jobs have tighter deadlines, and thus HCP-RM requires

0

5

10

15

20

25

30

35

40

20 25 30

P
 (

%
)

emmax

HCP-RM: P EDFS: P

0

0.5

1

1.5

2

2.5

3

3.5

0

200

400

600

800

1000

1200

20 25 30

O
(s

ec
)

T
(s

ec
)

emmax

HCP-RM: T EDFS: T HCP-RM: O EDFS: O

156

more time to generate a schedule that minimizes the number of late jobs. Note that the

higher O of the HCP-RM is tolerable for the workload experimented with, as indicated by

the small value of O/T: on average 0.78% over all the values of emmax experimented with.

5.7 Investigation of Error in User-estimated Execution Times

As described in Section 2.6, previous studies on real systems have shown that user

estimates of execution times are often error prone or inaccurate [16][17][18]. For example,

in [77], the authors analyzed a workload trace and showed that approximately 98% of jobs

have their execution times overestimated and 2% of jobs have their execution times

underestimated. In this section, the results of an investigation into how the error or

inaccuracy in the user-estimated execution times, submitted as part of the job’s SLA, can

affect the performance of HCP-RM in terms of P, T, and O are presented and discussed.

Note that only the performance of HCP-RM is investigated because the EDF-

Scheduler does not use user-estimated execution times in its matchmaking and scheduling

algorithm. The system used in this investigation is the 11-node Hadoop cluster deployed

on Amazon EC2 as described in Section 5.5.1. In addition, the workload used in this

investigation is the Hadoop Synthetic Workload (described in Section 5.5.3) with the

default parameter values. However, to investigate the impact of error at different levels of

load on the system, λ is varied from 1/60 jobs per sec to 1/25 jobs per sec to generate low

(~45%), moderate (~80), and high (~95%) system load. The Hadoop Synthetic Workload

is used instead of the Hadoop WordCount Workload because in the synthetic workload the

task execution times can be systematically and accurately controlled.

The rest of this section is organized as follows. First, in Section 5.7.1, the

description of the models used to generate error for the user-estimated execution times are

157

described. A discussion of how the error in user-estimated execution times can affect the

laxity (or slack time) of jobs is provided in Section 5.7.2. Lastly, the results of the

experiments conducted to investigate how error in user-estimated execution times can

affect the performance of HCP-RM are presented in Section 5.7.3 and Section 5.7.4.

5.7.1 Models for Generating Error in User-estimated Execution Times

To generate the error in user-estimated task execution times, two models are used:

(1) Constant Error Model and (2) Feitelson’s Error Model. When using the Constant Error

Model [111], all the jobs submitted to the system have their user-estimated task execution

times overestimated or underestimated by a constant percentage of their actual runtimes.

More specifically, the estimated execution time of a task t (et
est) is calculated as follows:

𝑒𝑡
𝑒𝑠𝑡 = 𝑒𝑡 × (1 + 𝑓) (5.1)

where et is the actual runtime of task t and f is the execution time error factor. If the value

of f is greater than 0, it means that the estimated task execution times are greater than the

actual runtimes of the task (i.e., task execution times are overestimated). On the other hand,

if f is less than 0, it means that the estimated task execution times are less than the actual

runtime of the tasks (i.e., task execution times are underestimated). For example, if f is

equal to 0.1, the estimated task execution times are overestimated by 10%. On the other

hand, if f is equal to -0.05, the estimated task execution times are underestimated by 5%.

Note that f cannot be less than or equal to -1; otherwise, et
est will be less than or equal to 0.

Feitelson’s Error Model [112] is based on the analysis of real workload traces

collected from various sources including Cornell Theory Center, Swedish Royal Institute

of Technology, and the San Diego Supercomputer Center. The algorithm used to generate

the estimated task execution times using Feitelson’s Error Model is summarized in

158

Algorithm 5.4. A walkthrough of the algorithm is provided next. With a probability of

10%, the user-estimated task execution time is very accurate and is calculated as: et
est =

0.99*et (lines 1-3). On the other hand, with a probability of 90%, et
est is not accurate (line

4) and is generated as follows. If the supplied task execution time, et, is less than a task

execution time threshold (et
threshold) then et

est is calculated as 10*et (see lines 5-6), meaning

that the task execution time is highly overestimated. Otherwise, et
 is greater than or equal

to et
threshold and et

est is calculated as et/u where u is an uniformly distributed variable from

(0, 1] (lines 7-9). This means that the smaller the value of u, the higher the value of et
est

that is generated, resulting in highly overestimated task execution times. The closer that u

is to 1, the closer et
est is to et, meaning that the estimated task execution time is more

accurate.

Algorithm 5.4: Feitelson’s Error Model

Input: et, actual task run time (in sec)

Output: et
est, estimated task execution time (in sec)

1: rv  Generate a uniformly distributed random variable from [0, 1].

2: if rv <= 0.1 then

3: return 0.99 * et

4: else

5: if et < et
threshold then

6: return 10 * et

7: else

8: u  Generate a uniformly distributed random variable from (0, 1].

9: return et / u

10: end if

11: end if

The default value of et
threshold is 90 sec; however, for the Hadoop Synthetic

Workload (recall Section 5.5.3) that this investigation uses, it was found that when et
threshold

is kept at its default value, all the map tasks and a majority of reduce tasks had their

estimated task execution times calculated using line 6: et
est = et *10. This skewed the

159

estimated task execution times towards et *10. To make sure that the task execution times

are not skewed, the et
threshold is set to 20 sec, which is the default value for generating the

map task execution times (refer to Table 5.1). This allowed et
est to be calculated using line

6 and line 9 approximately the same number of times.

5.7.2 Laxity of Jobs in the Presence of Error in User-estimated Execution Times

In this investigation, the deadline of each job submitted to the system is calculated

using the respective job’s estimated task execution times, which may be inaccurate, and

not the actual runtime of the tasks as generated by the synthetic workload generator. The

rationale behind this decision is that a user who submits a job will generate a deadline for

their job using the estimated task execution times that they supply. This means that if the

deadline of a job is calculated using overestimated task execution times, the job will have

more laxity (or slack time) compared to when there is no error in the user-estimated task

execution times. Alternatively, if the deadline of a job is calculated using underestimated

task execution times, the job will have less laxity compared to when there is no error in

user-estimated task execution times. Recall from Section 3.1.1 that the laxity of a job j is

the extra time job j has to complete its execution before its deadline and is calculated as

follows: 𝐿𝑗 = 𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 where dj is the deadline of job j, sj is the earliest start time of

job j, and SETj is the sample execution time of job j.

The equations that are described next are based on the Constant Error Model and

are helpful when analyzing and understanding the results of the experiments presented in

Section 5.7.3. The insights gained from this discussion can also be applied to the results of

the experiments using Feitelson’s Error Model, described in Section 5.7.4.

160

The estimated laxity of a job j (Lj
est), which is the laxity that HCP-RM expects a job

as having when it is submitted to the system for execution, is calculated as follows:

𝐿𝑗
𝑒𝑠𝑡 = 𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 × (1 + 𝑓)

 = (𝑠𝑗 + 𝑆𝐸𝑇𝑗 × (1 + 𝑓) × 𝑒𝑚) − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 × (1 + 𝑓)

 = 𝑆𝐸𝑇𝑗 × (1 + 𝑓) × [𝑒𝑚 − 1]

(5.2)

where dj is the deadline of job j, sj is the earliest start time of job j, SETj is the sample

execution time of job j (calculated without error) (see Section 3.1.1), f is the execution time

error factor, and em is the execution time multiplier (see Section 5.5.3). As described earlier

in this sub-section, the deadline of each job submitted to the system is calculated using the

respective job’s estimated task execution times, which may contain error, and thus the

deadline of a job j (dj) is calculated as sj + SETj * (1 + f) * em. If f is equal to 0, meaning

that there is no error in task execution times, Eq. 5.2 is the same as Eq. 3.1 (described in

Section 3.1.1).

The actual laxity of a job j (Lj
act), which is the laxity calculated using the actual run

time of the job (i.e., the laxity that the job has in reality), is calculated as follows:

𝐿𝑗
𝑎𝑐𝑡 = 𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗

 = (𝑠𝑗 + 𝑆𝐸𝑇𝑗 × (1 + 𝑓) × 𝑒𝑚) − 𝑠𝑗 − 𝑆𝐸𝑇𝑗

 = 𝑆𝐸𝑇𝑗 [(1 + 𝑓) 𝑒𝑚 − 1]

(5.3)

The main difference between Lj
act and Lj

est is that for Lj
est (see Eq. 5.2) the sample job

execution time (SETj) is multiplied with (1 + f), whereas for Lj
act (see Eq. 5.3) the sample

job execution time is not multiplied with (1 + f) and thus does not contain error.

5.7.3 Results of Experiments Using the Constant Error Model

Figure 5.13 presents the effect of f on P at different arrival rates. When the task

execution times are underestimated (i.e., f < 0), P increases, and when the task execution

times are overestimated (i.e., f > 0), P decreases. The reason for P decreasing as f increases

161

is due to jobs having higher values of Lj
act when f increases, which means jobs have more

time to complete their execution before their respective deadlines (i.e., jobs have less

stringent deadlines). The high values of P when f is less than or equal to -0.5 can be

attributed to jobs having very small values of Lj
act (i.e., jobs have very stringent deadlines).

Furthermore, when f is very small (e.g., f is -0.9), it is possible that jobs have deadlines that

cannot be satisfied because they were calculated based on severely underestimated

execution times, and thus there is not enough time for the job to finish executing before its

deadline (e.g., the job may have an Lj
act of less than 0).

Figure 5.13. Constant Error Model: effect of f on P.

As shown in Figure 5.14, for a given arrival rate, the general trend in performance

that is observed is that T increases as f decreases. This trend is especially evident when λ

is 1/25 jobs per sec. The high values of T when f is small (e.g., less than 0) can be attributed

to jobs having less laxity and higher execution times than what HCP-RM expects, which

means that the jobs have more stringent deadlines than what HCP-RM is expecting. Thus,

0

10

20

30

40

50

60

70

80

90

100

-0.9 -0.5 -0.1 0 0.1 0.5 2

P
 (

%
)

f

1/25 jobs/sec 1/30 jobs/sec 1/45 jobs/sec

162

more jobs miss their deadlines and P increases (refer to Figure 5.13 when f is less than 0).

When a job misses its deadline, HCP-RM delays executing the remaining tasks of the job

that have not started executing in favour of executing newly arriving jobs, which have not

missed their deadlines. This is done to lower P, but also leads to an increase in T.

Figure 5.14. Constant Error Model: effect of f on T.

Figure 5.15 illustrates the effect of f on the O of HCP-RM. For a given arrival rate,

when the task execution times are underestimated (f < 0), it is observed that O decreases

and when the task execution times are overestimated (f > 0), it is observed that O increases.

Overall, the general trend is that O increases as f increases. This is because at higher values

of f, HCP-RM expects that jobs submitted to the system have higher execution times

compared to when f is small, resulting in HCP-RM perceiving the system having a high

contention for resources. This in turn leads to HCP-RM requiring more time to perform

matchmaking and scheduling to ensure that P is minimized. Along with the increase in job

execution times, the increase in f also causes HCP-RM to perceive jobs as having high

0

200

400

600

800

1000

1200

1400

1600

-0.9 -0.5 -0.1 0 0.1 0.5 2

T
(s

ec
)

f

1/25 jobs/sec 1/30 jobs/sec 1/45 jobs/sec

163

values of Lj
est (recall Eq. 5.2). For example, when f is -0.5 the average Lj

est of all the jobs

submitted to the system is equal to 580 sec compared to 1740 sec when f is 0.5. The higher

values of Lj
est give HCP-RM more options to explore scheduling different combination of

tasks to ensure that the number of late jobs is minimized, which results in O increasing.

Figure 5.15. Constant Error Model: effect of f on O.

5.7.4 Results of Experiments Using Feitelson’s Error Model

Figure 5.16, Figure 5.17, and Figure 5.18 present the results of the experiments in

terms of P, T, and O, respectively, when using Feitelson’s Error Model compared to the

case where there is no error in the execution times of the jobs (referred to as the “No Error”

case). As shown in Figure 5.16, for all the values of λ experimented with, P is much lower

when using Feitelson’s Error Model compared to the No Error case. This can be attributed

to the fact that Feitelson’s Error Model generates user-estimated task execution times that

are highly overestimated. When the user-estimated execution times are overestimated, the

values of Lj
act (recall Eq. 5.3) increase, which means that jobs have less stringent deadlines.

0

2

4

6

8

10

12

14

16

-0.9 -0.5 -0.1 0 0.1 0.5 2

O
 (

se
c)

f

1/25 jobs/sec 1/30 jobs/sec 1/45 jobs/sec

164

With regards to T (refer to Figure 5.17), it is observed that for all the values of λ

experimented with, the results when using Feitelson’s Error Model are higher compared to

the results when using the No Error case. This can be attributed to HCP-RM focusing on

generating a schedule that minimizes P and does not consider finding a solution to

minimize T. On the other hand, in the No Error case, HCP-RM needs to schedule jobs to

execute closer to their earliest start times because jobs have less slack time and more

stringent deadlines, resulting in a low T. From Figure 5.18, it is observed that the O

measured for the No Error case is a higher compared to the O measured when using

Feitelson’s Error Model. This can be attributed to the jobs in the No Error case having less

laxity and more stringent deadlines, leading to HCP-RM requiring more time to generate a

schedule to minimize the number of late jobs.

Figure 5.16. Feitelson’s Error Model vs No Error: effect of λ on P.

0

5

10

15

20

25

1/60 1/45 1/30 1/25

P
 (

%
)

λ (jobs per sec)

Feitelson's Error Model No Error

165

Figure 5.17. Feitelson’s Error Model vs No Error: effect of λ on T.

Figure 5.18. Feitelson’s Error Model vs No Error: effect of λ on O.

0

200

400

600

800

1000

1200

1400

1600

1/60 1/45 1/30 1/25

T
(s

ec
)

λ (jobs per sec)

Feitelson's Error Model No Error

0

1

2

3

4

5

6

7

8

9

1/60 1/45 1/30 1/25

O
 (

se
c)

λ (jobs per sec)

Feitelson's Error Model No Error

166

5.8 Summary and Discussion

In this chapter, a data-locality-aware Hadoop Constraint Programming based

Resource Management (HCP-RM) technique is presented. The HCP-RM algorithm is

implemented in a new scheduler for Hadoop, called the CP-Scheduler. The objective of the

CP-Scheduler (HCP-RM technique) is to minimize the number of late jobs when

processing an open stream of Hadoop jobs with deadlines. This is accomplished by

formulating the matchmaking and scheduling problem as an optimization problem using

constraint programming and solving the problem using IBM CPLEX’s CP Optimizer

solving engine. A comprehensive performance evaluation of the HCP-RM technique is

conducted on a Hadoop cluster deployed on Amazon EC2. The results of the performance

evaluation demonstrate the effectiveness of the HCP-RM technique in being able to

generate a schedule that leads to a small proportion of jobs missing their deadlines. In

addition, experiments are performed to investigate how error in user-estimated execution

times can affect system performance. The key insights into system behaviour and the

inferences derived are summarized next.

 Superiority of the HCP-RM technique: The HCP-RM technique generates a

schedule that leads to a lower or equal P (on average 60% lower) and a lower T

(on average 59% lower) compared to the EDF-Scheduler over all the experiments

performed. The highest performance improvement of the HCP-RM technique

over the EDF-Scheduler tends to occur when the contention for resources is high

(e.g., high λ, or high memax, or small emmax).

o The EDF-Scheduler’s simple matchmaking and scheduling algorithm is not

as effective in matchmaking and scheduling an open stream of MapReduce

167

jobs with deadlines. The EDF-Scheduler seems to be more suited for use in

a closed system subject to batch workloads with a fixed number of jobs,

where the set of jobs to execute are known ahead of time.

 Efficiency of the HCP-RM technique: The efficiency of the HCP-RM technique

is demonstrated through the results of experiments described in Section 5.6.

Although the O achieved by the HCP-RM technique is higher compared to the O

achieved by the EDF-Scheduler, its superiority comes from being able to generate

a schedule that leads to a small P and a small T. In all the experiments conducted,

the P achieved by the HCP-RM technique is significantly lower than the P

achieved by the EDF-Scheduler, while O/T, which is an indicator of resource

management overhead, remains below 0.92% even when the resource utilization

is high.

 Effect of error in execution times: The investigation of error in user-estimated

execution times revealed that overestimation of execution times (which occurs

more often than underestimation [16][77]) leads to a lower P, similar T, and

slightly higher O compared to when there is no error. Conversely,

underestimation of execution times leads to higher values of P and T, but gives

rise to a lower O compared to the case when there is no error. Thus, it is more

favourable for the system to have jobs with overestimated execution times

compared to jobs with underestimated execution times.

Overall, the results obtained from prototyping and measurements made on a

Hadoop cluster lead to the conclusion that the HCP-RM technique is an effective and

efficient matchmaking and scheduling technique for processing MapReduce jobs with

168

deadlines on a Hadoop cluster. The HCP-RM technique achieves a small P and T, and an

acceptable O/T over a wide range of workload and system parameters used in the

experiments. Moreover, when there is error in execution times, it is observed that the HCP-

RM technique maintained acceptable values of P when the execution times are slightly

underestimated (e.g., f is equal to -0.1) or overestimated (f is greater than 0).

169

Chapter 6 Techniques for Handling Error/Inaccuracy in User-

estimated Execution Times

The focus of this chapter is on describing techniques for handling inaccuracy or

error in user estimates of job execution times (submitted as part of the job’s SLA). The

objective is to improve the robustness of the MRCP-RM and HCP-RM algorithms,

described in Chapter 4 and Chapter 5, respectively. With little existing work on the

handling of inaccuracies in user estimates of job runtimes in the context of

MapReduce/Hadoop systems, the proposed techniques and experimental results presented

can lead to new insights for users and system builders and make a strong contribution to

the state of the art. None of the techniques described in Section 2.6 that handle

errors/inaccuracies in user-estimated job execution times concern processing an open

stream of MapReduce jobs with SLAs.

As described in Section 2.6, previous studies on real systems have shown that user

estimates of job runtimes are often error prone/inaccurate and users often overestimate the

execution times of their jobs [16][17][18]. Since the user-estimated execution times are

used by the system to perform resource allocation and scheduling, error/inaccuracies in the

execution times can hinder the ability of the resource management techniques from making

effective scheduling decisions, leading to a degradation in system performance. For

instance, an overestimated job execution time (i.e., a user requests more time than the job

needs) causes resources to remain idle after a job completes before its estimated completion

time, resulting in a low resource utilization. On the other hand, an underestimated job

execution time (i.e., a user requests less time than the job needs) can cause jobs to be

aborted prematurely due to the resource executing the job having to execute another job

170

that was already scheduled to start executing after the first job’s expected completion time.

This may result in the first job missing its deadline. Furthermore, if aborted, this incomplete

job leads to a lower useful utilization of the system because the system’s resources are

being wasted executing a job that is aborted.

Moreover, the results of the investigation into how error in user-estimated

execution times affect the performance of the HCP-RM technique (described in Section

5.7) showed that system performance in terms of P, T, and O is affected and the error in

user-estimated execution times can also influence the matchmaking and scheduling

decisions that the HCP-RM algorithm makes. For example, if a job has an actual runtime

equal to 5 sec, but the user-estimated execution time is 10 sec (i.e., the job has an

overestimated execution time), the resource management algorithm will only schedule the

job to execute on a resource where there is an available time interval equal to 10 sec or

higher. Although in reality, it is possible to schedule the job on a resource with an available

time interval equal to 5 sec or more.

The rest of this chapter is organized as follows. The focus of Section 6.1 is on

describing a Prescheduling Error Handling (PSEH) technique, which attempts to correct

the error in user-estimated execution times before the job is scheduled. In Section 6.2, a

description of the prototyping and measurement experiments conducted to evaluate the

effectiveness of the PSEH technique is provided. The results of the performance evaluation

and insights gained into system behaviour are discussed in Section 6.3. Lastly, Section 6.4

provides a summary and discussion of the chapter.

171

6.1 Prescheduling Error Handling Technique

The PSEH technique uses the past history of the jobs submitted to the system to

establish a trend for the error in the user’s estimated execution times. The objective of the

PSEH technique is to correct the error in the user-estimated execution times to make them

more accurate before the job is passed on to the resource management algorithm for

scheduling. More specifically, when there are overestimated execution times, the PSEH

technique decreases the user-estimated execution times, and when there are underestimated

execution times, the PSEH technique increases the user-estimated execution times. The

resource management algorithm can then use the adjusted execution times to perform

matchmaking and scheduling. A discussion of the PSEH technique and how it is

incorporated into the HCP-RM algorithm is presented next. Note that the PSEH technique

can also be adapted and used by other resource management algorithms.

The PSEH technique uses two variables: avgMapTaskErrorFactor and

avgReduceTaskErrorFactor to keep track of how much the user-estimated map task

execution times and the user-estimated reduce task execution times, respectively, are being

overestimated or underestimated. Note that the term average task error factor is used to

refer to both avgMapTaskErrorFactor and avgReduceTaskErrorFactor collectively. The

average task error factor is initialized to 0, meaning that there is currently no error in the

execution times in the system. If the average task error factor is greater than 0, it means

that on average the user-estimated execution times are being overestimated. On the other

hand, if the average task error factor is less than 0, it means that on average the user-

estimated task execution times are being underestimated. The closer the average task error

172

factor is to 0, the more accurate the user-estimated task execution times are to the actual

runtimes of the tasks.

The average task error factor is calculated in a new method named

calculateTaskErrorFactor(). This method is invoked each time a task completes its

execution and its purpose is to calculate the error factor of the task and then recalculate the

average task error factor. The error factor of a task t (denoted ft) is calculated as follows:

𝑓𝑡 =
𝑒𝑡

𝑒𝑠𝑡 − 𝑒𝑡
𝑟𝑢𝑛

𝑒𝑡
𝑟𝑢𝑛 (6.1)

where et
est is the user-estimated execution time of task t and et

run is the actual runtime of

task t. The value of ft determines how accurate the original user-estimated execution time

of task t is to the actual runtime of task t. If the task is a map task, the

avgMapTaskErrorFactor is updated by including the ft of the recently completed task t in

the calculation of the average. More specifically, the avgMapTaskErrorFactor is equal to

the sum of the ft of all the completed map tasks divided by the total number of completed

map tasks. On the other hand, if the task is a reduce task, the avgReduceTaskErrorFactor

is updated in a similar manner as described for the avgMapTaskErrorFactor. It is expected

that overtime as more jobs complete executing, the average task error factor will get more

accurate, resulting in the adjusted task execution times being closer to the actual runtimes

of the tasks.

The PSEH technique also uses a method called adjustExecutionTime() to adjust

the user-estimated task execution time and make the execution times more accurate. Each

map task and reduce task has its execution time adjusted before it is scheduled on the

system. The following equation is used to calculate the adjusted task execution time of a

task t (et
adj):

173

𝑒𝑡
𝑎𝑑𝑗

=
𝑒𝑡

𝑒𝑠𝑡

1 + 𝑓
 (6.2)

where et
est is the user-estimated task execution time and f is the execution time error factor.

Depending on whether the task t is a map task or a reduce task, f can either be equal to the

avgMapTaskErrorFactor or the avgReduceTaskErrorFactor.

6.2 Performance Evaluation of the PSEH Technique

A performance evaluation of the PSEH technique is conducted using prototyping

and measurement to determine its effectiveness in improving system performance when

there is error in the user-estimated execution times. The experiments are performed on a

Hadoop cluster deployed on Amazon EC2. More specifically, the performance of HCP-

RM that uses the PSEH technique (denoted HCP-RM-EH) is compared with the

performance of the original version of HCP-RM.

 The rest of this section is organized as follows. In Section 6.2.1, the experimental

setup, including the metrics used in the performance evaluation, is described. Next, in

Section 6.2.2, a description of the workload that is used in the experiments is provided.

Lastly, Section 6.2.3 describes the models used to generate the error/inaccuracies in the

user-estimated execution times.

6.2.1 Experimental Setup

The Hadoop cluster that is used to conduct the experiments is the same as the one

described in Section 5.5.1. In addition, the following metrics are used in the experiments:

 Proportion of late jobs (P) (recall Section 4.4.1)

 Average job turnaround time (T) (recall Section 4.4.1)

174

 Average job matchmaking and scheduling time (O): O is measured using Java’s

System.nanoTime() [102] method and is calculated as the total processing time

required by the respective resource management algorithm (e.g., HCP-RM or

HCP-RM-EH) to match make and schedule jobs in an experiment, divided by the

total number of jobs arriving on the system during the experiment.

6.2.2 System and Workload Parameters

The workload that is used in the experiments is the Hadoop Synthetic Workload

described in Section 5.5.3 using the default values for the workload parameters. This is the

same workload that is used in the experiments performed to investigate the effect of error

in user-estimated execution times on the performance of the HCP-RM technique (see

Section 5.7). The experiments are conducted using a synthetic workload because they allow

the execution times to be methodically and accurately controlled, allowing the

effectiveness of the PSEH technique to be evaluated systematically.

6.2.3 Models for Generating Error in User-estimated Execution Times

In order to generate the error in user-estimated task execution times, three models

are used: (1) Constant Error Model, (2) Feitelson’s Error Model, and (3) Variable Error

Model. Recall that the Constant Error Model and Feitelson’s Error Model were already

described in Section 5.7.1. A description of the Variable Error Model is provided next.

The Variable Error Model is an extension of the Constant Error Model, and it is

devised to investigate the effectiveness of the PSEH technique when not all the jobs

submitted to the system have the same execution time error factor (f). As described in

Section 5.7.1, when using the Constant Error Model, all the jobs submitted to the system

have the same value of f; however, when using the Variable Error Model each job submitted

175

to the system can have a different value of f. Algorithm 6.1 describes how the Variable

Error Model generates f for each job submitted to the system. The input parameters required

by the algorithm are described next.

 poe: the probability that a job has an overestimated execution time (i.e., f is

greater than 0). The value of poe must be in the interval [0, 1].

 min_ue_f and max_ue_f: the minimum value and the maximum value of the

uniform distribution used to generate the error factor for jobs with underestimated

execution times. The values of min_ue_f and max_ue_f must be in the interval (-

1, 0], and max_ue_f must also be greater than or equal to min_ue_f.

 min_oe_f and max_oe_f: the minimum value and the maximum value of the

uniform distribution used to generate the error factor for jobs with overestimated

execution times. The values of min_oe_f and max_oe_f must be greater than or

equal to 0, and max_oe_f must also be greater than or equal to min_oe_f.

Algorithm 6.1: Variable Error Model

Input: poe, min_ue_f, max_ue_f, min_oe_f, max_oe_f

Output: execution time error factor, f

1: rv  Generate a uniformly distributed random variable from [0, 1].

2: if rv <= poe then

3: f  Generate a uniformly distributed random variable from

 [min_oe_f, max_oe_f].

4: else

5: f  Generate a uniformly distributed random variable from

 [min_ue_f, max_ue_f].

6: end if

7: return f

The first step of Algorithm 6.1 is to generate a uniformly distributed random value

from the interval [0, 1] and store it in a variable named rv (line 1). If the value of rv is less

than or equal to the value of poe, a positive execution time error factor is generated using

176

a uniform distribution within the interval [min_oe_f, max_oe_f] (lines 2-3). Otherwise, rv

is greater than poe and a negative execution time error factor is generated using a uniform

distribution within the interval [min_ue_f, max_ue_f] (lines 4-5). The last step is to return

the error factor that is generated (line 7). Now that an error factor for the job has been

generated, the estimated execution times of the job’s tasks can be calculated in a similar

manner as the Constant Error Model (see Eq. 5.1 in Section 5.7.1).

Relationship between User-estimated Job Execution Times and the Deadlines of

Jobs: As shown in Table 5.1, the deadline of a job j in the Hadoop Synthetic Workload is

calculated as follows: dj = sj + SETj
R * em where sj is the earliest start time of job j, SETj

R

is the estimated execution time of job j when it executes at its maximum degree of

parallelism on a set of resources R, and em is the execution time multiplier, which is used

to determine the laxity of the job. As described in Section 5.7.2, the deadline of each job

submitted to the system is calculated using the respective job’s estimated task execution

times, which may contain error. The rationale behind this decision is that a user who

submits a job will generate a deadline for his/her job using the estimated task execution

times that he/she supplies to the system. Thus, if the job has overestimated task execution

times, the job will have more laxity (or slack time) compared to when there is no error in

the execution times. On the other hand, if the job has underestimated task execution times,

the job will have less laxity (or slack time) compared to when the execution times have no

error.

6.3 Results of the Performance Evaluation

This section presents and discusses the results of the experiments performed to

evaluate the PSEH Technique. To generate each of the values shown in the graphs and

177

tables presented in this section, the experiments are run long enough to ensure the system

reached a steady state, where each experiment lasted approximately 24 hours (similar to

the performance evaluation described in Section 5.5.1). Note that in this section, Figure 6.5

and Figure 6.7 display the values of T and O in the same figure, where T is displayed as a

bar graph that uses the scale on the left Y-axis and O is displayed as a sequence of points

that uses the scale on the right Y-axis.

6.3.1 Constant Error Model

Figure 6.1 and Table 6.1 present a comparison of P between the HCP-RM technique

that uses the PSEH technique (HCP-RM-EH) and the original version of the HCP-RM

technique when the Constant Error Model is used with different values of f and λ. Note that

the results for HCP-RM are the same as those presented in Section 5.7.3 and are replicated

here to compare with the results of HCP-RM-EH. For a given λ, it is observed that both

HCP-RM-EH and HCP-RM follow a similar trend in performance: P decreases as f

increases due to jobs having higher values of laxity captured in Lj
act (defined in Section

5.7.2), resulting in less stringent deadlines. For all the values of λ and values of f

experimented with, it is observed that HCP-RM-EH achieves a lower or equal P compared

to HCP-RM. More specifically, HCP-RM-EH achieves up to an approximately 50%

reduction in P (when λ is 1/25 jobs per sec and f is -0.5 as shown in Table 6.1) and on

average a 29% reduction in P over all the values of f and λ experimented with. Furthermore,

it is observed that in some cases, such as when λ is 1/30 jobs per sec and f is 2, HCP-RM-

EH achieves a P of 0 (as indicated by the missing bar corresponding to the technique in

Figure 6.1).

178

Figure 6.1. HCP-RM vs HCP-RM-EH: effect of f on P when using the Constant Error

Model and λ is 1/30 jobs per sec.

The superior performance of HCP-RM-EH can be attributed to the ability of the

PSEH technique to adjust the user-estimated task execution times and make them more

accurate. This in turn allows HCP-RM-EH to make intelligent matchmaking and

scheduling decisions that lead to a small P. Having accurate execution times is even more

important at higher values of λ due to the high contention for resources, and thus, it is

observed that the overall performance improvement (in terms of P) of HCP-RM-EH over

HCP-RM increases as λ increases (see Table 6.1). Moreover, it is observed that for a given

λ, the performance improvement of HCP-RM-EH over HCP-RM is at its highest when f is

less than or equal to -0.5 (see Figure 6.1, for example). This is because at these low

(negative) values of f, the job execution times are significantly underestimated when the

schedule is prepared by HCP-RM. During runtime, the actual execution times are

significantly longer, resulting in job completion times that are higher compared to the

0

20

40

60

80

100

-0.9 -0.5 -0.1 0 0.1 0.5 2

P
 (

%
)

f

λ = 1/30 jobs per sec

HCP-RM HCP-RM-EH

179

values computed for the schedule. This leads to a higher chance of a deadline miss for

HCP-RM. The PSEH technique used by HCP-RM-EH attempts to correct the error in job

execution times, resulting in more accurate execution times used by HCP-RM-EH when

the schedule is prepared, thus leading to a lower chance of deadline misses.

Table 6.1. HCP-RM vs HCP-RM-EH: effect of f on P when using the Constant Error

Model.

f λ = 1/45 jobs per sec λ = 1/25 jobs per sec

 HCP-RM:

P (%)

 HCP-RM-EH:

P (%)

HCP-RM:

P (%)

HCP-RM-EH:

P (%)

-0.9 87.2 64.4 95.2 91.8

-0.5 12.6 8 66.8 34

-0.1 2.8 2.6 26.6 14.4

0 2.8 2.6 19.2 11.4

0.1 2 1.6 18 12.8

0.5 1 1 6.8 6.8

2 0.2 0 1.8 1.6

A comparison of the values of T achieved by HCP-RM-EH and HCP-RM using the

Constant Error Model at different values of λ and f are shown in Figure 6.2 and Table 6.2.

The results show that HCP-RM-EH tends to achieve a lower T compared to HCP-RM. The

highest (57%) reduction in T is observed when λ is 1/25 jobs per sec and f is -0.9. Over all

the experiments conducted, HCP-RM achieves on average a 21% reduction in T. Once

again, the improved performance of HCP-RM-EH can be attributed to the PSEH technique

generating more accurate estimated task execution times, which enables more effective

matchmaking and scheduling decisions to be made.

180

Figure 6.2. HCP-RM vs HCP-RM-EH: effect of f on T when using the Constant Error

Model and λ is 1/30 jobs per sec.

Moreover, it is also observed that for a given λ, the trend for T for the two systems

are quite different. In the case of HCP-RM, T tends to increase as f decreases, whereas in

the case of HCP-RM-EH, T tends to remain at approximately the same value as f changes.

In the case of HCP-RM-EH, it is expected that T would not significantly change with f

because for each experiment where the value of f is varied, the actual runtimes of the jobs

in the workload that need to be processed is the same, only the user-estimated execution

times of the jobs are different. Thus, for all the values of f and a given value of λ, HCP-

RM-EH is processing a similar workload in each experiment. On the other hand, in the

HCP-RM experiments, the user-estimated execution times are used directly to perform

matchmaking and scheduling, leading to HCP-RM seeing a different workload that needs

to be processed in each experiment where f is changed. Note that the explanation for the

trend in T for HCP-RM is described in more detail in Section 5.7.3.

0

100

200

300

400

500

600

-0.9 -0.5 -0.1 0 0.1 0.5 2

T
(s

ec
)

f

λ = 1/30 jobs per sec

HCP-RM HCP-RM-EH

181

Table 6.2. HCP-RM vs HCP-RM-EH: effect of f on T when using the Constant Error

Model.

f λ = 1/45 jobs per sec λ = 1/25 jobs per sec

 HCP-RM:

T (sec)

HCP-RM-EH:

T (sec)

HCP-RM:

T (sec)

HCP-RM-EH:

T (sec)

-0.9 294 202 1513 650

-0.5 246 199 1249 664

-0.1 221 198 956 670

0 216 199 884 679

0.1 218 200 834 681

0.5 224 197 724 660

2 229 196 608 717

Figure 6.3 and Table 6.3 present a comparison of O between HCP-RM-EH and

HCP-RM when using the Constant Error Model at different values of f and λ. Similar to

the results of T, it is observed that the trends in O achieved by HCP-RM-EH and HCP-RM

are different. For HCP-RM, it is observed that O tends to increase with f. Recall from

Section 5.7.3 that this is due to the user-estimated job execution times being directly

proportional to f. As the user-estimated job execution times increase, HCP-RM expects a

higher contention for resources that require the solver to spend more time in finding a

solution to the resource management problem. This leads to an increase in O. On the other

hand, for HCP-RM-EH, it is observed that O tends to remain at approximately the same

value as f is varied. Similar to the explanation provided for the results of T, this trend in

performance can be attributed to the fact that in each experiment where f is varied, the

actual runtimes of the jobs in the workload that need to be processed is the same, only the

user-estimated execution times of the jobs are different. In addition, the PSEH technique

is able to adjust the user-estimated execution times and make them closer to the actual

runtimes. As a result, the overhead of the CPLEX solver is relatively insensitive to the

value of f. The highest O is observed when f is -0.9. This is because jobs have less laxity

182

and thus are more susceptible to miss their deadlines. This in turn causes HCP-RM-EH to

require more time to find a schedule that minimizes P.

Figure 6.3. HCP-RM vs HCP-RM-EH: effect of f on O when using the Constant Error

Model and λ is 1/30 jobs per sec.

Table 6.3. HCP-RM vs HCP-RM-EH: effect of f on O when using the Constant Error

Model.

f λ = 1/45 jobs per sec λ = 1/25 jobs per sec

 HCP-RM:

O (sec)

HCP-RM-EH:

O (sec)

HCP-RM:

O (sec)

HCP-RM-EH:

O (sec)

-0.9 0.17 2.20 1.34 12.80

-0.5 0.24 1.27 3.37 11.36

-0.1 0.67 1.58 5.75 11.95

0 0.74 1.35 8.09 10.79

0.1 0.87 1.43 9.31 10.72

0.5 1.65 1.07 12.60 10.42

2 2.19 1.12 15.19 11.50

0

1

2

3

4

5

6

7

8

-0.9 -0.5 -0.1 0 0.1 0.5 2

O
 (

se
c)

f

λ = 1/30 jobs per sec

HCP-RM HCP-RM-EH

183

Another interesting observation from the results shown in Table 6.3 and Figure 6.3

is that when f is less than 0 (i.e., execution times are underestimated), HCP-RM achieves a

lower O compared to HCP-RM-EH. When f is less than 0, the job execution times used by

HCP-RM are lower than their actual execution times. The PSEH technique used by HCP-

RM-EH tends to correct the underestimated job execution times, resulting in the respective

jobs processed by HCP-RM-EH to have higher execution times compared to those handled

by HCP-RM. As a result, since higher job execution times lead to a higher resource

contention, the CPLEX solver in HCP-RM-EH takes a longer time to generate a schedule

for the system in comparison to the solver in HCP-RM. On the other hand, when task

execution times are significantly overestimated (e.g., f is greater than or equal to 0.5), HCP-

RM tends to have a higher O compared to HCP-RM-EH. This is because the solver in HCP-

RM needs to handle a higher resource contention in comparison to HCP-RM-EH that

processes jobs with lower execution times due to the PSEH technique tending to correct

the overestimated execution times, resulting in a lower contention for resources. This leads

to a lower processing time for the CPLEX solver in the case of HCP-RM-EH, and thus

HCP-RM-EH achieves a lower O compared to HCP-RM.

6.3.2 Feitelson’s Error Model

The results of the performance comparison between HCP-RM-EH and HCP-RM

when using Feitelson’s Error Model (described in Section 5.7.1) at different arrival rates

are presented in Figure 6.4 and Figure 6.5. As shown in Figure 6.4, it is observed that both

HCP-RM-EH and HCP-RM achieve the same values of P for all the values of λ

experimented with. This can be attributed to Feitelson’s Error Model generating highly

overestimated task execution times, resulting in jobs having more slack time (i.e., higher

184

values of Lj
act) and lenient job deadlines. Note that the non-visible bars in Figure 6.4 when

λ is 1/45 jobs/sec and 1/30 jobs per sec indicate that the value of P is 0 for both systems.

Figure 6.4. HCP-RM vs HCP-RM-EH: effect of λ on P when using Feitelson’s Error

Model.

Figure 6.5. HCP-RM vs HCP-RM-EH: effect of λ on T and O when using Feitelson’s

Error Model.

0

0.05

0.1

0.15

0.2

0.25

1/45 1/30 1/25

P
 (

%
)

λ (jobs per sec)

HCP-RM HCP-RM-EH

0

1

2

3

4

5

6

7

0

200

400

600

800

1000

1200

1400

1600

1/45 1/30 1/25

O
 (

se
c)

T
(s

ec
)

λ (jobs per sec)

HCP-RM: T HCP-RM-EH: T HCP-RM: O HCP-RM-EH: O

185

With regards to T (refer to Figure 6.5), it is observed that for a given λ, both HCP-

RM-EH and HCP-RM have comparable values with HCP-RM achieving a slightly lower

T. This can be attributed to HCP-RM expecting that jobs have very high execution times,

and thus focusing on executing jobs at or close to their arrival times so that the jobs do not

miss their deadlines. On the other hand, HCP-RM-EH sees jobs that have lower execution

times (as adjusted by the PSEH technique) and more laxity in comparison to HCP-RM.

This allows HCP-RM-EH to quickly find a schedule that minimizes P without focusing on

minimizing T, leading HCP-RM-EH to have a slightly higher T compared to HCP-RM.

This reasoning is supported by observing the results of O shown in Figure 6.5 (refer to the

sequence of points), which demonstrate that HCP-RM-EH achieves a lower O (on average

72% lower) compared to HCP-RM for all the values of λ experimented with. HCP-RM

expects a high contention for resources because when using Feitelson’s Error Model, it

receives jobs with highly overestimated execution times. This in turn leads to more

processing time being required to match make and schedule jobs and results in a higher O.

6.3.3 Variable Error Model

Figure 6.6 and Figure 6.7 present the results of the performance comparison

between HCP-RM-EH and HCP-RM when using the Variable Error Model. The

parameters of the Variable Error Model (defined in Section 6.2.3) are set as follows: poe =

0.98, min_ue_f = -0.9, max_ue_f = -0.1, min_oe_f = 0, max_oe_f = 2. The value of poe is

adopted from [77], which performed an analysis on a workload trace and found that 98%

of jobs submitted have overestimated execution times and only 2% have underestimated

execution times. The values of min_ue_f, max_ue_f, min_oe_f, and max_oe_f are set

186

according to the maximum and minimum values of f used in the Constant Error Model

experiments (discussed in Section 6.3.1).

Figure 6.6. HCP-RM vs HCP-RM-EH: effect of λ on P when using the Variable Error

Model.

Figure 6.7. HCP-RM vs HCP-RM-EH: effect of λ on T and O when using the Variable

Error Model.

0

0.5

1

1.5

2

2.5

3

3.5

1/45 1/30 1/25

P
 (

%
)

λ (jobs per sec)

HCP-RM HCP-RM-EH

0

2

4

6

8

10

12

14

0

100

200

300

400

500

600

700

800

900

1/45 1/30 1/25

O
 (

se
c)

T
(s

ec
)

λ (jobs per sec)

HCP-RM: T HCP-RM-EH: T HCP-RM: O HCP-RM-EH: O

187

It is observed that HCP-RM-EH achieves a lower P, T, and O compared to HCP-

RM for all the values of λ experimented with. Note that the non-visible bar for HCP-RM-

EH in Figure 6.6 when λ is 1/45 jobs/sec indicates that P is 0. The performance

improvement in terms of P, T, and O achieved by HCP-RM-EH over HCP-RM when using

the Variable Error Model is summarized: 54% reduction in P, 3% reduction in T, and 35%

reduction in O. The results demonstrate that the PSEH technique used by HCP-RM-EH is

effective in not only handling workloads in which jobs have the same f as generated by the

Constant Error Model, but is also effective in handling workloads in which jobs have

different values of f as generated by the Variable Error Model. The superior performance

of HCP-RM-EH can be attributed to the PSEH technique being able to adjust the user-

estimated task execution times and make them more accurate (i.e., closer to the actual task

runtimes). This gives HCP-RM-EH more accurate information on how long jobs need to

execute for, and thus, allows HCP-RM-EH to make more intelligent matchmaking and

scheduling decisions that can lead to high system performance.

6.4 Summary and Discussion

In this chapter, techniques are presented for handling inaccuracy or error in user

estimates of job execution times (submitted as part of the SLA for the job) to improve the

robustness of the MRCP-RM technique (described in Chapter 4) and the HCP-RM

technique (described in Chapter 5). The effectiveness of a matchmaking and scheduling

algorithm that depends on the user-estimated job execution times can be diminished by

inaccurate estimates of job runtimes. Thus, a Prescheduling Error Handling (PSEH)

technique is devised to adjust the user-estimated execution times to make them more

accurate before they are used by the resource management algorithms. A rigorous

188

performance evaluation of the PSEH technique is conducted on a Hadoop cluster deployed

on Amazon EC2. Three models to generate the error in user-estimated execution times

(Constant, Feitelson’s, and Variable) are used in the experiments. The performance of

HCP-RM using the PSEH technique (denoted HCP-RM-EH) is compared to the

performance of the original version of HCP-RM. A number of insights into system

behaviour and performance are gained from analyzing the results of the experiments and

these are summarized next.

 Constant Error Model: In all the experiments conducted using the Constant Error

Model (see Section 6.3.1), HCP-RM-EH is observed to achieve a lower P (up to

50% lower and on average 29% lower) and a lower T (up to 57% lower and on

average 21% lower) compared to HCP-RM. Furthermore, HCP-RM-EH achieves

a P of 0 when f is 2 and λ is 1/30 jobs per sec or lower. With regards to O, it is

observed that when the execution times are overestimated, HCP-RM-EH

achieves a lower O compared to HCP-RM, but when the execution times are

underestimated, the opposite is true.

 Feitelson’s Error Model: When using Feitelson’s Error Model (see Section

6.3.2), both HCP-RM-EH and HCP-RM achieve the same values of P of less than

0.2% and similar values of T due to Feitelson’s Error Model generating jobs with

significantly overestimated execution times. However, HCP-RM-EH is observed

to achieve up to a 76% lower O (on average 72% lower) compared to the O

achieved by HCP-RM.

 Variable Error Model: Over all the experiments conducted using the Variable

Error Model (see Section 6.3.3), it is observed that HCP-RM-EH achieves on

189

average a 54% lower P, a 3% lower T, and a 35% lower O compared to the values

of P, T, and O, respectively, achieved by HCP-RM. This demonstrates the

effectiveness of HCP-RM-EH in handling a workload comprising jobs with

different degrees of errors in execution times.

 Effectiveness of PSEH technique: The superior performance of HCP-RM-EH can

be attributed to the PSEH technique being able to adjust the user-estimated task

execution times to make them more accurate. This in turn enables HCP-RM-EH

to make intelligent matchmaking and scheduling decisions that tends to lead to

HCP-RM-EH achieving lower values of P, T, and O compared to HCP-RM.

In the following sub-section, a direction for future research that focuses on devising

a runtime error handling technique, which deals with the error in execution times after the

job has been scheduled and has started running, is described.

6.4.1 Runtime Error Handling Technique

The PSEH technique described in this chapter alters the job execution times (before

the job is scheduled on the system) based on the trend of error in user-estimated execution

times, which is established from the past history of completed jobs. The resulting adjusted

values of such execution times may still not be 100% accurate. Thus, there seems to be a

scope for future research on a technique that performs further error handling after the jobs

start running on the system. Such a technique will be targeted at handling two situations:

(1) when the system generated execution times determined by the PSEH technique are still

overestimated, leading to resource idle times, and (2) when the system generated execution

times are still underestimated, preventing jobs from being able to complete executing by

their computed end times. Handling of each of these situations is briefly discussed.

190

Handling of Overestimated Execution Times: This corresponds to the situation in

which task t takes less than its estimated execution time (et
est) to complete. In this situation,

the completed task t is removed from the system and the tasks scheduled on the resource r,

on which t was running, are rescheduled so that they can start to execute earlier as long as

their earliest start time requirements are not violated. This attempts to decrease the resource

idle time that will result from task t completing before its expected end time.

Handling of Underestimated Execution Times: This corresponds to the situation in

which task t does not complete its execution after running for et
est time units. In such a

situation, task t can be given additional execution time (referred to as a time quantum) so

that it can continue executing immediately or at a later time. The system can start by

assigning task t a small time quantum as long as it does not lead to new deadline misses

for jobs. If the task still does not finish executing, further time quanta with higher durations

can be provided if the deadline for the job containing task t is not violated. The idea is to

utilize existing idle slots in the resource schedule and to delay executing the tasks of jobs

that have already missed their deadlines in favour of executing tasks of jobs that have not

missed their deadlines. Whether using such an additional runtime error handling technique

leads to a significant improvement in system performance is worthy of further

investigation.

191

Chapter 7 Workflow Budget-Based Resource Management

Technique

The focus of this chapter is on describing the Workflow Budget-Based Resource

Management (WFBB-RM) technique that is devised to efficiently perform matchmaking

and scheduling for an open stream of multi-stage jobs with SLAs where each SLA

comprises an earliest start time, an execution time, and an end-to-end deadline. Preliminary

research on a budget-based resource allocation and scheduling technique for processing an

open stream of MapReduce jobs with SLAs is described in [19]. In addition to MapReduce

jobs, the WFBB-RM technique can process workflows that have different structures

(various types of precedence relationships) and more than two phases of execution, such

as scientific workflows found in the domain of physics and biology. The WFBB-RM

technique decomposes (budgets) the end-to-end deadline of a job, which is submitted as

part of the job’s SLA, into components (i.e., sub-deadlines), each of which is associated

with a specific task in the job. The individual tasks of the job are then mapped on to the

resources where the objective is to satisfy the job’s SLA and minimizing the number of

jobs that miss their deadlines.

The rest of the chapter is organized as follows. Section 7.1 provides a description

of how the resource allocation and scheduling problem is modelled. The algorithms devised

to budget the end-to-end deadline for multi-stage jobs are described in Section 7.2. In

Section 7.3, the matchmaking and scheduling algorithms of the WFBB-RM technique are

discussed. The experimental setup and description of the workloads used in the

performance evaluation of the WFBB-RM technique are described in Section 7.4. The

results of the experiments are presented and the insights gained into system behaviour and

192

performance are discussed in Section 7.5 and Section 7.6. Lastly, Section 7.7 provides a

summary and discussion of the chapter.

7.1 Problem Description and Resource Management Model

This section describes how the problem of matchmaking and scheduling an open

stream of multi-stage jobs with SLAs on a distributed computing environment is modelled

(see Figure 7.1). Such an environment can correspond to a private cluster or a set of nodes

acquired a priori from a cloud (e.g., Amazon EC2) for processing the jobs. The distributed

environment is modelled as a set of resources, 𝑅 = {𝑟𝑒𝑠 1, 𝑟𝑒𝑠 2, … , 𝑟𝑒𝑠 𝑚} where m is

the number of resources in the system. Each resource r in R has a capacity (cr), which

specifies the number of tasks that resource r can execute in parallel at any point in time.

Note that related works have modelled resources in a similar manner (see [36], [39], and

[41], for example).

Resource Manager

Resource 1

CPU 1 CPU 2

Resource m

CPU 1 CPU 2

...

WFBB-RM

Job Queue

Job 3 Job 2 Job 1

Users

Figure 7.1. Example of a system deploying the WFBB-RM technique.

193

The system is subject to an open stream of multi-stage jobs. Each multi-stage job j

that arrives on the system is characterized by an earliest start time (sj) and an end-to-end

deadline (dj) by which the job j should complete executing. In addition, each job j also

comprises a set of tasks, where each task t has an execution time (et) and can have one or

more precedence relationships. The multi-stage job and the precedence relationships

between its tasks can be modelled using a directed acyclic graph (DAG) (see Figure 7.2,

for example). The nodes (vertices) of the DAG represent the tasks of the job, and the edges

of the DAG show the precedence relationships between the tasks of the job.

t1 t2 t3

t4 t5

t0

1

2

= Execution Phase

Figure 7.2. DAG of a sample multi-stage job.

The example multi-stage job shown in Figure 7.2 is characterized by two phases of

execution. An execution phase in a multi-stage job comprises one or more tasks that can

only start to execute after the previous execution phase is completed, which also comprises

a single task or set of tasks. The execution phases of a multi-stage job can only be executed

sequentially. For example, in the sample job shown in Figure 7.2, the first phase of

execution comprises three tasks: t1, t2, and t3. These three tasks do not have any direct

194

preceding tasks (referred to as parent tasks), which means that these tasks can start

executing at the job’s earliest start time. However, the tasks t4 and t5, which are part of the

second phase of execution, each have a parent task t0, as well as indirect preceding tasks

t1, t2, and t3. The tasks t4 and t5 cannot start executing until task t0 finishes, which in turn

cannot start executing until tasks t1, t2, and t3 finish executing. Note that some workflows

are modelled using a DAG with special tasks, referred to as dummy tasks, whose only

purpose is to show precedence relationships between tasks in the DAG, and thus, dummy

tasks have an execution time equal to 0. For example, in Figure 7.2, task t0 is a dummy

task that ensures tasks in the second phase of execution start to execute only after all the

tasks in the first phase have completed.

As shown in Figure 7.1, jobs that arrive on the system are placed in a job queue,

where jobs are sorted by non-decreasing order of their deadlines (i.e., jobs that have earlier

deadlines are placed in front of jobs with later deadlines). The resource manager uses the

WFBB-RM technique to perform matchmaking and scheduling. More specifically, when

the resource manager is available (i.e., not busy mapping another job) and the job queue is

not empty, it removes the first job in the job queue to map onto the resources of the system,

R. The requirements for mapping the jobs on to R are described next. The tasks of each job

j can only execute after sj and after their parent tasks have completed executing. In addition,

each task of job j should complete its execution before the deadline of the job (dj);

otherwise, job j will miss its deadline. Note that dj is a soft deadline, meaning that although

jobs are permitted to miss their deadlines, the desired system objective is to minimize the

number of late jobs. At any point in time, the number of tasks that a resource r in R can

execute in parallel must be less than or equal to its capacity, cr. A resource will execute the

195

tasks it has been assigned in the order generated by the WFBB-RM algorithm. However, a

task that has been scheduled but has not started executing can be rescheduled or assigned

to another resource, if required.

7.2 Deadline Budgeting Algorithm for Workflows

Algorithm 7.1 presents the Deadline Budgeting Algorithm for Workflows

(abbreviated DBW), which is used by the WFBB-RM technique to decompose the end-to-

end deadline of a multi-stage job into components and to assign each task of the job a sub-

deadline. The input required by the DBW algorithm is a multi-stage job j and two integer

parameters: setOpt to indicate the approach used to calculate the sample execution time of

the job j (SETj) and laxDistOpt to specify how the laxity (or slack time) of the job j (Lj) is

to be distributed among its constituent tasks. Recall the discussion of SETj and Lj provided

in Section 3.1.1. SETj is an estimate of the execution time of job j and Lj is the extra time

that job j has for meeting its deadline if it starts executing at its earliest start time: 𝐿𝑗 =

𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 .

The first step of the DBW algorithm is to calculate SETj (line 1). SETj is calculated

using the user-estimated task execution times of the job and can be calculated in one of two

ways depending on the supplied setOpt parameter. The first approach (setOpt = 1) is to

calculate the execution time of job j when it executes at its maximum degree of parallelism

on the set of resources R with m resources (denoted SETj
R). Recall from the previous

section, the definition of R, which is a set of resources that models the distributed system

job j will execute on. The second approach (setOpt = 2) is to calculate the execution time

of the job when it executes on R, while considering the current processing load of the

resources (i.e., considering the other jobs already executing or scheduled on R) (denoted

196

SETj
R_PL). Next, the algorithm calculates the laxity of the job (Lj) as shown in line 2. Note

that when Lj is calculated using SETj equal to SETj
R, the laxity of the job is referred to as

the sample laxity (SL) because the job execution time is calculated on R without

considering the current processing load of the resources. When Lj is calculated using SETj

equal to SETj
R_PL, the laxity of the job is referred to as the true laxity (TL) because the job

execution time is calculated for R while considering the current processing load of the

resources in R. The final steps of the algorithm are to distribute the laxity of the job to each

of its constituent tasks and to calculate a sub-deadline for each of the tasks (line 3) by

invoking one of two algorithms devised: (1) the Proportional Distribution of Job Laxity

Algorithm (abbreviated PD), which is described in Section 7.2.2, and (2) the Even

Distribution of Job Laxity Algorithm (abbreviated ED), which is discussed in Section 7.2.3.

The algorithm that is used depends on the supplied laxDistOpt input parameter. Before

discussing the details of the PD and ED algorithms, a discussion on the laxity of tasks is

presented first.

Algorithm 7.1: Deadline Budgeting Algorithm for Workflows

Input: job j, integer setOpt, integer laxDistOpt

Output: none

1: Depending on setOpt, calculate the sample execution time of job j (SETj).

2: jobLaxity  dj – sj – SETj

3: According to laxDistOpt, invoke the PD algorithm or the ED algorithm.

7.2.1 Laxity of Tasks

After invoking the DBW algorithm for a job j, each task t belonging to job j will

have a sub-deadline. Therefore, the laxity of a task t, denoted LTt, can be calculated as

follows:

𝐿𝑇𝑡 = 𝑠𝑑𝑡 − 𝑡𝑠𝑡 − 𝑒𝑡 (7.1)

197

where sdt is the sub-deadline of task t, tst is the earliest start time of task t, and et is the

execution time of task t. The value of tst is dependent on the precedence relationships of

task t. For tasks that do not have any parent tasks (recall the definitions provided in Section

7.1), tst is equal to sj (the earliest start time of the job that t belongs to). If a task t has at

least one parent task, tst is equal to the completion time of the latest finishing parent task

of t. The value of LTt is between a minimum task laxity value (LTt
min) and a maximum task

laxity value (LTt
max).

LTt
max is the maximum laxity that task t can have and is calculated as follows:

𝐿𝑇𝑡
𝑚𝑎𝑥 = 𝑠𝑑𝑡 − 𝑒𝑝𝑠𝑡 − 𝑒𝑡 (7.2)

where epst is the earliest possible start time of task t when the parent job of t is executed

on the set of resources R (comprising m resources). The value of epst is equal to the

completion time of the latest finishing parent task of t, given that t’s parent tasks finish

executing at their earliest possible times (i.e., none of t’s preceding tasks (direct or indirect)

use any of their laxities). Moreover, LTt
min is the minimum laxity that task t can have. In

other words, LTt
min is the laxity of task t given that all of t’s parent tasks complete their

execution at their respective sub-deadlines (i.e., every parent task of t uses all of its laxity).

LTt
min is calculated as follows:

𝐿𝑇𝑡
𝑚𝑖𝑛 = 𝑠𝑑𝑡 − 𝑠𝑑𝑡

𝐿𝐹𝑃𝑇 − 𝑒𝑡 (7.3)

where sdt
LFPT is equal to the sub-deadline of the latest finishing parent task of t. Note that

if a task has no parent tasks, sdt
LFPT

 is equal to sj.

198

7.2.2 Proportional Distribution of Job Laxity Algorithm

The Proportional Distribution of Job Laxity Algorithm (abbreviated PD) distributes

the laxity of the job to its constituent tasks according to the length of the task’s execution

time. This means that a task with a longer execution time is assigned a larger portion of the

job’s laxity, resulting in the task having a higher sub-deadline. The PD algorithm is shown

in Algorithm 7.2. The input required by the algorithm includes a job j to process and an

integer parameter, setOpt, to indicate how SETj is calculated. Recall from the discussion

earlier that SETj can be calculated in one of two ways: setOpt = 1 corresponds to SETj
R

and setOpt = 2 corresponds to SETj
R_PL. A walkthrough of the algorithm is provided next.

Algorithm 7.2: Proportional Distribution of Job Laxity Algorithm

Input: job j, integer setOpt

Output: none

1: Depending on setOpt, calculate SCTj and store the value in sct.

2: est  j.getEarliestStartTime()

3: jobLaxity  j.getLaxity()

4: for each task t in job j do

5: cumulativeLaxity  [(t.getSCT() - est) / (sct– est)] * jobLaxity

6: subdeadline  t.getSCT() + cumulativeLaxity

7: t.setSubDeadline(subdeadline)

8: if t has more than one parent task then

9: call setParentTasksSubDeadlines(t)

10: end if

11: end for

The first step of Algorithm 7.2 is to calculate the sample completion time of job j

(denoted SCTj) as: sj + SETj where sj is the earliest start time of job j (line 1). The second

and third steps involve retrieving sj and Lj, respectively, of the supplied job j and saving

them in local variables (lines 2-3). Next, the PD algorithm performs the following

199

operations on each task t in the job j (line 4). The first operation is to calculate the

cumulative laxity of the task t (denoted CLt) (line 5) as follows:

𝐶𝐿𝑡 =
𝑆𝐶𝑇𝑡 − 𝑠𝑗

𝑆𝐶𝑇𝑗 − 𝑠𝑗
 × 𝐿𝑗 (7.4)

where SCTt is the sample completion time of task t. Note that the sample completion time

of the tasks are determined during the calculation of SETj (line 1 in Algorithm 7.1). The

cumulative laxity of a task t is the maximum laxity that task t can have (recall Section

7.2.1). After calculating CLt, the sub-deadline of the task t (sdt) is then calculated (line 6)

as follows:

𝑠𝑑𝑡 = 𝑆𝐶𝑇𝑡 + 𝐶𝐿𝑡 (7.5)

The sub-deadline of the task t is then set as shown in line 7. If the task t does not have more

than one parent task, the processing of task t is complete and the algorithm moves on to

process the next task; otherwise, the algorithm invokes the task’s

setParentTasksSubDeadlines() method (lines 8-10). This method, whose objective is to

set the sub-deadline of all of t’s parent tasks to the sub-deadline of the task among all of

t’s parent tasks that has the highest sub-deadline, is described in more detail in Section

7.2.2.1. The reason for invoking setParentTasksSubDeadlines() is because a task t

cannot start executing until all of its parent tasks finish executing, and thus, all the parent

tasks of task t should have the same sub-deadline. The algorithm ends after processing all

the tasks of the job.

7.2.2.1 Set Sub-deadlines of Parent Tasks Method

Algorithm 7.3 presents the algorithm for setParentTasksSubDeadlines()

(abbreviated setPTSubDL). The input required by the method is a task t to process. The first

step is to check if the execution time of task t is equal to 0, meaning it is a dummy task

200

(line 1). Recall from Section 7.1 that a dummy task is a task whose purpose is to only

specify precedence relationships between the tasks of a job, and thus, dummy tasks have

an execution time equal to zero. If the task to process t is a dummy task, the sub-deadline

of each of t’s parent tasks is set to t’s own sub-deadline, and the method ends (see lines 2

to 5).

Otherwise, task t has an execution time greater than 0, and the method continues as

follows. First, the highest sub-deadline that is found among all of t’s parent tasks is saved

in the variable highestSubDeadline (line 7). Next, each of t’s parent tasks (denoted pt) is

processed to see if their current sub-deadline should be updated and set to the value stored

in highestSubDeadline (lines 8-15). The sub-deadline of each pt is only updated if the

following two conditions are true: (1) the value stored in highestSubDeadline is larger

than pt’s current sub-deadline (line 9) and (2) there is a single direct path from pt to t, that

is there is a direct edge from pt to t and no other path from pt to t (see lines 10-13). To

check condition (2), a method named getListOfSucceedingTasksUnitl(), which returns

a list of tasks from pt (including pt) that form a path to t, is used. The return value of

getListOfSucceedingTasksUnitl() is saved in a variable called succeedingTasks (line

10). If the number of tasks in succeedingTasks is equal to 1, it means that there is a direct

path from pt to t, and pt’s sub-deadline is set to the value of highestSubDeadline (lines

11-13). On the other hand, if the number of tasks in succeedingTasks is greater than 1,

the sub-deadline of the task is not changed and the next parent task of t is processed. After

all of task t’s parent tasks are processed, the method returns (line 15).

An example of why condition (2) needs to be checked is shown in the DAG

presented in Figure 7.3. The figure specifies the name of the tasks (t1 to t4) and the sub-

201

deadlines of each of the tasks (sdt). Assume that the PD algorithm has already done the

following: processed tasks t1 to t3, finished assigning a sub-deadline to t4, and just invoked

the setPTSubDL method for t4. Since task t4 is not a dummy task, lines 1 to 6 are skipped

and line 7 is executed, which assigns 21 to the variable highestSubDeadline because t3

has the highest sub-deadline among all of t4’s parent tasks. If condition (2) (see lines 10-

11) is not present in the setPTSubDL algorithm, task t1’s sub-deadline would be set to 21.

However, this would not make sense because it would cause task t1, which is a parent task

of t2, to have a higher sub-deadline compared to t2. The reason that this situation can occur

is because there are two paths from which task t1 can reach task t4: (1) a direct path from

t1 to t4 and (2) a path from t1 through t2 and t3 to t4. Thus, this example of the precedence

relationships between tasks, which has also been observed in some scientific workflows,

demonstrates that the sub-deadline of a parent task should not be updated if there is more

than one path from the parent task to the child task.

Algorithm 7.3: WFBB-RM algorithm’s setParentTasksSubDeadline()

Input: task t

Output: none

1: if t.getExecutionTime() = 0 then

2: for each task pt in t’s parent tasks list do

3: call pt.setSubDeadline(t.getSubDeadline())

4: end for

5: return

6: end if

7: highestSubDeadline  Get the highest sub-deadline among all of t’s parent tasks.

8: for each task pt in t’s parent tasks list do

9: if latestSubDeadline > pt.getSubDeadline() then

10: call getListOfSucceedingTasksUnitl(pt, t) returning succeedingTasks

11: if succeedingTasks.size() = 1 then

12: pt.setSubDeadline(highestSubDeadline)

13: end if

14: end if

15: end for

202

t1 t2

t4 t3

sdt1=14 sdt2=19

sdt4=27 sdt3=21

Figure 7.3. Sample DAG for illustrating the purpose of getListOfSucceedingTasksUnitl().

7.2.3 Even Distribution of Job Laxity Algorithm

The Even Distribution of Job Laxity Algorithm (abbreviated ED) does not consider

the length of the task’s execution time and instead distributes the laxity of the job evenly

among the execution phases of the job. Recall from Section 7.1 that an execution phase in

a multi-stage job comprises one or more tasks that can only start to execute after the

previous execution phase, which also comprises a single task or set of tasks, is completed.

The ED algorithm requires each task in a job to have an execution phase attribute, which

is an integer (1, 2, 3, …) that indicates the phase of execution that the task belongs to.

The ED algorithm is presented in Algorithm 7.4 and a walkthrough of the algorithm

is provided next. The input required by the algorithm is a job j to process. The first step is

to retrieve the laxity of the job and save the value in a local variable (line 1). Next, the

algorithm determines the number of execution phases that the job contains (lines 2-6). This

is accomplished by checking the execution phase attribute of each task t in job j (line 3)

and adding task t’s execution phase to a list called executionPhases, if the task’s execution

phase is not already in the list (lines 4-5). The executionPhases list is then sorted in non-

decreasing order (line 7). The next step of the algorithm is to calculate the amount of laxity

203

that each execution phase should be assigned (line 8). The laxity per each execution phase

of a job j (denoted Lj
ep) is calculated as follows:

𝐿𝑗
𝑒𝑝 =

𝐿𝑗

𝑛𝑗
𝑒𝑝⁄ (7.6)

where Lj is the laxity of job j and nj
ep is the number of execution phases in job j. The

cumulative laxity for each execution phase, which is the maximum amount of laxity that

an execution phase can have, is then calculated as shown in lines 9 to 13. More specifically,

the cumulative laxity of each execution phase ph for a job j is calculated as follows:

𝐶𝐿𝑗
𝑝ℎ = 𝑝ℎ × 𝐿𝑗

𝑒𝑝
 (7.7)

where ph is an integer in the set {1, 2, 3, …, nj
ep} that represents the execution phase. A

map data structure named cumulativeLaxities is used to store the cumulative laxity for

each execution phase (line 9). Note that the ED algorithm assigns each phase of execution

the same amount of laxity (equal to Lj
ep). However, tasks that belong to an execution phase

closer to the end of the job (i.e., an execution phase with a higher ph value) will have a

higher maximum laxity value (equal to CLj
ph) compared to tasks that belong to an execution

phase that is near the start of the job (i.e., an execution phase with a smaller ph value). This

is because the tasks belonging to an execution phase with a higher ph value can use the

unused laxity from the tasks in the preceding execution phases.

The last phase of the algorithm (lines 14-27) uses the cumulative laxity values to

calculate and assign a sub-deadline for each of job j’s tasks. More specifically, the

following operations on each task t of job j are performed. First, the execution phase of the

task t is retrieved. If task t is a dummy task (recall the definition in Section 7.1), the

execution phase of the task is obtained by finding the parent task of t that has the latest

sample completion time (SCTt) (see lines 15-17). Otherwise, the execution phase is

204

obtained directly from t as shown in line 18. After obtaining the execution phase of the

task, the cumulative laxity of the task is retrieved from the cumulativeLaxities map using

the value of the execution phase as the key (line 21). The sub-deadline of the task is then

calculated using Eq. 7.5 (see Section 7.2.2) and assigned to the task (lines 22-23). Similar

to the PD algorithm, the ED algorithm invokes the setPTSubDL method if the task t has

more than 1 parent task. After all the tasks of job j are processed, the algorithm ends (line

27).

Algorithm 7.4: Even Distribution of Job Laxity Algorithm

Input: job j

Output: none

1: jobLaxity  j.getLaxity()

2: Create an empty list named executionPhases.

3: for each task t in job j do

4: if executionPhases does not contain t’s execution phase then

5: executionPhases.add(t.getExecutionPhase())

6: end for

7: Sort executionPhases in non-decreasing order.

8: laxPerEP  jobLaxity / executionPhases.size()

9: Create an empty map, cumulativeLaxities <execution phase, cumulative laxity>.

10: for i = 0 to (executionPhases.size() -1) do

11: cl  (i + 1) * laxPerEP

12: cumulativeLaxitites.put(executionPhases.get(i), cl)

13: end for

14: for each task t in job j do

15: if t.getExecutionTime() <= 0 then

16: latestTask  t.getLatestParentTask()

17: ep  latestTask.getExecutionPhase()

18: else

19: ep  t. getExecutionPhase ()

20: end if

21: cumulativeLaxity  cumlativeLaxities.get(ep)

22: subDL  t.getSCT() + cumulativeLaxity

23: t.setSubDeadline(subDL)

24: if t has more than one parent task then

25: call setParentTasksSubDeadline (t)

26: end if

27: end for

205

7.3 WFBB-RM Matchmaking and Scheduling Algorithm

This section describes the WFBB-RM technique’s matchmaking and scheduling

algorithm (also referred to as the mapping algorithm), which is composed of two sub-

algorithms: (1) the Job Mapping algorithm (discussed in Section 7.3.1) and (2) the Job

Remapping algorithm (described in Section 7.3.2). When there is a job j available to be

mapped, the Job Mapping algorithm is invoked. If the Job Mapping algorithm is unable to

schedule job j to complete its execution before its deadline, the Job Remapping algorithm

is called to remap job j and a set of jobs that may have caused j to miss its deadline.

7.3.1 Job Mapping Algorithm

The Job Mapping algorithm is comprised of two methods: (1) mapJob() presented

in Algorithm 7.5 and (2) mapJobHelper() described in Algorithm 7.6. Note that the

variables shown in the algorithms that are underlined indicate that the variables are fields

belonging to the WFBB-RM algorithm instead of being local variables. A walkthrough of

mapJob() is provided first, followed by the description of mapJobHelper(). The input

required by mapJob() comprises the following: a job to map j, an integer setOpt, an integer

laxDistOpt, and an integer tsp. Note that except for the parameter tsp, which specifies

the task scheduling policy, these are the same input parameters as used by the DBW

algorithm (described in the previous section). The method returns true if the job j can be

scheduled to meet its deadline; otherwise, false is returned.

The first step of mapJob() is to invoke the DBW algorithm to decompose the end-

to-end deadline of the job j and assign each of job j’s tasks a sub-deadline (line 1). Next,

the WFBB-RM algorithm’s rootJob field is set to j (line 2). The rootJob field stores the

current job that is being mapped by the system. The third step is to clear the WFBB-RM

206

algorithm’s prevRemapAttempts list (line 3), which stores the various sets of jobs that a

job remapping attempt processes. The WFBB-RM algorithm’s jobComparator field, which

specifies how jobs that need to be remapped are sorted, is then set to the Job Deadline

Comparator (line 4) to sort jobs by non-decreasing order of their respective deadlines. A

more detailed discussion of the purpose of these fields, which are used by the Job

Remapping algorithm, is provided in the next section. In line 5, the WFBB-RM algorithm’s

taskSchedulingPolicy field, which specifies how tasks are scheduled, is initialized. Two

task scheduling policies are devised. TSP1 schedules tasks to execute at their earliest

possible start times, and TSP2 schedules tasks to execute at their latest possible times such

that the tasks meet their respective sub-deadlines. The last step is to invoke Algorithm 7.6:

mapJobHelper() (line 6).

Algorithm 7.5: WFBB-RM algorithm’s mapJob()

Input: job j, integer setOpt, integer laxDistOpt, integer tsp

Output: a Boolean: true if the job j is scheduled to meet its deadline; false, otherwise.

1: call DBW(j, setOpt, laxDistOpt)

2: rootJob  j

3: Clear the prevRemapAttempts list.

4: Set jobComparator to the Job Deadline Comparator.

5: Set taskSchedulingPolicy  tsp

6: return mapJobHelper(j, true, true)

A walkthrough of mapJobHelper(), which performs the allocation and scheduling

of job j onto the set of resources in the system, is provided next. The input required by

mapJobHelper() includes the following: a job j to map, a Boolean isRootJob, which is set

to true if this is the first time job j is being mapped; otherwise, it is set to false, and a

Boolean checkDeadline, which is set to true if the method should try to map job j to meet

its deadline; otherwise, it is set to false and the method has to map job j on the system, but

it does not have to schedule job j to meet its deadline. The mapJobHelper() method starts

207

by initializing the local variable isJobMapped to true (line 1). Next, all of job j’s tasks that

need to be mapped are sorted in non-increasing order of their respective execution times

(line 2), where ties are broken in favour of the task with the earlier sub-deadline. If the

tasks also have the same sub-deadline, the task with the smaller task id (a unique value) is

placed ahead of the task with the larger id.

The method then attempts to map each of job j’s tasks (lines 3-4) by performing the

following operations for each task t in job j. First, the earliest start time of task t is retrieved

by invoking the task t’s getEarliestStartTime() method (line 5), which returns the time

that task t can start to execute while considering any precedence relationships that t has. If

getEarliestStartTime() returns -1, it means that an earliest start time for task t cannot

be determined as yet because not all of task t’s parent tasks have been scheduled. In this

case, mapJobHelper() stops processing task t for the moment and attempts to map the next

task in job j. On the other hand, if an earliest start time for task t is determined (i.e.,

getEarliestStartTime() does not return -1) (line 6), mapJobHelper() continues to

process task t, and the expected start time of t is calculated depending on the value of the

WFBB-RM algorithm’s taskSchedulingPolicy field, which is initialized by mapJob()

(recall Algorithm 7.5). If taskSchedulingPolicy is set to TSP1, the expected start time

of the task is not changed from the value obtained in line 5. However, if

taskSchedulingPolicy is set to TSP2 (line 7), the expected start time of the task is set as

shown in line 8. The completion time of the task is then calculated based on the expected

start time of the task as shown in line 9.

208

Algorithm 7.6: WFBB-RM algorithm’s mapJobHelper()

Input: job j, Boolean isRootJob, Boolean checkDeadline

Output: a Boolean: true if the job j is scheduled to meet its deadline; false, otherwise.

1: isJobMapped  true

2: Sort job j’s tasksToMap list in non-increasing order of the execution time of the

task.

3: while the tasksToMap list is not empty do

4: for each Task t in job j’s tasksToMap list do

5: startTime  t.getEarliestStartTime()

6: if startTime ≠ -1 then

7: if taskSchedulingPolicy = TSP2 then

8: startTime  t.getSubDeadline() – t.getExecutionTime()

9: endTime  startTime + t.getExecTime()

10: if startTime = endTime then

11: t.setScheduledTime(startTime, endTime)

12: mappedTasks.add(t)

13: else

14: Find a resource r in R that can execute t at its requested time or the

 next best time depending on taskSchedulingPolicy.

15: if t cannot be mapped to meet j’s deadline and checkDeadline = true

 then

16: call removePartiallyMappedJob()

17: isJobMappedremapJob(job, isRootJob)

18: goto line 28

19: else

20: Map t on r.

21: mappedTasks.add(t)

22: end if

23: end if

24: end if

25: end for

26: tasksToMap.removeAll(mappedTasks)

27: end while

28: if isJobMapped = true then

29: mappedTasks.clear()

30: mappedJobs.add(j)

31: return true

32: else

33: call mapJobHelper(job, true, false)

34: return false

35: end if

209

After calculating the expected start time and completion time of task t, the method

checks whether t has an execution time equal to 0 (i.e., if task t is a dummy task (defined

in Section 7.1)) (line 10). If task t is a dummy task, it does not need to be scheduled on a

resource because it has an execution time equal to 0 and only the task’s scheduled start

time and completion time need to be set (line 11). The task t is also added to the WFBB-

RM algorithm’s mappedTasks list (line 12), which stores all the tasks that have been

successfully mapped for job j. On the other hand, if task t has an execution time greater

than 0 (line 13), the method attempts to find a resource r in R that can execute t at its

expected start time. If t cannot be scheduled to execute at its expected start time, the task

is scheduled at the next best time depending on the value of the taskSchedulingPolicy

field (line 14). If taskSchedulingPolicy is set to TSP1, the method schedules task t at its

next earliest possible start time on the system. On the other hand, if taskSchedulingPolicy

is set to TSP2, the method schedules the task at its next latest possible time, while ensuring

the task’s sub-deadline is satisfied.

If a resource r cannot be found to complete executing task t before job j’s deadline,

it means job j cannot be mapped to meet its deadline in the current iteration. Thus, if the

supplied input parameter checkDeadline is set to true (line 15), mapJobHelper() attempts

to remap job j and a set of jobs that may have caused j to miss its deadline by performing

the following operations (lines 16-18). First, the removePartiallyMappedJob() method is

invoked to remove each of the tasks stored in the mappedTasks list from the system (line

16). Algorithm 7.7: remapJob() (described in more detail in Section 7.3.2) is then invoked

and the return value is saved in a variable called isJobMapped (line 17). The next step (line

18) is then to go to line 28 to check the value of isJobMapped. If isJobMapped is set to

210

true, meaning the job has been successfully scheduled to meet its deadline, the

mappedTasks list is cleared (line 29), job j is added to the WFBB-RM algorithm’s

mappedJobs list (line 30), and true is returned (line 31). Otherwise, isJobMapped is set to

false, meaning job j cannot be scheduled to meet its deadline (line 32). This leads to

mapJobHelper() being re-invoked but this time with the checkDeadline parameter set to

false, which will map job j even if it misses its deadline (line 33). False is then returned

(line 34) to indicate job j will not meet its deadline.

If either of the conditions shown in line 15 are not true (i.e., a resource is found that

can complete executing task t before job j’s deadline or the input parameter checkDeadline

is false), it means that task t can be scheduled to execute on resource r (line 20) and t is

then added to the mappedTasks list (line 21). The next task of job j is then processed by

repeating lines 3-27. This sequence of operations continues until all of job j’s tasks are

mapped on the system. After all of job j’s tasks have been mapped, lines 28-31 are executed

(as described earlier), and then the method returns.

7.3.2 Job Remapping Algorithm

The Job Remapping algorithm is comprised of two methods: (1) remapJob()

presented in Algorithm 7.7 and (2) remapJobHelper() outlined in Algorithm 7.8. A

discussion of remapJob() is provided first, followed by a discussion on

remapJobHelper(). The input parameters required by remapJob() include a job j to remap

and a Boolean isRootJob. The isRootJob parameter is set to true if it is the first invocation

of remapJob() for attempting to remap job j in this iteration; otherwise, isRootJob is set

to false. If job j and the set of jobs that may have prevented job j from meeting its deadline

211

are remapped and scheduled to meet their deadlines, the method returns true; otherwise,

false is returned.

The first step of remapJob() is to set the WFBB-RM algorithm’s

taskSchedulingPolicy field to TSP1 so the tasks that are remapped are scheduled to

execute at their earliest possible start times (line 1). The second step is to invoke Algorithm

7.8: remapJobHelper() (line 2). Recall from line 4 of Algorithm 7.5 (mapJob()) that the

jobComparator field, which specifies how the jobs that need to be remapped are sorted, is

initially set to the Job Deadline Comparator. The Job Deadline Comparator sorts jobs in

non-decreasing order of their respective deadlines with ties broken in favour of the job with

the smaller laxity (tighter deadline). If remapJobHelper() returns true, remapJob() also

returns true (line 3). On the other hand, if remapJobHelper() returns false, remapJob()

continues (line 4) by checking the supplied isRootJob parameter. If isRootJob is false

(line 5), meaning that this invocation of remapJob() is not for the original attempt for

mapping job j, the method returns false to stop this particular remapping attempt from

continuing (line 6). Otherwise, the method continues and the WFBB-RM algorithm’s

jobComparator field is changed to the Job Laxity Comparator (line 8) and

remapJobHelper() is invoked again to check if remapping the jobs in a different order can

generate a schedule in which all the jobs to remap can meet their deadlines (line 9).

The Job Laxity Comparator sorts jobs by non-decreasing order of their respective

normalized laxity with ties going in favour of the job with an earlier deadline. If the jobs

have the same deadline, the job with the earlier arrival time (which is unique for each job)

is given priority. The normalized laxity of a job j (denoted NLj) is calculated as follows:

𝑁𝐿𝑗 =
𝐿𝑗

𝑆𝐸𝑇𝑗
 (7.8)

212

where Lj is the laxity of job j and SETj is the sample execution time of job j (recall Section

7.2). The reason for using NLj instead of Lj for sorting the jobs is because Lj is not always a

good indicator of how stringent the deadline of a job is. A job can have a large laxity value,

but still have a very tight deadline if the job has a high execution time. For example, given

two jobs: (1) job j1 has sj1 equal to 0, dj1 equal to 6000, and SETj1 equal to 5000, and (2)

job j2 has sj2 equal to 5500, dj2 equal to 6000, and SETj2 equal to 100. Using this information

and the equation 𝐿𝑗 = 𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 and Eq. 7.8, the following values can be

calculated: Lj1 is equal to 1000, Lj2 is equal to 400, NLj1 is equal to 0.2, and NLj2 is equal to

4. As can be observed, job j1 has a higher laxity compared to job j2 (i.e., Lj1 > Lj2); however,

j1’s normalized laxity is much smaller compared to j2’s normalized laxity (NLj1 < NLj2),

meaning job j1 has a more stringent deadline.

Algorithm 7.7: WFBB-RM algorithm’s remapJob()

Input: job j, Boolean isRootJob

Output: a Boolean: true if job j and the set of jobs to remap are all scheduled to meet

their deadlines; otherwise, false.

1: taskSchedulingPolicy  TSP1

2: if calling remapJobHelper(j, isRootJob) returns true then

3: return true

4: else

5: if isRootJob = false then

6: return false

7: end if

8: Change jobComparator to the Job Laxity Comparator.

9: return remapJobHelper(j, isRootJob)

10: end if

A walkthrough of remapJobHelper() (shown in Algorithm 7.8) is provided next.

The input parameters and output value returned by remapJobHelper() are the same as

those described for remapJob(). The first step of the method is to retrieve a subset of the

213

jobs already scheduled on the system that may have caused job j to miss its deadline (line

1). This includes all the jobs in the WFBB-RM algorithm’s mappedJobs list that have a

scheduled start time or completion time within the interval [sj, dj]. Next, the supplied job j

is added to the jobsToRemap list (line 2) and then the jobsToRemap list is sorted using the

WFBB-RM algorithm’s jobComparator (line 3). Since it is possible to have multiple

(nested) invocations of remapJobHelper(), lines 4-6 determine when an invocation of

remapJobHelper() (referred to as a remapping attempt) should be rejected. More

specifically, before a remapping attempt is started the method checks if the WFBB-RM

algorithm’s prevRemapAttempts list, which stores the various sets of jobs that previous

invocations of remapJobHelper() have processed, contains the same jobs (in the same

order) as the jobsToRemap list (line 4). If this is true, the method returns false to stop the

remapping attempt (line 5).

On the other hand, if the remapping attempt is allowed to continue, the

jobsToRemap list is added to the prevRemapAttempts list (line 7). Next, the method checks

if the supplied parameter isRootJob is true (line 8), and if so, the current state of the system

is saved to a set of variables (line 9). This involves saving the scheduled tasks of each

resource in the system and making a copy of the WFBB-RM algorithm’s mappedJobs list.

Furthermore, the scheduled start time and assigned resource for each task currently mapped

on the system is saved. The reason for saving this information is because it may be changed

during the job remapping attempt, and if the remapping attempt is not successful, the

original state of the system has to be restored.

214

Algorithm 7.8: WFBB-RM algorithm’s remapJobHelper()

Input: job j, Boolean isRootJob

Output: a Boolean: true if job j and the set of jobs to remap are all scheduled to meet

their deadlines; otherwise, false.

1: jobsToRemap  Get subset of mapped jobs that can cause j to miss its

 deadline.

2: jobsToRemap.add(j)

3: Sort jobsToRemap using the jobComparator.

4: if prevRemapAttempts list contains the same jobs in the same order as the

jobsToRemap list then

5: return false

6: end if

7: Add jobsToRemap to prevRemapAttempts list.

8: if isRootJob = true then

9: Save current state of the system.

10: end if

11: Remove jobs in jobsToRemap from the system.

12: Move jobs in jobsToRemap that have missed their deadlines to the lateJobs list.

13: for each job j1 in jobsToRemap do

14: if calling mapJobHelper(j1, false, true) returns false then

15: if isRootJob = true then

16: Restore state of the system saved in line 9.

17: end if

18: return false

19: end if

20: end for

21: Remap each job j2 in lateJobs by calling mapJobHelper(j2, false, false).

22: return true

The next step is to remove all the jobs in jobsToRemap from the system (line 11),

which involves removing the jobs from the WFBB-RM algorithm’s mappedJobs list and

removing each task of each job from its assigned resource’s scheduledTasks list. This

needs to be done so that the jobs in jobsToRemap can be remapped on the system. All jobs

in jobsToRemap that have already missed their deadlines are then moved to a new list called

lateJobs (line 12) so that the jobs that have not missed their deadlines can be remapped

first. The jobs in jobsToRemap (line 13) are then remapped in the specific order as

determined by the jobComparator (recall line 3). This is accomplished by invoking

215

Algorithm 7.6: mapJobHelper() as shown in line 14. If mapJobHelper() returns true, the

method maps the next job in jobsToRemap. If at any point mapJobHelper() returns false

(line 14), it means that one of the jobs in jobsToRemap cannot be scheduled to meet its

deadline and the job remapping attempt has failed. The method then checks if isRootJob

is true (line 15), and if so, the state of the system that is saved in line 9 is restored (line 16).

False is then returned to indicate that the remapping attempt has failed (line 18). On the

other hand, if all the jobs in jobsToRemap are successfully remapped to meet their

deadlines, the next step is to perform mapping for the jobs in lateJobs (i.e., the jobs that

have missed their deadlines). This is accomplished by invoking mapJobHelper()

(Algorithm 7.6) with the checkDeadline input parameter set to false for each of the jobs

in lateJobs (line 21). Lastly, a value of true is returned by the method to indicate the

remapping attempt is successful (line 22).

7.4 Performance Evaluation of the WFBB-RM Technique

This section describes the simulation experiments conducted to evaluate the

performance of the WFBB-RM technique (referred to simply as WFBB-RM). Two types

of experiments are conducted to evaluate the effectiveness of WFBB-RM. The first type of

experiments (see Section 7.5) are performed to investigate the effect of various system and

workload parameters on the performance of WFBB-RM. More specifically, factor-at-a-

time experiments are conducted, where one parameter is varied and the other parameters

are kept at their default values. The second type of experiments (see Section 7.6) are

conducted to compare the performance of WFBB-RM with that of MRCP-RM (described

in Chapter 4). MRCP-RM has objectives that are similar to that of WFBB-RM: minimizing

the number of jobs that miss their deadlines when processing an open stream of multi-stage

216

jobs with SLAs, where each job’s SLA is characterized by an earliest start time, an

execution time, and an end-to-end deadline.

The rest of this section is organized as follows. The experimental setup and the

metrics used in the performance evaluation are described in Section 7.4.1. Following this,

a description of the system and workload parameters used in the factor-at-a-time

experiments is provided in Section 7.4.2.

7.4.1 Experimental Setup

The experiments are executed on a PC running Windows 10 (64-bit) with an Intel

Core i5-4670 CPU (3.40 GHz) and 16 GB of RAM. Note that in the experiments, only the

execution of the workload on the system is simulated. WFBB-RM and its associated

algorithms are executed on the machine described. Similar to the previous performance

evaluations described in this thesis, WFBB-RM is evaluated in terms of the following

performance metrics in each simulation run:

 Proportion of late jobs, P (recall Section 4.4.1)

 Average job turnaround time, T (recall Section 4.4.1)

 Average job matchmaking and scheduling time (O) is the average processing

time required by WFBB-RM to budget a job’s deadline and match make and

schedule a job. O is calculated as the total time required to process all the jobs

during a simulation run divided by the total number of jobs arriving on the

system in a simulation run.

O is a value that is measured using Java’s System.nanoTime() [102] method, whereas P

and T are values produced as output of the simulation. Similar to Section 4.4.1, the O-by-

T ratio (denoted O/T) is used as an indicator of the processing overhead of WFBB-RM.

217

7.4.2 System and Workload Parameters for the Factor-at-a-Time Experiments

The workloads used in the factor-at-a-time experiments are based on real scientific

applications (workflows) that have been described in the literature. More specifically, the

three scientific applications that are used in the experiments, which come from various

fields of study, are named CyberShake, LIGO, and Epigenomics. A brief discussion of each

application that includes presenting the DAG of the workflow is provided next. A more

detailed description of all three applications can be found in [113] and [114].

CyberShake is a seismology application that is created by the Southern California

Earthquake Center to predict earthquake hazards in a region. More specifically,

CyberShake uses the Probabilistic Seismic Hazard Analysis technique to identify all

ruptures within 200 km of the site of interest. For each rupture, CyberShake calculates

synthetic seismograms and then extracts the peak intensity measures from each

seismogram. The peak intensity values are then combined with the original rupture

probabilities to generate the probabilistic seismic hazard curves. The DAG of the

CyberShake workflow is presented in Figure 7.4. The DAG shows that there are five phases

of execution. The first, second, and fourth execution phases each contain multiple tasks to

execute, whereas the third and fifth execution phases each only have one task to execute.

The Laser Interferometer Gravitational Wave Observatory (LIGO) Inspiral

Analysis workflow is designed and used to search for and analyze gravitational waveforms

in data collected by large-scale interferometers. An interferometer is an apparatus that uses

the interference of waves to measure and analyze very small phenomena, such as small

displacements (e.g., wavelength) and refractive index changes. The input data is partitioned

into multiple blocks so that the data can be analyzed in parallel. Furthermore, the

218

ExtractSGT

Seismogram

Synthesis

ZipSeis

PeakValCalcOkaya

ZipPSA

= Execution Phase

1

2

3

4

5

Figure 7.4. DAG of a sample CyberShake application [113].

application also generates a subset of waveforms (TmpltBank tasks) from each block of

data to further facilitate parallel processing. Figure 7.5 shows the DAG of a sample LIGO

workflow, which has 6 phases of execution. In this sample LIGO workflow there are two

blocks of data being processed in parallel, where each block of data has multiple waveform

data to process (i.e., TmpltBank tasks). For example, in the sample LIGO workflow, Block

1 comprises 4 waveforms to process and Block 2 has 3 waveforms to process.

The Epigenomics (Genome) workflow is created by the University of Southern

California Epigenome Center for automating several commonly used operations in genome

sequence processing. The input of the workflow is DNA sequence data generated by the

Illumina-Solexa Genetic Analyzer system that is partitioned into several pieces to facilitate

parallel processing. Figure 7.6 presents the DAG of a sample Genome workflow, which is

characterized by one or more lanes, each of which starts with the execution of a fastQSplit

219

TmpltBank

Inspiral

(upper)

Thinca

(upper)

TrigBank

Inspiral

(lower)

Thinca

(lower)

Block 1 Block 2

= Execution Phase

1

2

3

4

5

6

Figure 7.5. DAG of a sample LIGO Inspiral Analysis application [113].

task. The operations that are performed on the data involve the following: removing

unnecessary (contaminating) sequences, mapping sequences into their correct locations

according to the reference genome, and calculating the density of a sequence at each

position in the genome. The Genome workflow has at least 8, but can have up to 9 phases

of execution. If there is more than one lane in the workflow, as shown in the example in

Figure 7.6, there are two mapMerge stages. The first mapMerge stage is for merging the

results within a particular lane (execution phase 6), and the second mapMerge stage

(referred to as the global mapMerge stage) is for merging the results of all the lanes in the

220

workflow (execution phase 7). On the other hand, if there is only one lane in the workflow,

the global mapMerge stage is not needed, and thus there will only be 8 phases of execution.

fastQSplit

filterContams

sol2anger

fastq2bfq

map

mapMerge

maqIndex

pileup

mapMerge (global)

Lane 1 Lane 2

= Execution Phase

1

2

3

4

5

6

7

8

9

Figure 7.6. DAG of a sample Epigenomics application [113].

Table 7.1 outlines the system and workload parameters used in the factor-at-a-time

experiments. These experiments investigate the effect of the following parameters on

system performance: job arrival rate, earliest start time of jobs, job deadlines, and the

221

number of resources. A walkthrough of Table 7.1 is provided next. Note that the

distributions used to generate the parameters of the workload, including the job arrival rate,

earliest start time of jobs, and job deadlines are adopted from the workload described in

Section 4.4.3. The first component of the table describes the workload. For a given

workflow type (CyberShake, LIGO, or Genome), there are three job sizes, each of which

has an equal probability of being submitted to the system: small, medium, and large,

comprising 30 tasks, 50 tasks, and 100 tasks, respectively. The distributions used for

generating the execution times of the tasks for each workload are described in [113]. The

open stream of job arrivals is generated using a Poisson process. The arrival rates used in

the experiments of a given workload type are different since each of the workloads is

characterized by jobs with different execution times. The average execution time of a

CyberShake job, LIGO job, and Genome job on a single resource is equal to 1551 sec,

13300 sec, and 160213 sec, respectively. The parameters λCS, λLG, and λGN specify the

arrival rates used for the CyberShake, LIGO, and Genome workloads, respectively. The

arrival rates for each workflow are chosen such that resource utilization ranging from

moderate (~50%) to moderately-high (~70%) to high (~90%) is generated on the system

when using the default number of resources (50 resources where each resource has a

capacity equal to 2).

The earliest start time of a job j (sj) can be its arrival time (atj) or at a time in the

future after atj. A random variable x, which follows a Bernoulli distribution with parameter

p, is defined. The parameter p is the probability that a job j has sj greater than atj. If x is 0,

sj equals atj; otherwise, sj equals the sum of atj and a value generated from a discrete uniform

(DU) distribution with a lower-bound equal to 1 and an upper-bound equal to a parameter

222

smax. The deadlines of the jobs are generated by multiplying SETj
R (recall Section 7.2) with

an execution time multiplier (em) and adding the resulting value to sj. The parameter em is

used to determine the laxity of the job and is generated using a uniform distribution (U)

where 1 is the lower-bound and emmax is the upper-bound of the distribution.

Table 7.1. System and Workload Parameters for the WFBB-RM Factor-at-a-Time

Experiments.

Parameter Values
Default

Value

Workload

Type {CyberShake, LIGO, Genome} -

Job arrival rate (job/sec)

λCS = {1/18, 1/22, 1/30}

λLG = {1/150, 1/180, 1/265}

λGN = {1/1800, 1/2290, 1/3205}

λCS = 1/22

λLG = 1/180

λGN = 1/2290

Earliest start time of jobs, sj

(sec)

𝑠𝑗 = {
𝑎𝑡𝑗, 𝑥 = 0

𝑎𝑡𝑗 + 𝐷𝑈 (1, 𝑠𝑚𝑎𝑥) 𝑥 = 1

where atj is the arrival time of job j and

x ~Bernoulli (p), p = 0.5, and

smax = {1, 5, 25} * 104

smax= 50000

Job Deadline, dj (sec)
𝑑𝑗 = ⌈𝑠𝑗 + 𝑆𝐸𝑇𝑗

𝑅 ∗ 𝑒𝑚⌉ where

em ~ U(1, emmax) and emmax = {2, 5, 10}
emmax = 5

System

Number of Resources, m m = {40, 50, 60} m=50

Resource Capacity cr = 2 -

Configuration of WFBB-RM

Laxity Distribution Algorithm {PD, ED} -

Approach to calculate the job

laxity
{SL, TL} -

Task Scheduling Policy {TSP1, TSP2} -

Note: DU = discrete uniform distribution, U = uniform distribution

The remaining components of the table describe the system used to execute the jobs

and the configuration of WFBB-RM. The number of resources (m), which represents the

number of nodes in the distributed environment for processing the jobs, is varied from 40

to 50 to 60, where each resource has a capacity (cr) equal to 2. Recall from Section 7.1, cr

223

specifies the number of tasks that a resource r can execute in parallel at any given point in

time. The configuration of WFBB-RM is defined as x-y-z where x specifies the laxity

distribution algorithm (i.e., PD or ED, described in Section 7.2), y specifies the approach

to calculate the laxity of the job (i.e., SL or TL, described in Section 7.2), and z specifies

the task scheduling policy (i.e., TSP1 or TSP2, described in Section 7.3.1). In total, there

are 8 different WFBB-RM configurations, and thus, for each workload type, the factor-at-

a-time experiments are conducted 8 times. This is performed to determine which

configuration provides the best performance for a given workload.

7.5 Results of the Factor-at-a-Time Experiments

The results of the factor-at-a-time experiments are presented in this section. Each

simulation run was executed long enough to ensure that the system was operating at a

steady state. Furthermore, each factor-at-a-time experiment is repeated a sufficient number

of times such that the desired trade-off between simulation run length and accuracy of

results was achieved. The confidence intervals for T and O in most cases are observed to

remain less than ±5% of the respective average values at a confidence level of 95%. For P,

the confidence intervals are observed to be in most cases less than ±10% of the average

value. Such an accuracy of the simulation results is deemed adequate for the nature of the

investigation, the focus of which is investigating the trend in the variation of a given

performance metric in response to changes in the system and workload parameters and to

compare the performance of the various WFBB-RM configurations. The values averaged

over the simulation runs and the confidence intervals are shown in the figures and tables

presented in this section. In the figures, the confidence intervals are shown as bars

originating from the mean values; however, some of the bars are difficult to see since the

224

confidence intervals are small. Note that the confidence intervals are considered while

deriving a conclusion regarding the relative performance of the respective WFBB-RM

configurations.

To provide clarity of presentation, only the results of the two WFBB-RM

configurations, one using PD and the other one using ED, that demonstrated the best overall

performance in terms of P are presented in the following sub-sections. More specifically,

the two WFBB-RM configurations that are compared for each workload type are

summarized:

 PD-SL-TSP1 vs ED-SL-TSP2 for the CyberShake workload

 PD-SL-TSP1 vs ED-SL-TSP1 for the LIGO workload

 PD-SL-TSP1 vs ED-SL-TSP1 for the Genome workload

The complete results of the factor-at-a-time experiments (i.e., the results of all 8 WFBB-

RM configurations for each of the three workloads) can be found in Appendix D.I to

Appendix D.III.

Note that in the following sub-sections, the results of the experiments using the

CyberShake workload are shown in figures where P is displayed in its own figure and T

and O are graphed in the same figure with T being displayed as a bar graph that uses the

scale on the left Y-axis and O being displayed as a sequence of points that uses the scale

on the right Y-axis. To maintain a reasonable number of figures, the results of each of the

experiments using the LIGO and Genome workloads are shown in their own tables where

the values of P, T, and O can be presented concisely.

225

7.5.1 Effect of Job Arrival Rate

The impact of the job arrival rate on system performance is discussed in this section.

The results of the experiments using the CyberShake workload are presented in Figure 7.7

and Figure 7.8. The figures show that for PD-SL-TSP1, P, T, and O increase with λCS.

When λCS is high, jobs arrive on the system at a faster rate, which leads to more jobs being

present in the system at a given point in time and an increased contention for resources.

This in turn prevents some jobs from executing at their earliest start times, resulting in T

increasing and some jobs to miss their deadlines (which increases P). The increased

contention for resources also causes O to increase because WFBB-RM takes more time to

find a resource to map the tasks of the job such that the job does not miss its deadline.

Furthermore, since jobs are more prone to miss their deadlines at high values of λCS,

WFBB-RM’s Job Remapping algorithm, which is a source of overhead, is invoked more

often, contributing to the increase in O.

Figure 7.7. Effect of λCS on P when using the CyberShake workload.

0

0.5

1

1.5

2

2.5

1/30 1/22 1/18

P
(%

)

λCS (jobs per sec)

PD-SL-TSP1 ED-SL-TSP2

226

Figure 7.8. Effect of λCS on T and O when using the CyberShake workload.

It is observed that for ED-SL-TSP2, P and O increase with λCS, and T tends to

remain relatively stable. In addition, when λCS is 1/22 jobs per sec or lower, both systems

achieve comparable values of P; however, when λCS is 1/18 jobs per sec, ED-SL-TSP2 is

observed to achieve a lower P. This can be attributed to ED-SL-TSP2 efficiently using the

laxity of jobs to delay the execution of jobs with a later deadline to execute jobs with an

earlier deadline, which in turn reduces the contention for resources at certain points in time

and leads to a lower P. Although as shown in Figure 7.8, by delaying the execution of jobs,

ED-SL-TSP2 achieves a higher T compared to PD-SL-TSP1. The O of ED-SL-TSP2 is

higher compared to that of PD-SL-TSP1 when λCS is 1/22 jobs per sec or smaller. This is

because more time is required by TSP2 to search for a resource that can execute a task at

its latest possible time such that its sub-deadline is satisfied, compared to the time required

by TSP1 to find a resource to execute tasks at their earliest possible start times. However,

when λCS is 1/18 jobs per sec, PD-SL-TSP1 has a higher O, which can be attributed to the

0

0.01

0.02

0.03

0.04

0.05

0

100

200

300

400

500

600

1/30 1/22 1/18

O
(s

ec
)

T
(s

ec
)

λCS (jobs per sec)

PD-SL-TSP1: T ED-SL-TSP2: T

PD-SL-TSP1: O ED-SL-TSP2: O

227

Job Remapping algorithm being invoked more often when using PD-SL-TSP1 compared

to when using ED-SL-TSP2.

Table 7.2 and Table 7.3 present the results of the experiments when using the LIGO

workload and the Genome workload, respectively. Unlike the CyberShake workload, when

using the LIGO and Genome workloads, configuring WFBB-RM to use ED with TSP2 did

not produce a better performance in comparison to using ED with TSP1. This demonstrates

that TSP2 is only effective for certain workflows and the average job execution time and

the structure of the job (e.g., precedence relationships between the tasks of the job) can

affect the performance of TSP2.

Table 7.2. LIGO workload: effect of λLG on P, T, and O.

λLG

(jobs/sec)
P (%) T (sec) O (sec)

 PD-SL-
TSP1

ED-SL-
TSP1

PD-SL-
TSP1

ED-SL-
TSP1

PD-SL-
TSP1

ED-SL-
TSP1

1/265
0.02 0.02 1346 1346 0.008 0.008

±0.01 ±0.01 ±0.6 ±0.6 ±0.00 ±0.00

1/180
0.11 0.11 1466 1466 0.009 0.009

±0.01 ±0.01 ±4.6 ±4.6 ±0.00 ±0.00

1/150
1.03 1.06 2005 2006 0.017 0.016

±0.12 ±0.12 ±29 ±28 ±0.001 ±0.001

As shown in the tables, the trend in performance of P, T, and O are identical to that

of the CyberShake workload when using PD-SL-TSP1. Furthermore, the results also show

that both PD-SL-TSP1 and ED-SL-TSP1 achieve very similar results because TSP1

schedules tasks to start executing at their earliest possible time, regardless of their

respective sub-deadlines. Over all the experiments performed to investigate the effect of

the job arrival rate, the results demonstrate that WFBB-RM can achieve low values of P

228

(less than 2% even at high arrival rates) and has a low processing overhead as indicated by

the small O (less than 0.025 sec) and small O/T (less than 0.005%).

Table 7.3. Genome workload: effect of λGN on P, T, and O.

λGN

(jobs/sec)
P (%) T (sec) O (sec)

 PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

1/3205
0.01 0.01 17544 17544 0.008 0.008

±0.00 ±0.00 ±927 ±927 ±0.000 ±0.000

1/2290
0.07 0.07 17963 17963 0.008 0.008

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000

1/1800
1.43 1.40 52312 52472 0.048 0.051

±0.45 ±0.44 ±12915 ±13003 ±0.015 ±0.016

7.5.2 Effect of Earliest Start Time of Jobs

The impact of the earliest start time of jobs on system performance is described in

this section. Figure 7.9 and Figure 7.10 present the results when using the CyberShake

workload. It is observed that for PD-SL-TSP1, P, T, and O decrease with an increase in

smax. When smax is large, jobs have a wider range of earliest start times with some jobs

having an earliest start time near their arrival times, while other jobs have their earliest start

times further in the future. This leads to less contention for resources and allows more jobs

to execute at or closer to their earliest start times, resulting in a lower P, T, and O. Similar

to PD-SL-TSP1, it is observed that for ED-SL-TSP2, P and O decrease as smax increases.

However, T is observed to increase with smax. This is due to ED-SL-TSP2 scheduling tasks

to execute at their latest possible times while ensuring the respective sub-deadlines of the

tasks are met. When the contention for resources is low (e.g., when smax is large), ED-SL-

TSP2 can more readily schedule tasks to start executing at their latest possible start times

229

Figure 7.9. Effect of smax on P when using the CyberShake workload.

Figure 7.10. Effect of smax on T and O when using the CyberShake workload.

since jobs are less prone to miss their deadlines and the Job Remapping algorithm does not

need to be invoked as often. Overall, it is observed that similar to the results presented in

the previous section, ED-SL-TSP2 tends to achieve a lower P (35% lower on average), but

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10000 50000 250000

P
(%

)

smax (sec)

PD-SL-TSP1 ED-SL-TSP2

0

0.005

0.01

0.015

0.02

0.025

0

100

200

300

400

500

600

700

10000 50000 250000

O
(s

ec
)

T
(s

ec
)

smax (sec)

PD-SL-TSP1: T ED-SL-TSP2: T

PD-SL-TSP1: O ED-SL-TSP2: O

230

this is accompanied by a higher T (75% higher on average) and higher O (32% higher on

average) compared to PD-SL-TSP1.

The results of the experiments using the LIGO workload are presented in Table 7.4.

It is observed that for both systems, P, T, and O seem to be insensitive to smax, which is

different from the results of PD-SL-TSP1 shown in Figure 7.9 and Figure 7.10 where P, T,

and O are observed to decrease as smax increases. The reason for this can be attributed to

the LIGO workload comprising jobs with higher average execution times compared to

those of the CyberShake workload, as well as the values of smax used not significantly

reducing the amount of jobs that have overlapping execution times (i.e., not reducing the

contention for resources). The average job execution time (on a single resource) of the

CyberShake workload (equal to 1551 sec) is much smaller compared to that of the LIGO

workload (13300 sec).

Table 7.4. LIGO workload: effect of smax on P, T, and O.

smax

(sec)
P (%) T (sec) O (sec)

 PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

10000
0.10 0.10 1450 1450 0.009 0.009

±0.01 ±0.01 ±3.3 ±3.3 ±0.000 ±0.000

50000
0.11 0.11 1466 1466 0.009 0.009

±0.01 ±0.01 ±4.6 ±4.6 ±0.000 ±0.000

250000
0.09 0.08 1441 1427 0.009 0.009

±0.01 ±0.01 ±4.7 ±4.1 ±0.000 ±0.000

Table 7.5 presents the results of the experiments using the Genome workload. It is

observed that P and T tend to increase and O remains stable as smax increases. The increase

in P could be attributed to the values of smax experimented with (e.g., 50000 and 250000

sec) causing more jobs to have overlapping execution times, and thus increasing the

231

contention for resources. This did not happen when using the other two workloads because

the Genome workload comprises jobs with very high average execution times (~160213

sec on a single resource), which is significantly higher compared to those of the

CyberShake and LIGO workloads. Increasing the values of smax experimented with when

using the Genome workload is expected to generate a similar trend in performance to the

results of the CyberShake workload. This is because there will be less chance for the

execution of jobs to overlap with one another.

Table 7.5. Genome workload: effect of smax on P, T, and O.

smax

(sec)
P (%) T (sec) O (sec)

 PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

10000
0.04 0.04 17693 17693 0.008 0.008

±0.01 ±0.01 ±959 ±959 ±0.000 ±0.000

50000
0.07 0.07 17963 17963 0.008 0.008

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000

250000
0.08 0.08 18171 18171 0.008 0.008

±0.01 ±0.02 ±1049 ±1049 ±0.000 ±0.000

7.5.3 Effect of Job Deadlines

The impact of job deadlines on system performance is presented in this section. The

results of the experiments using the CyberShake workload, as depicted in Figure 7.11 and

Figure 7.12, show that for both systems P decreases as emmax increases. This is because at

a higher emmax jobs have more laxity and are thus less susceptible to miss their deadlines.

Moreover, for ED-SL-TSP2, T is observed to increase as emmax increases. This can be

attributed to jobs not having to execute at or close to their sj to meet their deadlines when

they have more slack time and the Job Remapping algorithm having to be executed less

often. In addition, WFBB-RM may delay the execution of some jobs to allow a job with

232

an earlier deadline to execute first. On the other hand, when emmax is small, jobs need to

execute closer to their earliest start times and the Job Remapping algorithm is invoked

when a job cannot be scheduled to meet its deadline. O is thus observed to increase for

both systems, as emmax decreases because it leads to multiple invocations of the Job

Remapping algorithm.

Figure 7.11. Effect of emmax on P when using the CyberShake workload.

When comparing PD-SL-TSP1 and ED-SL-TSP2, it is observed that both systems

perform comparably in terms of P when emmax is 5 or 10. However, when emmax is 2, it is

observed that PD-SL-TSP1 achieves a smaller P compared to ED-SL-TSP2. This is

because when the deadlines of the jobs are more stringent, jobs need to execute closer to

their earliest start times to meet their deadlines, which agrees with the objective of TSP1

and not with the objective of TSP2, which schedules jobs to execute at their latest possible

times. Similar to the results described in the previous sections, PD-SL-TSP1 also achieves

a lower T and a lower or similar O compared ED-SL-TSP2.

0

1

2

3

4

5

6

2 5 10

P
(%

)

emmax

PD-SL-TSP1 ED-SL-TSP2

233

Figure 7.12. Effect of emmax on T and O when using the CyberShake workload.

The results of the experiments using the LIGO workload and Genome workload are

presented in Table 7.6 and Table 7.7, respectively. It is observed that the trend in

performance observed for both systems when using the LIGO and Genome workloads are

identical to that of the CyberShake workload when using PD-SL-TSP1: P decreases, O

decreases, and T remains approximately at the same level as emmax increases. Overall, it is

observed that WFBB-RM can achieve a low P (less than 4.2%) even when jobs have tight

deadlines (i.e., emmax is 2). In addition, O is small (less than 0.03 sec), and the processing

overhead, as indicated by O/T, is less than 0.01% for all the experiments described in this

sub-section.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0

100

200

300

400

500

600

700

800

900

2 5 10

O
(s

ec
)

T
(s

ec
)

emmax

PD-SL-TSP1: T ED-SL-TSP2: T

PD-SL-TSP1: O ED-SL-TSP2: O

234

Table 7.6. LIGO workload: effect of emmax on P, T, and O.

emmax P (%) T (sec) O (sec)

 PD-S-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

2
2.44 2.43 1458 1457 0.012 0.011

±0.14 ±0.14 ±4.4 ±4.4 ±0.000 ±0.000

5
0.11 0.11 1466 1466 0.009 0.009

±0.01 ±0.01 ±4.6 ±4.6 ±0.000 ±0.000

10
0.04 0.04 1458 1463 0.009 0.008

±0.01 ±0.01 ±6.2 ±4.6 ±0.000 ±0.000

Table 7.7. Genome workload: effect of emmax on P, T, and O.

emmax P (%) T (sec) O (sec)

 PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

2
0.49 0.49 17933 17933 0.009 0.009

±0.12 ±0.12 ±1001 ±1001 ±0.000 ±0.000

5
0.07 0.07 17963 17963 0.008 0.008

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000

10
0.03 0.03 17963 17963 0.007 0.007

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000

7.5.4 Effect of the Number of Resources

In this section, the impact of m, the number of resources, on system performance is

discussed. From the results of the experiments using the CyberShake workload (refer to

Figure 7.13 and Figure 7.14), it is observed that for PD-SL-TSP1, P, T, and O decrease as

m increases. This is because as m increases, there are more resources in the system to

execute the jobs, leading to a lower contention for resources. The reason for the higher O

when m is small can be attributed to the Job Mapping algorithm requiring more time to

find a resource to map a task. When there are fewer resources in the system (small m), there

are more tasks scheduled on each resource, leading to more time being required to find the

ideal resource to execute a task. In addition, the high contention for resources makes jobs

235

susceptible to miss their deadlines and leads to the WFBB-RM’s Job Remapping algorithm

being invoked more often.

Figure 7.13. Effect of m on P when using the CyberShake workload.

Figure 7.14. Effect of m on T and O when using the CyberShake workload.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

40 50 60

P
(%

)

m

PD-SL-TSP1 ED-SL-TSP2

0

0.02

0.04

0.06

0.08

0.1

0

100

200

300

400

500

600

700

800

40 50 60

O
(s

ec
)

T
(s

ec
)

m

PD-SL-TSP1: T ED-SL-TSP2: T

PD-SL-TSP1: O ED-SL-TSP2: O

236

For ED-SL-TSP2, P, T, and O follow a similar trend in performance as observed

for PD-TL-TSP1, except when m is 60. When m is 60, T is slightly higher compared to the

case when m is 50. This can be attributed to there being more resources available in the

system when m is 60, leading to a lower contention for resources and a smaller P, and thus

the Job Remapping Algorithm, which remaps jobs to start executing at their earliest

possible start times, does not need to be invoked as often. This in turn allows TSP2 to

schedule more tasks to execute at their latest possible times, while satisfying their

respective sub-deadlines.

When comparing the performance of PD-SL-TSP1 and ED-SL-TSP2 for the

CyberShake workload, it is observed that overall, ED-SL-TSP2 achieves a smaller P and

the most significant reduction in P is observed when m is 40 (see Figure 7.13). Similar to

the results presented in the previous sections (see Figure 7.7, for example), scheduling tasks

to execute at their latest possible time while satisfying their respective sub-deadlines (i.e.,

using TSP2) tends to give rise to a lower P but a higher T when processing the CyberShake

workload. The lower P can be attributed to ED-SL-TSP2 effectively using the laxity of

jobs to delay the execution of jobs with a later deadline to execute jobs with an earlier

deadline. However, as shown in Figure 7.14, it is observed that when m is 40, PD-SL-TSP1

achieves a higher T compared to ED-SL-TSP2. This can be attributed to PD-SL-TSP1

delaying the execution of multiple jobs that miss their deadlines for a long period of time

to execute jobs that have not missed their deadlines. In the case of ED-SL-TSP2, fewer

jobs need to be delayed because when m is 40, ED-SL-TSP2 achieves a smaller P compared

to PD-SL-TSP1 (refer to Figure 7.13).

237

The results of the experiments using the LIGO workload (see Table 7.8) and the

Genome workload (see Table 7.9) follow a similar trend in system performance to that of

the CyberShake workload when using PD-SL-TSP1: P decreases, T decreases, and O tends

to decrease as m increases. It is observed once again that both PD-SL-TSP1 and ED-SL-

TSP1 achieve similar results for both workloads. When m is 60, O is observed to be slightly

higher compared to when m is 50. Even though, there is less contention for resources when

m is 60, the Job Mapping algorithm may need to search through more resources to find the

resource to schedule a task to start at its earliest possible start time. This in turn leads to a

slight increase in O.

Table 7.8. LIGO workload: effect of m on P, T, and O.

m P (%) T (sec) O (sec)

 PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

40
4.11 4.14 3210 3218 0.034 0.032

±0.27 ±0.27 ±125 ±126 ±0.003 ±0.003

50
0.11 0.11 1466 1466 0.009 0.009

±0.01 ±0.01 ±4.6 ±4.6 ±0.000 ±0.000

60
0.03 0.03 1360 1360 0.010 0.010

±0.01 ±0.01 ±1.1 ±1.1 ±0.000 ±0.000

Table 7.9. Genome workload: effect of m on P, T, and O.

m P (%) T (sec) O (sec)

 PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

PD-SL-

TSP1

ED-SL-

TSP1

40
1.29 1.30 52320 52106 0.032 0.035

±0.40 ±0.42 ±13743 ±13597 ±0.011 ±0.012

50
0.07 0.07 17963 17963 0.008 0.008

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000

60
0.02 0.02 17583 17583 0.009 0.009

±0.00 ±0.00 ±935 ±935 ±0.000 ±0.000

238

7.6 Comparison of WFBB-RM and MRCP-RM

This section discusses the results of the experiments conducted to compare the

performance of WFBB-RM with that of MRCP-RM (described in Chapter 4). Recall that

the MRCP-RM technique is only applicable to jobs with two phases of execution such as

MapReduce jobs, whereas in addition to MapReduce jobs, WFBB-RM can also handle jobs

with different structures and more than two execution phases. Thus, the workload that is

used in this comparison is the Generic Synthetic MapReduce workload (described in

Section 4.4.3) that is used in the experiments to evaluate the performance of MRCP-RM

as described in Section 4.6. WFBB-RM is configured to use PD-SL-TSP1, which is

observed to have the best performance when processing the Generic Synthetic MapReduce

workload. Factor-at-a-time experiments are performed to investigate the effect of various

system and workload parameters on the performance of WFBB-RM and MRCP-RM. The

results of the experiments that show the effect of job arrival rate (λ) and the effect of the

number of resources (m) on system performance are described in Section 7.6.1 and Section

7.6.2, respectively.

7.6.1 Effect of Job Arrival Rate

Figure 7.15 and Figure 7.16 present the performance of WFBB-RM and MRCP-

RM in terms of P, T, and O as λ is varied. As shown in Figure 7.15, when λ is 0.0175 jobs

per sec or smaller, the resource contention levels are low-to-moderate (e.g., average

resource utilization is approximately less than 0.7), and both WFBB-RM and MRCP-RM

have comparable values of P with MRCP-RM achieving a 6% lower P. However, when λ

is between 0.01875 to 0.0225 jobs per sec, generating a moderate-to-high contention for

resources (e.g., average resource utilization is approximately between 0.7 and 0.85),

239

MRCP-RM is observed to achieve up to a 22% lower (on average 11% lower) P compared

to that achieved by WFBB-RM. At very high values of λ (e.g., 0.025 jobs per sec or higher),

it is observed that the performance of MRCP-RM starts to deteriorate and WFBB-RM starts

to outperform MRCP-RM. This can be attributed to the very high contention for resources

(average resource utilization is approximately 0.95), leading to jobs queuing up on the

system and MRCP-RM having to solve complex CP Models comprising a larger number

of decision variables and constraints. MRCP-RM requires more time to solve these

complex CP Models, which results in O increasing. The high O causes a delay in the

execution of jobs and leads to jobs missing their deadlines. For all the values of λ

experimented with, it is observed that WFBB-RM achieves a significantly lower O

compared to MRCP-RM (on average 85% lower) (see Figure 7.16).

Figure 7.15. WFBB-RM vs MRCP-RM: effect of λ on P.

0

1

2

3

4

5

6

7

8

9

10

P
 (

%
)

λ (jobs per sec)

WFBB-RM MRCP-RM

240

Figure 7.16. WFBB-RM vs MRCP-RM: effect of λ on T and O.

7.6.2 Effect of the Number of Resources

The performance of WFBB-RM and MRCP-RM in terms of P, T, and O when the

number of resources (m) is varied are presented in Figure 7.17 and Figure 7.18. Similar to

the results showing the effect of λ, when there is a low-to-moderate resource contention,

such as when m is 100 or m is 50, it is observed that WFBB-RM and MRCP-RM perform

comparably in terms of P and T. Furthermore, when m is 25, leading to a higher contention

for resources (as reflected in an average resource utilization of approximately 0.8), it is

observed that MRCP-RM achieves a 29% lower P compared to that achieved by WFBB-

RM. From Figure 7.18, it is observed that MRCP-RM has a slightly higher T when m is

25. This can be attributed to MRCP-RM delaying the execution of jobs that have already

missed their deadlines in favour of executing newly arriving jobs that have not missed their

deadlines.

0

0.5

1

1.5

2

2.5

3

3.5

4

0

500

1000

1500

2000

2500

O
(s

ec
)

T
(s

ec
)

λ (jobs per sec)

WFBB-RM: T MRCP-RM: T WFBB-RM: O MRCP-RM: O

241

Figure 7.17. WFBB-RM vs MRCP-RM: effect of m on P.

Figure 7.18. WFBB-RM vs MRCP-RM: effect of m on T and O.

Similar to the results described earlier, Figure 7.18 shows that WFBB-RM achieves

a significantly lower O compared to MRCP-RM. Note that it is expected that generating a

0

1

2

3

4

5

6

25 50 100

P
 (

%
)

m

WFBB-RM MRCP-RM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

100

200

300

400

500

600

700

25 50 100

O
(s

ec
)

T
(s

ec
)

m

WFBB-RM: T MRCP-RM: T WFBB-RM: O MRCP-RM: O

242

higher contention for resources (by further reducing the value of m to be less than 25, for

example) would lead to WFBB-RM outperforming MRCP-RM as observed when λ is

0.025 job per sec (refer to Figure 7.15).

The results of the other factor-at-a-time experiments that show the effect of task

execution times, the effect of earliest start time of jobs, and the effect of job deadlines can

be found in Appendix D.IV. Note that the results of these experiments shown in the

appendix demonstrate a relative performance achieved by WFBB-RM and MRCP-RM that

is similar to the results described in this section. MRCP-RM tends to achieve a lower P and

has a similar T compared to WFBB-RM. However, WFBB-RM achieves a significantly

lower O. Over all the experiments conducted to compare MRCP-RM and WFBB-RM, it is

observed that MRCP-RM achieves up to a 29% lower P, but WFBB-RM achieves a 77%

lower O. However, when the contention for resources is very high, such as when λ is 0.025

job per sec, WFBB-RM is observed to achieve a P that is 37% lower compared to the P

achieved by MRCP-RM.

7.7 Summary and Discussion

This chapter describes a resource allocation and scheduling technique called

WFBB-RM that can effectively and efficiently perform matchmaking and scheduling for

an open stream of multi-stage jobs (workflows) with SLAs on a computing environment

such as a private cluster or a set of resources acquired a priori from a public cloud. Each

job arriving on the system is characterized by a SLA comprising an earliest start time, an

execution time, and an end-to-end deadline. The WFBB-RM algorithm decomposes

(budgets) the end-to-end deadline of a job into sub-deadlines, each of which is associated

with a specific task in the job. The individual tasks of the job are then mapped on to the

243

resources where the objective is to satisfy the job’s deadline and minimize the number of

late jobs in the system. An in-depth simulation-based performance evaluation is conducted

to investigate the effectiveness of WFBB-RM. The workloads used in the experiments are

based on real scientific workflows from various fields of study, including biology and

physics. A number of insights into system behaviour and performance are gained by

analyzing the experimental results and are summarized next.

 Effect of system and workload parameters: An increase in λ, or a decrease in smax,

or a decrease in emmax, or a decrease in m tends to lead to an increase in P due to

the increased contention for resources.

 WFBB-RM configuration using PD: Overall, it is observed that using TSP1

generates lower or similar values of P, T, and O compared to TSP2. Furthermore,

the two approaches used to calculate the laxity of the job (SL and TL) achieve

similar performance with the SL approach achieving a slightly smaller P in most

cases. When using PD, the results of the experiments showed that the highest

performing WFBB-RM configuration (in terms of P) for all three workloads

experimented with is PD-SL-TSP1.

 WFBB-RM configuration using ED: The results demonstrate that for the

CyberShake workload using ED-SL-TSP2 achieves the lowest P in most cases.

However, when using the LIGO and Genome workloads, the best performance in

terms of P is achieved by ED-SL-TSP1. When using ED, the results of the

experiments showed that the approach used to calculate the laxity of the jobs (SL

and TL) achieve comparable performance.

244

 PD vs ED: For the CyberShake workload, it is observed that overall ED-SL-TSP2

outperforms PD-SL-TSP1 in terms of P but it has a slightly higher T because

TSP2 schedules tasks to execute at their latest possible times while meeting their

respective sub-deadlines. In the case of the LIGO and Genome workloads, both

PD-SL-TSP1 and ED-SL-TSP1 achieve similar values of P, T, and O. This can

be attributed to TSP1 scheduling tasks to execute at their earliest possible start

times, regardless of their sub-deadlines.

 Effectiveness of WFBB-RM: For the system and workload parameters

experimented with, it is observed that WFBB-RM can achieve low values of P

(on average 0.62%). Even when the contention for resources is high and jobs are

more susceptible to miss their deadlines (e.g., when λ is high, or emmax is small,

or m is small), P is less than 5% and on average 2.2% over all the experiments

conducted.

 Efficiency of WFBB-RM: In all the experiments performed, WFBB-RM achieved

low values of O (less than 0.05 sec and on average 0.02 sec). Furthermore, O/T,

an indication of the matchmaking and scheduling overhead, is also very small

(less than 0.01%) for all the experiments conducted.

 Comparison with MRCP-RM: A summary of observations resulting from the

performance evaluation to compare WFBB-RM and MRCP-RM when using a

MapReduce workload is provided. At low-to-moderate contention for resources

(e.g., λ ≤ 0.0175 jobs per sec or m ≥ 50), WFBB-RM and MRCP-RM both achieve

comparable performance in terms of P. When the contention for resources is

moderately high (e.g., average resource utilization is approximately 0.8),

245

resulting in a λ of 0.02 jobs per sec or m of 25, for example, MRCP-RM

outperforms WFBB-RM and achieves up to 29% lower P. At very high

contention for resources (e.g., λ ≥ 0.025 jobs per sec), WFBB-RM outperforms

MRCP-RM.

Overall, the results of the experiments demonstrate that the objective of the research

presented in this chapter that concerns the devising of an efficient resource allocation and

scheduling technique for processing an open-stream of multi-stage jobs with SLAs on a

distributed computing environment has been realized. WFBB-RM demonstrated that it can

generate a schedule leading to a small P and T with a small O and O/T over a wide range

of workload and system parameters experimented with. The choice of which WFBB-RM

configuration to use is dependent on the workload to process; however, a good starting

point is to use PD-SL-TSP1, followed by using ED-SL-TSP2. When using TSP1, the

choice of whether to use PD or ED, and SL or TL is not crucial as all the configurations

using TSP1 achieve similar performance. However, if TSP2 is used, it is observed that

using ED-SL-TSP2 typically achieves better performance compared to the other

configurations that use TSP2.

An interesting direction for future work is the investigation of new deadline

budgeting algorithms for distributing the laxity of a multi-stage job among the job’s

constituent tasks that are not only based on the execution time of the tasks, but also based

on additional attributes of the components of the DAG, which is used to model the multi-

stage job. These attributes include the number of children belonging to tasks, the height of

a task in the DAG, and whether the task is on the critical path of the DAG.

246

Chapter 8 Summary and Conclusions

Effective matchmaking and scheduling (resource management) techniques are

crucial for harnessing the power of the underlying resource pool of a cloud or cluster and

is required to attain high system performance (e.g., high job throughput and low job

response times), satisfy QoS requirements of users as captured by SLAs, and maintain high

resource utilization. The objective of this thesis is to devise effective resource management

techniques for efficiently processing an open stream of multi-stage jobs (such as

MapReduce type applications) with SLAs on a computing environment with a fixed

number of resources, such as a private cluster or a set of resources acquired a priori from a

public cloud. Each job submitted to the system is characterized by a SLA that includes an

earliest start time, an execution time, and an end-to-end deadline. Multi-stage jobs require

service from multiple system resources and are characterized by multiple phases of

execution, where each phase of execution can comprise of one or more tasks to execute.

This thesis presents resource management techniques for processing both

MapReduce type jobs (characterized by two phases of execution) and workflows with

different types of precedence relationships and more than two phases of execution,

including scientific workflows used in the domain of physics and biology.

MapReduce/Hadoop has emerged as a popular technique and tool for performing Big Data

analytics that includes analyzing data for making meaningful decisions in various types of

environments, such as enterprise and scientific applications, and cyber-physical systems

(e.g., sensor-equipped bridges, smart buildings, and industrial machinery). A key goal of

this thesis is to devise resource management techniques that achieve high system

performance as reflected in a low proportion of jobs missing their deadlines, while ensuring

247

the processing overhead is low. Conclusions derived from this thesis research and a

summary of the key contributions of this thesis are presented in the upcoming sub-sections,

followed by a discussion on directions for future work. Overall, as captured in the

following discussion, the objective and goal of the thesis of devising matchmaking and

scheduling techniques for efficiently processing an open stream of multi-stage jobs with

SLAs have been achieved.

8.1 Resource Management Techniques for Processing a Batch of

MapReduce Jobs with SLAs

In Chapter 3, resource management techniques for processing a batch of

MapReduce jobs with SLAs are presented. The techniques formulate and solve the resource

management problem as an optimization problem using two methods: (1) mixed integer

linear programming (MILP) and (2) constraint programming (CP). The two formulations

are implemented and solved using various commercial-off-the-shelf and open source

software packages, leading to three approaches being devised. For all three approaches, the

main objective is to minimize the number of jobs that miss their deadlines. A rigorous

simulation-based performance evaluation of the three approaches is conducted using

several batch workloads (see Section 3.7). The following insights are derived from the

results of the experiments:

 Superiority of Approach 3: The results of the experiments showed that Approach

3, which implements and solves the CP Model using IBM CPLEX, achieves the

lowest processing time overhead (PO). However, it also generated a schedule that

produces a slightly higher batch workload completion time (C) compared to the

248

other two approaches. In addition, Approach 3 is the only approach able to

process the large workloads comprising over 1000 tasks (see Section 3.7.2).

 Approach 1 and Approach 2 each have a case where they can generate a schedule

that has the lowest C for the small workloads; however, the PO in these cases is

much higher compared to the PO achieved by Approach 3.

8.2 MapReduce Constraint Programming based Resource Management

Technique

A resource management technique based on constraint programming for processing

an open stream of MapReduce jobs with SLAs, referred to as MRCP-RM, is presented in

Chapter 4. MRCP-RM uses constraint programming because the results of the experiments

described in Chapter 3 demonstrated the superiority of Approach 3, which solves the CP

Model using IBM CPLEX, in being able to process workloads comprising over 1000 tasks,

while incurring a low processing overhead. A number of simulation experiments are

conducted using two synthetic MapReduce workloads to evaluate the effectiveness of the

MRCP-RM technique. A summary of the results of these experiments is presented next.

 Comparison with MinEDF-WC [70] (see Section 4.5): The results show that

MRCP-RM achieves a significantly lower proportion of late jobs, P (up to 93%

lower) and a comparable or slightly lower average job turnaround time (T).

 Effectively controlling P: For most of the system and workload parameters

experimented with (see Section 4.6), MRCP-RM achieves a P of less than 0.6%.

In the scenarios where jobs are more susceptible to miss their deadlines and

contention for resources is high, including workloads for which the execution

time multiplier (em) is small, or number of resources in the system (m) is small,

249

or job arrival rate (λ) is high, or maximum map task execution time (memax) is

high, P is still observed to be low: 3.46%, 3.89%, 1.7%, and 1.96%, respectively.

 Efficiency and scalability (see Section 4.6): The average job matchmaking and

scheduling time (O) is observed to increase when the contention for resources is

high (e.g., high λ or m is small). However, the values of O are still observed to be

quite low. For example, the highest O (equal to 0.57 sec) is observed when m is

small (25), resulting in a high contention for resources. In addition, O/T, which is

an indicator of the matchmaking and scheduling overhead, is observed to be less

than 0.09% in all the factor-at-a-time experiments conducted, demonstrating that

the matchmaking and scheduling overhead is small and MRCP-RM is thus

scalable over a wide range of system and workload parameters experimented

with. It is expected that for a reasonable contention for resources, MRCP-RM can

work efficiently and achieve a reasonable O and O/T.

8.3 Hadoop Constraint Programming based Resource Management

Technique

The focus of Chapter 5 is on describing the data-locality-aware Hadoop Constraint

Programming based Resource Management technique, referred to as HCP-RM. HCP-RM

adapts MRCP-RM so that it can be used on a real MapReduce system called Hadoop [25].

More specifically, the HCP-RM algorithm is implemented in a new scheduler for Hadoop

called the CP-Scheduler. An in-depth prototyping and measurement based performance

evaluation of HCP-RM (CP-Scheduler) is conducted on a Hadoop cluster deployed on

Amazon EC2 using both a synthetic workload and a real workload. The performance of

HCP-RM (CP-Scheduler) is compared to that of an Earliest Deadline First Hadoop

250

Scheduler (EDF-Scheduler), which is an extension of Hadoop’s default FIFO scheduler

implemented in this research to support job deadlines. The insights into system behaviour

and performance gained from analyzing the results of the experiments are summarized

next.

 Superiority of HCP-RM over the EDF-Scheduler: Over all the experiments

conducted (see Section 5.6), HCP-RM generated a schedule that leads to a lower

or equal P (on average 60% lower) and a lower T (on average 59% lower)

compared to the EDF-Scheduler. This demonstrates the effectiveness of HCP-

RM.

 Small processing overhead: The performance improvement of HCP-RM in terms

of P and T over the EDF-Scheduler is accompanied by a higher O. However, O/T

is still observed to be small (less than 0.92%), demonstrating the efficiency of

HCP-RM.

 Effect of error in execution times (see Section 5.7): The investigation of error in

user-estimated execution times showed that overestimated execution times lead

to a lower P, comparable T, and slightly higher O compared to the case where

there is no error in execution times. Conversely, underestimated execution times

lead to lower performance in terms of P and T, but gives rise to a lower O

compared to the case where there is no error in execution times.

8.4 Techniques for Handling Error in User-estimated Execution Times

In Chapter 6, techniques for handling error in user-estimated execution times

(submitted as part of the SLA of the job) are discussed. A Prescheduling Error Handling

(PSEH) technique that adjust the user-estimated execution times of jobs to make them more

251

accurate before the jobs are mapped by the resource management algorithm is presented.

A rigorous performance evaluation of the PSEH technique is conducted on a Hadoop

cluster deployed on Amazon EC2. More specifically, the performance of HCP-RM-EH

that uses the PSEH technique is compared with the performance achieved by the original

version of HCP-RM. Three models are used to generate the error in the user-estimated

execution times. A summary of the results of the experiments, including the insights

gained, is described next.

 Effectiveness of the PSEH technique: Overall, in the experiments conducted using

the Constant Error Model (see Section 6.3.1), HCP-RM-EH is observed to

achieve up to 50% lower P (on average 29% lower) compared to that achieved

by HCP-RM. Furthermore, HCP-RM-EH achieves a P of 0 when f is 2 and λ is

1/30 jobs per sec or lower.

o In the experiments using Feitelson’s Error Model (see Section 6.3.2), both

HCP-RM-EH and HCP-RM achieve the same values of P of less than 0.2%

due to Feitelson’s error model generating jobs with highly overestimated

execution times. However, HCP-RM-EH achieves a 72% lower O.

o When using the Variable Error Model (see Section 6.3.3), the results of the

experiments show that HCP-RM-EH achieves a 54% lower P compared to

that achieved by HCP-RM. This demonstrates that HCP-RM-EH is still

effective when the error in execution times is not constant.

 The superior performance of HCP-RM-EH can be attributed to the PSEH

technique being able to adjust the user-estimated execution times to make them

more accurate. This enables HCP-RM-EH to make intelligent matchmaking and

252

scheduling decisions that lead to HCP-RM-EH achieving values of P that are

lower compared to the values of P achieved by HCP-RM.

8.5 Workflow Budget-Based Resource Management Technique

A resource management technique, referred to as WFBB-RM, for processing an

open stream of multi-stage jobs with SLAs is presented in Chapter 7. WFBB-RM

decomposes (budgets) the end-to-end deadline of a job into sub-deadlines, each of which

is associated with a specific task in the job. The individual tasks of the job are then mapped

on to the resources where the objective is to satisfy the job’s deadline and minimize the

number of late jobs in the system. A rigorous simulation-based performance evaluation of

WFBB-RM using workloads based on real scientific applications (workflows) are

conducted. A summary of the insights gained into system behaviour and performance from

the results of the experiments is provided next.

 Effectiveness of WFBB-RM: For the system and workload parameters

experimented with (see Section 7.5), it is observed that WFBB-RM can achieve

low values of P (on average 0.62%). Even when the contention for resources is

high and jobs are more susceptible to miss their deadlines (e.g., when λ is high,

or emmax is small, or m is small), P is less than 5% and on average 2.2% over all

the experiments conducted.

 Efficiency of WFBB-RM: In all the experiments performed (see Section 7.5),

WFBB-RM achieved low values of O (less than 0.05 sec and on average 0.02

sec). Furthermore, O/T is also very small (less than 0.01%) over all the

experiments conducted.

253

 Comparison with MRCP-RM (see Section 7.6): With an open stream of

MapReduce jobs, when the contention for resources is low-to-moderate (e.g.,

average resource utilization is approximately less than 0.7), WFBB-RM and

MRCP-RM achieve comparable values of P. At moderate-to-high resource

contention (e.g., an average resource utilization of approximately 0.7 to 0.85),

MRCP-RM achieves up to a 29% lower P. When the contention for resources is

very high (e.g., average resource utilization is approximately 0.95), WFBB-RM

starts to outperform MRCP-RM in terms of P. Over all the experiments conducted

to compare MRCP-RM and WFBB-RM, it is observed that WFBB-RM achieves

an O that is on average 85% lower compared to the O achieved by MRCP-RM.

8.6 Future Work

This section describes directions for future work and research. In line with previous

work, this thesis focuses on an important class of systems in which MapReduce jobs are

associated with deadlines but not with explicit priorities. Extending the MRCP-RM and

HCP-RM algorithms to handle MapReduce jobs with deadlines as well as priorities forms

an interesting direction for future research. On such a system, the resource manager may

improve the performance of a higher priority job at the cost of a lower priority job if needed.

A high-level approach for achieving this is briefly described next. With a workload

comprising jobs with priorities, the objective function of the CP Model will be changed to

minimize ∑ (𝑁𝑗 ∗ 𝑃𝑟𝑗)𝑗∈𝐽 where Prj is the priority of job j. To lower this sum, the CPLEX

solver will tend to favour meeting the deadlines of higher priority jobs (higher Prj) at the

cost of missing the deadlines for low priority jobs. Moreover, as described in Section 6.4.1,

devising a runtime error handling technique for dealing with the situation where jobs have

254

already started executing and their execution times are inaccurate, is also worthy of further

investigation.

An interesting direction for future research concerns the modification of the

resource management techniques for supporting approximate (or partial) computations

[115], where an application is permitted to generate an approximate result that is less

accurate or of poorer (but still acceptable) quality compared to the result produced by the

full computation, when the application cannot complete the full computation before its

deadline. The idea is to be able to return a result before the application’s deadline instead

of not returning any results or a result that is late. These types of applications, which can

include numerical computation, statistical estimation, as well as video and voice

transmission/processing applications [116], are typically characterized by a mandatory

component and an optional component [116]. The application is considered to be

completed if the mandatory component is completed. The optional component of the

application enhances the quality (or accuracy) of the computation generated by the

application and can either be fully completed, partially completed, or not executed at all.

Ideally, both the mandatory and optional components of the application should be

completed before the deadline of the application.

 Another direction for future work is to adapt the resource management techniques

to work in a distributed computing environment where the number of resources in the

system can be dynamically increased or decreased. Moreover, the resource management

techniques can also be adapted to distributed computing environments with heterogeneous

resources and multi-datacentre environments. This can involve devising more advanced

techniques for supporting data locality when processing multi-stage jobs, which includes

255

techniques for estimating the data transmission time and processing time for tasks based

on the input data size and networking/processing capacities of the resources. Supporting

data locality for multi-stage jobs that are characterized by multiple phases of execution

may need to consider whether one phase of execution needs to share data with another

phase of execution. If data needs to be shared among these two phases of execution, the

tasks in these two phases of execution should be assigned to execute on nodes that are as

close to each other as possible to minimize the data transmission overhead.

The cost-performance trade-off of provisioning resources that have different levels

of processing/network capabilities from the cloud can also be investigated. For example, a

compute resource with a faster CPU and more memory maybe able to execute a job faster,

but it will cost more for the user to provision the resource. Furthermore, the resource

management techniques can also consider the trade-off between the cost associated with

providing elasticity (or auto-scaling) as well as the cost (fine) associated with violating an

SLA of a job (e.g., missing the deadline of the job due to scarcity of resources). Resource

management techniques that minimize the overall cost incurred by the service provider

form an interesting direction for future research.

256

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as

the 5th utility”, Future Generation Computer Systems, vol. 25, no. 6, June 2009, pp.

599-616.

[2] L. Columbus, “Roundup Of Cloud Computing Forecasts And Market Estimates,

2015”, Forbes, 24 Jan. 2015. [Online]. Available:

http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-

computing-forecasts-and-market-estimates-2015/ [Accessed: February 10, 2016]

[3] Gartner, “Gartner Says Worldwide Cloud Infrastructure-as-a-Service Spending to

Grow 32.8 Percent in 2015”, 18 May 2015. [Online]. Available:

http://www.gartner.com/newsroom/id/3055225 [Accessed: February 10, 2016]

[4] R. Cohen, “Gartner Announces 2012 Magic Quadrant for Cloud Infrastructure as a

Service”, Forbes. Available:

http://www.forbes.com/sites/reuvencohen/2012/10/22/gartner-announces-2012-

magic-quadrant-for-cloud-infrastructure-as-a-service/ [Accessed: February 10,

2016]

[5] F. Gens, “IT Model in the Cloud Computing Era”, IDC Enterprise Panel, August

2008.

[6] S. S. Manvi and G. K. Shyam, “Resource management for Infrastructure as a

Service (IaaS) in cloud computing: A survey”, Journal of Network and Computing

Applications, vol. 41, October 2013, pp. 424-440.

[7] F. Gens, “IT Cloud Services Forecast – 2008, 2012: A Key Driver of New Growth“,

IDC Exchange, October 2008.

[8] Amazon, “Amazon Elastic Cloud”. [Online]. Available: http://aws.amazon.com/ec2

[Accessed: February 16, 2016].

[9] Microsoft, “Windows Azure”. [Online]. Available:

http://www.windowsazure.com/en-us/ [Accessed: February 16, 2016].

[10] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations”, International Journal of Supercomputer

Applications, vol.15, no.3, 2001, pp. 200-222.

[11] R. Buyya, S.K. Garg, and R.N. Calheiros, “SLA-oriented resource provisioning for

cloud computing: Challenges, architecture, and solutions”, International

Conference on Cloud and Service Computing (CSC), Hong Kong, China, 12-14

Dec. 2011, pp.1-10.

http://blogs.idc.com/ie/?p=224

257

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters”, International Symposium on Operating System Design and

Implementation (OSDI), San Francisco, CA, USA, 6-8 December 2004, pp. 137–

150.

[13] R. Bosch and M. Trick, “Integer programming”, Search Methodologies. Springer

US, 2005, pp. 69-95.

[14] F. Rossi, P. Beek, and T. Walsh, “Chapter 4: Constraint Programming. Handbook

of Knowledge Representation”, 2008, pp. 181-211.

[15] IBM. IBM ILOG CPLEX Optimization Studio. [Online]. Available:

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp [Accessed: February 16,

2016].

[16] C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are User Runtime

Estimates Inherently Inaccurate?”, in Job Scheduling Strategies for Parallel

Processing, vol. 3277, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 253–263.

[17] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-Generated

Predictions Rather than User Runtime Estimates”, IEEE Transactions on Parallel

and Distributed Systems, vol. 18, no. 6, 2007, pp. 789–803.

[18] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and adjusting user runtime

estimates to improve job scheduling on the Blue Gene/P”, IEEE International

Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 19-

23 April 2010, pp. 1–11.

[19] N. Lim, S. Majumdar, and P. Ashwood-Smith, “Resource Management Techniques

for Handling Requests with Service Level Agreements”, International Symposium

on Performance Evaluation of Computer and Telecommunication Systems

(SPECTS), Monterey, CA, USA, 6-10 July 2014, pp. 618 -625.

[20] N. Lim, S. Majumdar, and P. Ashwood-Smith, “Engineering Resource Management

Middleware for Optimizing the Performance of Clouds Processing MapReduce

Jobs with Deadlines”, International Conference on Performance Engineering

(ICPE), Dublin, Ireland, 24 -26 March 2014, pp.161-172.

[21] N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming-Based

Resource Management Technique for Processing MapReduce Jobs with SLAs on

Clouds”, International Conference on Parallel Processing (ICPP), Minneapolis,

MN, USA, 9-12 Sept 2014, pp. 411-421.

[22] N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming Based

Hadoop Scheduler for Handling MapReduce Jobs with Deadlines on Clouds”,

International Conference on Performance Engineering (ICPE), Austin, TX, USA,

31 Jan – 4 Feb 2015, pp. 111-122.

258

[23] N. Lim and S. Majumdar, “Resource Management for MapReduce Jobs Performing

Big Data Analytics”, in Big Data Management, Architecture, and Processing, K.-C.

Li, H. Jiang, and A. Zomaya, Eds. USA: CRC Press, Taylor & Francis Group,

August 2016 (accepted for publication).

[24] N. Lim, S. Majumdar, and P. Ashwood-Smith, “MRCP-RM: a Technique for

Resource Allocation and Scheduling of MapReduce Jobs with Deadlines”, IEEE

Transactions on Parallel and Distributed Systems, October 2016 (accepted for

publication).

[25] The Apache Software Foundation, “Hadoop”. [Online]. Available:

http://hadoop.apache.org [Accessed: February 16, 2016].

[26] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “QoS–Aware

Clouds”, International Conference on Cloud Computing (CLOUD), Miami, Florida,

USA, 5-10 July 2010, pp. 321-328.

[27] P. Xiong, Y. Chi, S. Zhu, H.J. Moon, C. Pu and H. Hacigumus, “Intelligent

management of virtualized resources for database systems in cloud environment”,

International Conference on Data Engineering (ICDE), Hannover, Germany, 11-16

April 2011, pp. 87-98.

[28] Y. Yuan and W-C. Liu, “Efficient resource management for cloud computing”,

International Conference on System Science, Engineering Design and

Manufacturing Informatization (ICSEM), Guiyang, China, 22-23 Oct. 2011, pp.

233-236.

[29] C. Castillo, G.N. Rouskas, and K. Harfoush, “Resource co-allocation for large-scale

distributed environments.” International Symposium on High performance

distributed computing (HPDC), Munich, Germany, 11-13 June 2009, pp. 131-140.

[30] X. Wang, H. Xie, R. Wang, Z. Du, and L. Jin, “Design and implementation of

adaptive resource co-allocation approaches for cloud service

environments”, International Conference on Advanced Computer Theory and

Engineering (ICACTE), Chengdu, China, 20-22 Aug. 2010, pp. V2-484-V2-488.

[31] R. Aoun, E.A. Doumith, and M. Gagnaire, “Resource Provisioning for Enriched

Services in Cloud Environment”, International Conference on Cloud Computing

Technology and Science (CloudCom), Indianapolis, USA, Nov. 30-Dec. 3 2010, pp.

296-303.

[32] V.C. Emeakaroha, I. Brandic, M. Maurer, and I. Breskovic, “SLA-Aware

Application Deployment and Resource Allocation in Clouds”, International

Conference on Computer Software and Applications Conference Workshops

(COMPSACW), Munich, Germany, 18-21 July 2011, pp. 298-303.

259

[33] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-Based Resource Allocation

for Multi-tier Cloud Computing Systems”, IEEE International Conference on

Cloud Computing (CLOUD), Washington, DC, USA, 4-9 July 2011, pp. 324-331.

[34] H. N. Van, F.D. Tran, and J.-M Menaud, “Performance and Power Management for

Cloud Infrastructures”, International Conference on Cloud Computing (CLOUD),

Miami, Florida, USA, 5-10 July 2010, pp. 329-336.

[35] V. Cardellini, E. Casalicchio, F. Lo Presti, and L. Silvestri, “SLA-aware Resource

Management for Application Service Providers in the Cloud”, International

Symposium on Network Cloud Computing and Applications (NCCA), Toulouse,

France, 21-23 Nov. 2011, pp. 20-27.

[36] L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira, “Scheduling service workflows

for cost optimization in hybrid clouds”, International Conference on Network and

Service Management (CNSM), Niagara Falls, ON, Canada, 25-29 Oct. 2010, pp.

394-397.

[37] X. Meng, C. Lizhen, W. Haiyang, and B. Yanbing, “A Multiple QoS Constrained

Scheduling Strategy of Multiple Workflows for Cloud Computing”, International

Symposium on Parallel and Distributed Processing with Applications (ISPA),

Chengdu and Jiuzhai Valley, China, 10-12 Aug. 2009, pp. 629-634.

[38] S. Pandey, L. Wu, S. Guru, and R. Buyya, “A Particle Swarm Optimization-Based

Heuristic for Scheduling Workflow Applications in Cloud Computing

Environments”, IEEE International Conference on Advanced Information

Networking and Applications (AINA), Perth, Australia, 20-23 April 2010, pp. 400–

407.

[39] W-N. Chen and J. Zhang, “A set-based discrete PSO for cloud workflow scheduling

with user-defined QoS constraints”, International Conference on Systems, Man, and

Cybernetics (SMC), Seoul, South Korea, 14-17 Oct. 2012, pp. 773-778.

[40] C. Szabo, and T. Kroeger, “Evolving multi-objective strategies for task allocation

of scientific workflows on public clouds”, IEEE Congress on Evolutionary

Computation (CEC), Brisbane, Australia, 10-15 June 2012, pp.1-8.

[41] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema, “Cost-Driven Scheduling of

Grid Workflows Using Partial Critical Paths”, IEEE Transactions on Parallel

Distributed Systems, vol. 23, no. 8, 2012, pp. 1400–1414.

[42] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema, “Deadline-constrained

workflow scheduling algorithms for Infrastructure as a Service Clouds”, Future

Generation Computer Systems, vol. 29, 2013, pp. 158-169.

[43] A. McGregor, D. Bennett, S. Majumdar, B. Nandy, J.O. Melendez, M. St-Hilaire, P.

Lau, and J. Liu, “A Cloud-Based Platform for Supporting Research Collaboration”,

260

IEEE International Conference on Cloud Computing (CLOUD), New York, NY,

USA, 27 June – 2 July 2015, pp. 1107-1110.

[44] J. Dittrich and J.-A. Quiane-Ruiz, “Efficient Big Data Processing in

HadoopMapReduce”, In Proceedings of VLDB 2012/PVLDB, vol. 5, no. 12, pp.

2014-2015 (Tutorial).

[45] M. Collins, “Hadoop and MapReduce: Big Data Analytics”, Gartner, 14 Jan. 2011.

[46] N. Gift, “Solve cloud-related big data problems with MapReduce”, IBM, 8 Nov.

2010. [Online]. Available: http://www.ibm.com/developerworks/cloud/library/cl-

bigdata/ [Accessed February 12, 2016].

[47] S. Baker, “The Two Flavors of Google”, Bloomberg Businessweek Magazine, 12

Dec. 2007.

[48] T. White, “Hadoop: The Definitive Guide, 2nd Edition”, O’Reilly Media, Inc.,

Sebastopol, CA, USA, 2011.

[49] Apache, “Hadoop Wiki”. [Online]. Available:

http://wiki.apache.org/hadoop/PoweredBy [Accessed: February 12, 2016].

[50] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System”, ACM

SIGOPS Operating Systems Review, vol. 37, no. 5, 2003, pp. 29–43.

[51] M. Jones and M. Nelson, “Moving ahead with Hadoop YARN”, IBM. 2 July 2013.

[Online]. Available: http://www.ibm.com/developerworks/library/bd-hadoopyarn

[Accessed: February 20, 2016].

[52] The Apache Software Foundation, “Apache Hadoop YARN”. [Online]. Available:

http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html

[Accessed: April 5, 2016].

[53] H. Chang, M. Kodialam, R.R. Kompella, T.V. Lakshman, M. Lee, and S.

Mukherjee, “Scheduling in mapreduce-like systems for fast completion time”, IEEE

INFOCOM 2011, Shanghai, China, 10-15 April 2011, pp. 3074-3082.

[54] A. S. Schulz, “Scheduling to Minimize Total Weighted Completion Time:

Performance Guarantees of LP-Based Heuristics and Lower Bounds”, International

Conference on Integer Programming and Combinatorial Optimization (IPCO),

Vancouver, BC, Canada, 3-5 June 1996, pp. 301-315.

[55] X. Gao, Q. Chen, Y. Chen, Q. Sun, Y. Liu, and M. Li, “A Dispatching-Rule-Based

Task Scheduling Policy for MapReduce with Multi-type Jobs in Heterogeneous

Environments”, ChinaGrid Annual Conference, Beijing, China, 20-23 Sept. 2012,

pp. 17 -24.

261

[56] Z. Fadika and M. Govindaraju, “DELMA: Dynamically ELastic MapReduce

Framework for CPU-Intensive Applications”, IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGrid), Newport Beach, CA, USA, 23-

26 May 2011, pp. 454-463.

[57] B. Palanisamy, A. Singh, and L. Liu, “Cost-Effective Resource Provisioning for

MapReduce in a Cloud”, IEEE Transactions on in Parallel and Distributed

Systems, vol.26, no.5, 1 May 2015, pp. 1265-1279.

[58] D. Yoo and K. M. Sim, “A scheduling mechanism for multiple MapReduce jobs in

a workflow application (position paper)”, Computing, Communications and

Applications Conference (ComComAp), Hong Kong, China, 11-13 Jan. 2012, pp.

405-410.

[59] C. He, Y. Lu, and D. Swanson, “Matchmaking: A New MapReduce Scheduling

Technique”, International Conference on Cloud Computing Technology and

Science (CloudCom), Athens, Greece, 29 Nov. - 1 Dec. 2011, pp. 40-47.

[60] M. Hammoud and M.F. Sakr, “Locality-Aware Reduce Task Scheduling for

MapReduce”, International Conference on Cloud Computing Technology and

Science (CloudCom), Athens, Greece, 29 Nov. - 1 Dec. 2011, pp. 570-576.

[61] Z. Fadika, E. Dede, J. Hartog, and M. Govindaraju, “MARLA: MapReduce for

Heterogeneous Clusters”, IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), Ottawa, ON, Canada, 13-16 May 2012, pp. 49-56.

[62] Y. Liu, M. Li, N.K. Alham, S. Hammoud and M. Ponraj, “Load balancing in

MapReduce environments for data intensive applications”, International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shanghai, China,

26-28 July 2011, pp. 2675-2678.

[63] X. Xu and M. Tang, “A New Approach to the Cloud-based Heterogeneous

MapReduce Placement Problem”, IEEE Transactions on in Services Computing,

vol. PP, no.99, 15 May 2015, pp. 1-12.

[64] The Apache Software Foundation, “Hadoop 1.2.1 Documentation: Fair Scheduler”.

[Online]. Available: http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

[Accessed: April 10, 2016].

[65] The Apache Software Foundation, “Hadoop 1.2.1 Documentation: Capacity

Scheduler”. [Online]. Available:

http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html [Accessed: April 10,

2016]

[66] Z. Guo and G. Fox, “Improving MapReduce Performance in Heterogeneous

Network Environments and Resource Utilization”, IEEE/ACM International

262

Symposium on Cluster, Cloud and Grid Computing (CCGrid), Ottawa, ON,

Canada, 13-16 May 2012, pp. 714-716.

[67] Y. Luo and B. Plale, “Hierarchical MapReduce Programming Model and

Scheduling Algorithms”, IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), Ottawa, ON, Canada, 13-16 May 2012, pp. 769-

774.

[68] T. Wirtz and R. Ge, “Improving MapReduce energy efficiency for computation

intensive workloads”, International Conference on Green Computing Conference

and Workshops (IGCC), Orlando, FL, USA, 25-28 July 2011, pp. 1-8.

[69] D. Cavdar, L.Y. Chen, and F. Alagoz, “Green MapReduce for heterogeneous data

centers”, IEEE Global Communications Conference (GLOBECOM), Austin, TX,

USA, 8-12 Dec. 2014, pp.1120-1126.

[70] A. Verma, L. Cherkasova, V.S. Kumar, and R.H. Campbell, “Deadline-based

workload management for MapReduce environments: Pieces of the performance

puzzle”, Network Operations and Management Symposium (NOMS), Maui, Hawaii,

USA, 16-20 April 2012, pp. 900-905.

[71] K. Kc and K. Anyanwu, “Scheduling Hadoop Jobs to Meet Deadlines”,

International Conference on Cloud Computing Technology and Science

(CloudCom), Indianapolis, IN, USA, 30 Nov. – 3 Dec. 2010, pp. 388-392.

[72] X. Dong, Y. Wang, and H. Liao, “Scheduling Mixed Real-Time and Non-real-Time

Applications in MapReduce Environment”, International Conference on Parallel

and Distributed Systems (ICPADS), Tainan, Taiwan, 7-9 Dec. 2011, pp. 9-16.

[73] M. Mattess, R.N. Calheiros, and R. Buyya, “Scaling MapReduce Applications

Across Hybrid Clouds to Meet Soft Deadlines”, International Conference on

Advanced Information Networking and Applications (AINA), Barcelona, Spain, 25-

28 March 2013, pp. 629-636.

[74] E. Hwang and K. H. Kim, “Minimizing Cost of Virtual Machines for Deadline-

Constrained MapReduce Applications in the Cloud”, International Conference on

Grid Computing (GRID), Beijing, China, 20-23 Sept. 2012, pp. 130-138.

[75] Z.-R. Lai, C.-W. Chang, X. Liu, T.-W. Kuo, and P.-C. Hsiu, “Deadline-aware load

balancing for MapReduce”, International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), Chongqing, China, 20-22 Aug.

2014, pp. 1-10.

[76] C. Chen, J. Lin, and S. Kuo, “MapReduce Scheduling for Deadline-Constrained

Jobs in Heterogeneous Cloud Computing Systems”, IEEE Transactions on Cloud

Computing, vol. PP, no. 99, pp. 1-14.

263

[77] U. Farooq, S. Majumdar, and E. W. Parsons, “Achieving efficiency, quality of

service and robustness in multi-organizational Grids”, Journal of Systems and

Software, vol. 82, Jan. 2009, pp. 23–38.

[78] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and adjusting user runtime

estimates to improve job scheduling on the Blue Gene/P”, IEEE International

Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 19-

23 April 2010, pp. 1–11.

[79] P. Xiao and Z. Hu, “Relaxed resource advance reservation policy in grid

computing”, The Journal of China Universities of Posts and Telecommunications,

vol. 16, no. 2, April 2009, pp. 108–113.

[80] G. Birkenheuer, A. Brinkmann, and H. Karl, “Risk aware overbooking for

commercial grids”, International workshop on Job Scheduling Strategies for

Parallel Processing (JSSPP), Atlanta, GA, USA, 23 April 2010, pp. 51–76.

[81] P. Hoang, S. Majumdar, M. Zaman, P. Srivastava, and N. Goel, “Resource

Management Techniques for Handling Uncertainties in User Estimated Job

Execution Times”, International Symposium on Performance Evaluation of

Computer and Telecommunication Systems (SPECTS), Monterey, CA, USA, 6-10

July 2014, pp. 626 -633.

[82] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-Generated

Predictions Rather than User Runtime Estimates”, IEEE Transactions on Parallel

and Distributed Systems, vol. 18, no. 6, 2007, pp. 789–803.

[83] A. Matsunaga and J. Fortes, “On the Use of Machine Learning to Predict the Time

and Resources Consumed by Applications”, IEEE/ACM International Conference

on Cluster, Cloud and Grid Computing (CCGrid), Melbourne, Australia, 17-20

May 2010, pp. 495 –504.

[84] Y. Murata, R. Egawa, M. Higashida, and H. Kobayashi, “A History-Based Job

Scheduling Mechanism for the Vector Computing Cloud”, IEEE/IPSJ International

Symposium on Applications and the Internet (SAINT), Seoul, South Korea, 19-23

July 2010, pp. 125 –128.

[85] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo, “Meeting service level

objectives of Pig programs”, International Workshop on Cloud Computing

Platforms, New York, NY, USA, 2012, pp. 8:1–8:6.

[86] B. Li, J. Chen, M. Yang, and E. Wang, “Impact of Extending the Runtime of

Underestimated Jobs in Backfilling Schedulers”, International Conference on

Computer Science and Software Engineering (CSSE), Wuhan, China, 12-14 Dec.

2008, pp. 328–331.

264

[87] J. Polo, “Adaptive Scheduler”, [Online]. Available:

https://issues.apache.org/jira/browse/MAPREDUCE-1380 [Accessed: February

24, 2016].

[88] J.N. Hooker, “Planning and scheduling to minimize tardiness”, P. In van Beek,

ed., Principles and Practice of Constraint Programming, vol. 3709, 2005, pp.

314–327.

[89] I. J. Lustig and J.-F. Puget, “Program Does Not Equal Program: Constraint

Programming and Its Relationship to Mathematical Programming”,

INTERFACES, vol. 31, no. 6, Nov.-Dec. 2001, pp. 29-53.

[90] P. Refalo, “Linear formulation of constraint programming models and hybrid

solvers”, Principles and Practice of Constraint Programming–CP 2000, Springer

Berlin Heidelberg, 2000, pp. 369-383.

[91] N. Beldiceanu and S. Demassey, “Global Constraint Catalog”. [Online].

Available: http://sofdem.github.io/gccat/gccat/Ccumulative.html [Accessed:

February 25, 2016].

[92] Lindo Systems Inc., “Lindo Systems – Optimization Software”. [Online].

Available: http://www.lindo.com/ [Accessed: February 25, 2016].

[93] NICTA, “MiniZinc and FlatZinc”. [Online]. Available: http://www.MiniZinc.org/

[Accessed: February 24, 2016].

[94] Gecode, “Generic Constraint Development Environment”. [Online]. Available:

http://www.gecode.org/ [Accessed: February 25, 2016].

[95] J.M. Van den Akker, C. Hurkens, and M. Savelsbergh, “Time-indexed

formulations for machine scheduling problems: Column generation”, INFORMS

Journal on Computing, vol. 12, no. 2, 2000, pp. 111-124.

[96] K. Marriott, P.J. Stuckey, L.D. Koninck, and H. Samulowitz, “An Introduction to

MiniZinc Version 1.6”. [Online]. Available: www.minizinc.org/downloads/doc-

1.6/minizinc-tute.pdf [Accessed February 25, 2016].

[97] IBM Corporation, “IBM ILOG CPLEX Optimization Studio V12.5 Reference

Manual”. [Online]. Available:

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp [Accessed: February

25, 2016].

[98] IBM Corporation, “Detailed Scheduling in IBM ILOG CPLEX Optimization

Studio with IBM ILOG CPLEX CP Optimizer”, White Paper. IBM Corporation,

2010. [Online]. Available: http://www.besmart.company/wp-

content/uploads/2014/11/Ilog-CPLEX.pdf [Accessed: February 25, 2016].

265

[99] T. Dong, “Efficient modeling with the IBM ILOG OPL-CPLEX Development

Bundles”, White Paper, December 2009. [Online]. Available:

http://public.dhe.ibm.com/common/ssi/rep_wh/n/WSW14059USEN/WSW14059

USEN.PDF [Accessed: February 25, 2016].

[100] Oracle Corporation, “NetBeans IDE”, [Online]. Available: https://netbeans.org

[Accessed: February 25, 2016].

[101] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling”, Wiley-

Interscience, New York, NY, April 1991, ISBN:0471503361.

[102] Oracle Corporation, “System.nanoTime()”, Java Platform Standard Ed. 7.

[Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime()

[Accessed: February 24, 2016].

[103] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,

“Delay scheduling: A simple technique for achieving locality and fairness in

cluster scheduling”, EuroSys, Paris, France, 13-16 April 2010, pp. 265–278.

[104] M. Jones, “Scheduling in Hadoop”, [Online]. Available:

http://www.ibm.com/developerworks/library/os-hadoop-scheduling/ [Accessed:

February 25, 2016].

[105] Oracle Corporation, “Interface Comparator<T>”, Java Platform Standard Ed. 7.

[Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/Comparator.html [Accessed:

February 25, 2016].

[106] Oracle Corporation, “Nested Classes”, The Java Tutorials. [Online]. Available:

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html [Accessed:

February 25, 2016].

[107] The IEEE and the Open Group, “Seconds Since the Epoch”, The Open Group

Base Specifications Issue 7, IEEE Std 1003.1, 2013.

[108] Amazon, “Amazon EC2 Instance Types”. [Online]. Available:

http://aws.amazon.com/ec2/instance-types/ [Accessed: February 25, 2016].

[109] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench benchmark

suite: Characterization of the MapReduce-based data analysis”, IEEE

International Conference on Data Engineering Workshops (ICDEW), Long

Beach, CA, USA, 1-6 March 2010, pp. 41-51.

[110] Oracle Corporation, “Thread.sleep()”, Java Platform Standard Ed. 7. [Online].

Available:

266

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#sleep(long)

[Accessed: October 15, 2016].

[111] D. England, J. Weissman, and J. Sadagopan, “A new metric for robustness with

application to job scheduling”, IEEE International Symposium on High

Performance Distributed Computing (HPDC), Research Triangle Park, NC, USA,

24-27 July 2005, pp. 135 – 143.

[112] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and

user runtime estimates in scheduling the IBM SP2 with backfilling”, IEEE

Transactions on Parallel and Distributed Systems, vol. 12, no. 6, Jun. 2001, pp.

529 –543.

[113] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,

“Characterization of Scientific Workflows”, Workshop on Workflows in Support

of Large Scale Science, Austin, TX, USA, 17 Nov 2008, pp. 1-10.

[114] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,

“Characterizing and Profiling Scientific Workflows”, Future Generation

Computer Systems, vol. 29, no. 3, March 2013, pp. 682–692.

[115] K. J. Lin, S. Natarajan, and J. W. S. Liu, “Imprecise results: utilizing partial

computations in real-time systems”, IEEE Real-Time Systems Symposium (RTSS),

1-3 Dec. 1987, San Jose, CA, USA, pp. 210-217.

[116] G. L. Stavrinides and H. D. Karatza, “Scheduling real-time parallel applications in

SaaS clouds in the presence of transient software failures”, International

Symposium on Performance Evaluation of Computer and Telecommunication

Systems (SPECTS), Montreal, QC, Canada, 24-27 July 2016, pp. 1-8.

[117] Oracle Corporation, “Interface Iterator<E>”, Java Platform Standard Ed. 7.

[Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html [Accessed:

February 26, 2016].

267

Appendix A Design and Implementation of the MILP Model and

the CP Model

The following sub-sections (A.I to A.III) describe the design and implementation

of the MILP Model and the CP Model using various commercial-off-the-shelf and open

source software packages.

A.I. MILP Model Implemented Using LINGO

This section discusses how the MILP Model is implemented in LINGO v13.0.

Additional information on how to use LINGO is found in [92]. The LINGO modeling

language provides a data type called Sets that is used to model a group of related objects.

By using Sets, constraints on the decision variables are efficiently and compactly expressed

using a single statement. Each set can have one or more attributes associated with each

item of the set. In the implementation of the MILP Model, sets are used to represent the

input: jobs set J, tasks set AT, resources set R, and time range set I. For example, the task

set AT is implemented as follows:

SETS: TASKS: parentJob, type, execTime, resReq;

The parent job attribute identifies which job the task belongs to. For example, if the parent

job attribute of a task is 2, it means that this task belongs to the job with an id equal to 2.

The type attribute indicates whether the task is a map task (type = 0) or a reduce task (type

= 1). The execTime and resReq attributes represent et and qt, respectively.

A representative set of examples of how the constraints of the MILP Model (defined

in Table 3.2) are implemented using LINGO are presented. For instance, constraint (1b) is

implemented as follows:

268

@FOR(TASKS(t):
 @SUM(TIME(i):
 @SUM(RESOURCES(r): x(t,r,i))

) = 1
);

The @FOR construct is used to iterate the members of a given set and can be used to generate

constraints for each member of the set. As the name suggests, the @SUM construct is a

looping function that calculates the sum of all the members in the given set. The variable x

used in the LINGO model represents the x decision variable discussed in Section 3.4.

The implementation of constraint (5b) using LINGO is presented:

@FOR(RESOURCES(r):
 @FOR(TIME(i):
 @SUM(TASKS(t)| type(t) #EQ# 0:
 @SUM(TIME(i2 |(i-execTime(t)) #LT# i2 #AND# i2 #LE# i:
 x(t,r,i2)*resReq(t)
)
) <= mapCapacity(r)
)
);

As shown, the two @SUM constructs use LINGO’s conditional qualifier operator |, which

limits the scope of the looping function and restricts the members of the set that are

processed. More specifically, only the members of the set that evaluate the conditional

qualifier equation to true are processed. For example, the first @SUM construct specifies that

only tasks with a type attribute equal to 0 (i.e., map tasks) are processed. Furthermore, the

syntax for using logical operators is to enclose the name of the operator using hashtags (#).

For instance, the syntax for the logical operators: =, ≤, and < are #EQ#, #LE#, and #LT#,

respectively.

A.II. CP Model Implemented Using MiniZinc

This section discusses how the CP Model is implemented using MiniZinc. More

details on how to use the MiniZinc modeling language can be found in [96]. Similar to

269

LINGO, MiniZinc also provides a mechanism to group together closely related data called

Sets and Arrays. Using MiniZinc, the set of tasks AT is implemented as follows:

set of int: Tasks = 1..NUM_TASKS;
set of int: Jobs = 1..NUM_JOBS;
array [Tasks] of Jobs: parentJob;
array [Tasks] of 0..1: type;
array [Tasks] of int: execTime;
array [Tasks] of int: resourceReq;

First a set of integers, called Tasks, is defined from 1 to a variable named

NUM_TASKS, which stores the total number of tasks contained in the input set of jobs, J.

Next, the attributes of the tasks, which are identical to the attributes described in Appendix

A.I, are declared using arrays. The indices of the attribute arrays are specified using the set

of integers, Tasks, that was declared previously. For example, the execTime array has its

indices defined by the Tasks set so that each task has its own execTime attribute. The

domain of each of the attributes, which is the range of acceptable values that an attribute

can have, is also defined when declaring the attribute arrays by using the of keyword. For

example, the domain of the parentJob attribute is equal to the set of integers called Jobs,

which has a range from 1 to NUM_JOBS where NUM_JOBS is a variable that stores the number

of jobs in the input set J. It is observed from the above example that the implementation of

data sets in MiniZinc requires using two data types (sets and arrays), and is not as compact

as the one used in LINGO, but it performs the same function.

A representative set of examples of how the CP Model’s constraints (defined in

Table 3.1) are implemented using MiniZinc is provided next. In MiniZinc, constraint (2a)

is expressed as follows:

constraint forall(j in Jobs) (
 forall(t in Tasks where parentJob[t] == j /\ type[t] == 0) (
 startTime[t] >= releaseTime[j]
)
);

270

All the constraints in MiniZinc, start with the keyword constraint. The forall construct

performs an identical function to LINGO’s @FOR construct, which is used to iterate the

items of a collection. Similarly, the where keyword in the second forall statement is

MiniZinc’s conditional qualifier operator. The /\ operator performs a logical conjunction

(logical and) operation.

A.III. CP Model Implemented Using IBM CPLEX

In this section, the implementation of the CP Model using OPL, which is referred

to as the OPL Model, is discussed. Additional information for expressing CP formulations

using OPL can be found in [97] and [98]. Similar to the other approaches, OPL supports

using a data type called tuple, which allows related data to be grouped together. The

following tuples are defined to represent a job, a task, a resource, and the xtr decision

variable, respectively:

 Job = <id, earliestStartTime, deadline>,

 Task = <id, parentJob, type, execTime, resReq>,

 Resource = <id, mapCapacity, reduceCapacity>, and

 Option = <Task, Resource>.

For example, the Tasks set is expressed in OPL as follows:

tuple Task {
 key string id;
 int parentJob;
 int type;
 int execTime;
 int resReq;
};

{ Task } Tasks = ...;

271

First, a Task tuple is defined, which is then used to specify a set of Task tuples called

Tasks. The ellipses (…) indicate that the Tasks set will be specified as input to the model.

The Task tuple has the same attributes as those discussed in Appendix A.I, except for an

additional attribute called id, which is used to uniquely identify a tuple in OPL. The

keyword key specifies which attribute is used as the unique identifier for the tuple.

A representative set of examples of implementing the constraints of the CP Model

(recall Table 3.1) is presented. In the OPL Model, constraint (1a) is expressed using the

OPL-defined alternative constraint [98] as follows:

forall (t in Tasks)
 alternative(taskIntervals[t],
 all(o in Options: o.task.id == t.id) xtr[o]);

Similar to the forall construct used in MiniZinc, OPL’s forall construct is used to iterate

through the elements of a specified collection. The alternative constraint is a

synchronization constraint that requires two parameters: an interval i and a set of

intervals S. The alternative constraint states that the interval i will only be present in the

solution if and only if there is exactly one interval in S (denoted j) that is also present in

the solution. Both intervals i and j are synchronized meaning that they both start and end

at the same time. Thus, it is appropriate to use the alternative constraint to express

constraint (1a) whose purpose is to ensure that each task is assigned to only one resource

(recall Section 3.3). In the above example, the set S is produced by using the all construct

invoked with a conditional qualifier (:). More specifically, S is a subset of Option tuples

that have the same id as the task of interest, t.

In the OPL Model, constraint (5a) is expressed as follows:

forall (r in Resources) {
 sum (o in Options : o.resource.id == r.id && o.task.type == 0)
 pulse(xtr[o], o.task.resReq) <= r.mapCapacity;
}

272

The pulse function [98] is used to generate the resource usage of a task, and it requires

two parameters: an interval i that represents the task and a height value h to indicate the

resource usage (i.e., capacity requirement) of the task. The pulse function generates a value

as a function of time. More precisely, when the task is running (i.e., during the time

between the interval’s start time and end time), the pulse function generates a value equal

to the supplied value h to indicate the amount of resource usage of the task. At all other

points in time, the pulse function generates a value of 0. To implement the functionality of

CP’s cumulative constraint, the OPL Model sums all the values produced by the pulse

function at each point in time and asserts that the sum is less than or equal to the capacity

of the resource. As shown, the OPL implementation of constraint (5a), which enforces that

the map task capacity of each resource r in R is not violated, uses a conditional qualifier (:)

to ensure that only the map tasks (represented by the xtr[o] interval variable) that are

assigned to the resource of interest (resource r) is included in the calculation. To determine

that if an xtr[o] variable represents a map task that is scheduled on resource r, xtr[o]’s

task.type and resource.id attributes are checked to see if they are equal to 0 and are

equal to resource r’s id, respectively.

273

Appendix B Additional Details on the MRCP-RM Algorithm

In this appendix, additional details of the design and implementation of the MRCP

RM algorithm are provided.

B.I. Creating and Solving the OPL Model Using IBM CPLEX’s Java APIs

This section describes how IBM CPLEX’s Java APIs are used to create and solve

an OPL Model, including how the solution of the OPL Model is extracted and saved. The

CPLEX Java library follows a Factory design pattern [97] where objects are created by

invoking methods from a single master object. Thus, the first step is to create an instance

of an IloOplFactory object as follows:

IloOplFactory factory = new IloOplFactory();

Next, the model source object, IloOplModelSource, is created using:

 IloOplModelSource modelSource =
 factory.createOplModelSourceFromString(oplModelText, modelName);

where oplModelText is a string containing the source code (text) of the OPL Model and

modelName is a string containing the user-specified name of the model. The model

definition object can then be created:

 IloOplModelDefinition modelDef =
 factory.createOplModelDefinition(modelSource, settings)

where modelSource is the IloOplModelSource object that was previously created and

settings is an instance of IloOplSettings that represents the configuration and settings

of the model. The IloOplSettings object is created as follows:

IloOplErrorHandler errHandler = factory.createOplErrorHandler();
IloOplSettings settings = factory.createOplSettings(errHandler);

274

As shown, an error handler object, IloOplErrorHandler, needs to be created before

generating the settings object. The next step is to create an instance of the CP Optimizer

solving engine:

IloCP cpSolver = factory.createCP()

The OPL Model object can then be created by invoking the createOplModel() method,

which requires passing in a model definition object and a CP Optimizer instance as follows:

IloOplModel oplModel = factory.createOplModel(modelDef, cpSolver)

Now that the OPL Model object is created, a data source that provides the input data for

the model is added using:

IloOplDataSource dataSource = new OPLModelData(factory, resources,
 jobsToSchedule);
oplModel.addDataSource(dataSource);

OPLModelData is a user-defined class that extends CPLEX’s

ilog.opl.IloCustomOplDataSource class [97] whose purpose is to generate the OPL

Model’s input data: set of jobs to schedule J and set of resources R. The IloOplModel

object can now be generated as follows:

oplModel.generate()

This converts the model into a form that the CP Optimizer can solve. Finally, the OPL

Model is solved by invoking:

cpSolver.solve()

After a solution is found, the values of the decision variables (i.e., the assigned resource

and scheduled start time of each scheduled task) are extracted from the solved OPL Model

using CPLEX’s Java API OPL element interface [97]. A discussion on how this is done is

provided next. First, the element that contains all the scheduled tasks is obtained from the

IloOplModel object using:

275

IloTupleSet scheduledTasks =
oplModel.getElement("ScheduledTasks").asTupleSet();

Next the scheduledTasks set, which is an instance of IloTupleSet and contains a set of

ScheduledTask tuples, is processed to retrieve the values of the decision variables using:

for (Iterator it = scheduledTasks.iterator(); it.hasNext();)
{

IloTuple tuple = (IloTuple) it.next();

String taskId = tuple.getStringValue("taskID");
int assignedResId = tuple.getIntValue("resID");

 int startTime = tuple.getIntValue("start");
 int endTime = tuple.getIntValue("end");

...
}

The ScheduledTask tuple is used by the post-processing component of the OPL Model to

store the values of the decision variables and is defined as follows:

tuple ScheduledTask
{
 int resID;
 int isReduceTask;
 int start;
 int end;
 string taskID;
};

The post-processing component of the OPL Model is executed after the CP Optimizer finds

a solution to the OPL Model, and its job is to save the values of the decision variables into

the attributes of the ScheduledTask tuple. As shown, to iterate the scheduledTasks set,

Java’s Iterator class [117] is used. The values of the ScheduledTask tuples are retrieved

by using the IloTuple class’ get methods which include getIntValue() to retrieve an

integer and getStringValue() to retrieve a string.

276

B.II. Split Single Resource Schedule Algorithm

This section describes the Split Single Resource Schedule algorithm (see Algorithm

B.1) that is used by the MRCP-RM technique (refer to Section 4.3.1). The input required

by the algorithm includes the following: the single combined resource (sr), nmRes, the

number of map resources, which are resources with a map task capacity, 𝑐𝑟
𝑚𝑝

≥ 1 in R, and

nrRes, the number of reduce resources, which are resources that have a reduce task

capacity, 𝑐𝑟
𝑟𝑑≥ 1), in R.

The first phase of Algorithm B.1 (lines 1-5) moves the map tasks and reduce tasks

from the single combined resource to a set of single capacity map resources (MR) and a

set of single capacity reduce resources (RR), respectively. Each resource in MR has only

one map task slot and each resource in RR has only one reduce task slot. The number of

single capacity resources in MR and RR is equal to the total number of map task slots in R

(totMC = ∑ 𝑐𝑟
𝑚𝑝

𝑟∈𝑅) and the total number of reduce task slots in R (totRC = ∑ 𝑐𝑟
𝑟𝑑

𝑟∈𝑅),

respectively. The algorithm moves tasks from the single combined resource in non-

decreasing order of the respective scheduled start times of the tasks and assigns each task

to a single capacity resource in MR or RR, depending on whether it is a map task or a reduce

task. More specifically, each task t is assigned to the single capacity resource that is found

in MR or RR that leaves the smallest remaining gap in the resource’s schedule. For

example, consider a scenario in which there are two resources: r1 and r2, and a task τ3,1

that needs to be assigned to one of these two resources from time 10 to 15. Resource r1

already has a task τ1,1 scheduled from time 2 to 10 and r2 already has a task τ2,1scheduled

from time 5 to 8. Task τ3,1would be assigned to r1 since the resulting gap will be 10 – 10 =

0 compared to the gap for r2: 10 – 8 = 2.

277

Algorithm B.1: MRCP-RM algorithm’s splitSingleResourceSchedule()

Input: single combined resource (sr), integer nmRes, and integer nrRes

Output: a list of resources

1: totMC  sr.getMapCapacity()

2: totRC  sr.getReduceCapacity()

3: Create a set of single capacity map resources, MR, comprising totMC single

capacity map resources.

4: Create a set of single capacity reduce resources, RR, comprising totRC single

capacity reduce resources.

5: Assign map tasks and reduce tasks from sr to MR and RR, respectively.

6: minMC  totMC / nmRes ; leftOverMC  totMC – minMC * nmRes

7: minRC  totRC / nrRes ; leftOverRC  totRC – minRC * nrRes

8: id  1

9: Create newResources list.

10: totMC  totMC - leftOverMC

11: totRC  totRC – leftOverRC

12: while (totMC > 0 || totRC > 0) do

13: mc  (totMC > 0 ? minMC : 0) + (leftOverMC > 0 ? 1 : 0)

14: rc  (totRC> 0 ? minRC : 0) + (leftOverRC > 0 ? 1 : 0)

15: res  new Resource(id, mc, rc)

16: newResources.add(res)

17: totMC  totMC - minMC ; totRC totRC - minRC

18: leftOverMC  leftOverMC – 1 ; leftOverRC  leftOverRC - 1

19: id  id + 1

20: end while

21: for each resource r in newResources do

22: Assign scheduled map tasks from num single capacity resources in MR, where

 num is equal to r.getMapCapacity().

23: Assign scheduled reduce tasks from num single capacity resources in RR,

 where num is equal r.getReduceCapacity().

24: end for

25: return newResources

The second phase of Algorithm B.1 (lines 6-7) calculates the number of map task

slots and the number of reduce task slots for each new resource that will be created to

represent the original resources in R. Recall that the input to the algorithm includes the

number of resources with at least one map task slot (nmRes) and the number of resources

with at least one reduce task slot (nrRes). The total number of map task slots and the total

number of reduce task slots is divided evenly among the resources. In line 6, the minimum

278

number of map task slots for each resource (stored in the variable minMC) and the left over

total map task capacity (stored in the variable leftOverMC), which is the remaining number

of map task slots to be assigned, are calculated. Similarly, in line 7 the minimum number

of reduce task slots for each resource (stored in a variable minRC) and the left over total

reduce task capacity (stored in a variable leftOverRC), which is the remaining number of

reduce task slots to be assigned, are calculated.

In the third phase of Algorithm B.1 (lines 8-20), the new resources are created.

First, a local variable named id is initialized to 1 and a new list of resources, named

newResources, is created (lines 8-9). The totMC and totRC variables are then updated by

subtracting leftOverMC and leftOverRC variables, respectively, as shown in lines 10-11.

The while loop shown in lines 12-20 is used to create the new resources for the system and

the loop continues as long as the variables totMC or totRC are greater than 0 (i.e., there is

still more resources to create). The map task capacity and reduce task capacity for each

resource (stored in variables mc and rc, respectively) are then calculated as shown in lines

13-14. If totMC is greater than 0, the new resource will have a map task capacity equal to

minMC; otherwise, the map task capacity is equal to 0. Furthermore, if leftOverMC is

greater than 0, the resource will get an additional map task slot. Similar calculations are

then performed to calculate the reduce task capacity of the resource (see line 14). The next

step is to create a new resource with an id equal to id, a map capacity equal to mc, and a

reduce capacity equal to rc (line 15). This new resource is then added to the newResources

list (line 16). The last step of the while loop is to update variables totMC, totRC,

leftOverMC, leftOverRC, and id as shown in lines 17-19.

279

The last phase of Algorithm B.1 (lines 21-25) assigns tasks to each of the new

resources created. More specifically, each resource r in newResources is assigned

scheduled map tasks and scheduled reduce tasks from the single capacity resources in MR

and the single capacity resources in RR: the numbers of which are equal to resource r’s

map task capacity and reduce task capacity, respectively. The newResources list is then

returned and the algorithm ends (line 25).

280

Appendix C Additional Details on the Design and

Implementation of the Hadoop CP-Scheduler

The focus of this appendix is on providing additional details of the modifications

made to Hadoop 1.2.1 to implement the Hadoop CP-Scheduler (described in Section 5.3).

This includes a discussion on adding support for job deadlines in Hadoop (see Appendix

C.I) and a discussion on adding support for user-estimated task execution times (see

Appendix C.II). In addition, details on the following are provided: (1) integrating IBM

CPLEX with Hadoop (see Appendix C.III) and (2) a discussion of the

createNewModelDefinition() method that is used by the HCP-RM algorithm (see

Appendix C.IV).

C.I. Adding Support for Job Deadlines

This section discusses the Hadoop classes that are modified to support user-

specified job deadlines. First, in Hadoop’s org.apache.hadoop.mapred.JobInProgress

class, a new private field, long deadline, is added to store a job’s deadline. The value

stored in the deadline field represents the number of milliseconds elapsed from midnight,

January 1, 1970 UTC (known as the Unix Epoch [107]). Recall from Section 5.3.3 that the

JobInProgress class represents a MapReduce job that is being tracked by JobTracker. The

deadline field of the JobInProgress class is initialized via its constructor by invoking

conf.getJobDeadline() where conf is an object that is an instance of the

org.apache.hadoop.mapred.JobConf class and getJobDeadline() is a new method

implemented in the JobConf class whose purpose is to retrieve the job’s deadline.

281

The JobConf class represents a MapReduce job configuration file. It is an interface

for users to specify the properties (e.g., job name and the number of map and reduce tasks)

for their MapReduce job before submission to the Hadoop cluster. Two new methods are

added to the JobConf class: getJobDeadline() and setJobDeadline(long deadline).

The method setJobDeadline(long deadline) sets a new job configuration property,

mapred.job.deadline, to the supplied parameter. On the other hand, the

getJobDeadline() method is used to retrieve the value assigned to the

mapred.job.deadline property.

The other Hadoop class that is modified to support user-specified job deadlines is

the org.apache.hadoop.mapreduce.Job class. The Job class provides a user API, and it

is the class that a user uses to create and submit a job to the Hadoop cluster. The Job class

also supplies methods to allow the user to configure the job, control its execution, and

obtain status information (e.g., state of the job). Similar to the JobConf class, the two new

methods added to the Job class are: setJobDeadline(long deadline) and

getJobDeadline(). These two methods in turn invoke conf.setJobDeadline(deadline)

and conf.getJobDeadline(), respectively, where conf is an instance of a JobConf object.

Note that conf is one of the private fields of the Job class and is initialized when a Job

object is created. In summary, the sequence of calls for setting the deadline of a job is

illustrated in the sequence diagram shown in Figure C.1.

282

:Job:Job :JobConf:JobConf

setJobDeadline

(deadline)

setJobDeadline

(deadline)

Note: deadline=System.currentTime()+20000

set key mapred.job.deadline

 to value deadline

Figure C.1. Sequence diagram for setting the deadline of a job in Hadoop.

C.II. Adding Support for User-estimated Task Execution Times

Similar to how support for job deadlines is added to Hadoop, support to allow users

to specify the estimated task execution times of their submitted jobs is accomplished by

adding two new methods: setEstimatedTaskExecutionTimes(String execTimes, int

taskType) and getEstimatedTaskExecutionTimes(int taskType) (abbreviated setET

and getET, respectively) to Hadoop’s Job and JobConf classes.

The setET method accepts two parameters: a comma delimitated string of task

execution times in seconds (e.g., “2,2,3”), and the task type (map = 0 or reduce = 1).

Depending on the task type, the setET method assigns either the

mapred.job.mapTaskExecTimes property or the mapred.job.reduceTaskExecTimes

property to the supplied string, execTimes. The getET method accepts a single parameter,

the task type (map = 0 or reduce = 1), and it returns a string array containing the values

assigned to the corresponding property. In summary, the sequence of calls for retrieving

283

the estimated task execution times of a job is illustrated in the sequence diagram shown in

Figure C.2.

:Job :JobConf

getEstimated

TaskExecution

Times

(0)

getEstimatedTaskExecution

Times(0)

return value at key:

 mapred.job.mapTaskExecTimes

return value at key:

 mapred.job.mapTaskExecTimes

Figure C.2. Sequence diagram for retrieving the estimated task execution times of a job

in Hadoop.

C.III. Details on Integrating IBM CPLEX with Hadoop

This section describes how IBM CPLEX is integrated with Hadoop. To import the

required CPLEX Java libraries, IBM CPLEX v12.5 is first installed on the Ubuntu (Linux)

machine where the CP-Scheduler is executed on. Next, the IBM CPLEX v12.5 JAR (Java

archive) file, named oplall12.5.jar, is placed in Hadoop’s /hadoop/lib folder. In

addition, a modification is made to Hadoop’s /hadoop/bin/hadoop script so that the

JobTracker can locate the CPLEX libraries. More specifically, the java.library.path

variable of the hadoop script is modified to include the folder:

<IBM_CPEX_Install_dir>/opl/bin/x86-64_sles10_4.1

C.IV. Create New Model Definition Method

The createNewModelDefinition() method, which is used by the HCP-RM

algorithm (see Section 5.4.2) is presented in Algorithm C.1. The first step is to initialize

the variable modelSrc with a string containing the OPL Model’s source code (line 1), which

284

is obtained from the OPLModelSource class (recall Section 5.3.2). The next step is to

process all the scheduled tasks in the system (represented by Task_CPS objects) to check

the state of each of the tasks’ corresponding TaskInProgress object (abbreviated TIP)

(lines 2 to 12). If a task t’s TIP is in the running state, the CP-Scheduler’s

addConstraints() method is invoked (line 6). This method adds a new constraint to

modelSrc to specify that the time interval from task t’s scheduled start time to its scheduled

completion time on its assigned resource r is occupied. The purpose of the new constraint

is to prevent the CP Optimizer solving engine from scheduling other tasks on resource r

during t’s scheduled time, if the resource does not have the capacity to process additional

tasks. In addition, the Task_CPS’ isExecuting field is set to true (line 7), which is passed

on to the OPL Model (via OPLModelData class) to tell the CP Optimizer that enforcing

constraint (2a) is not required for tasks that are already executing (recall the discussion in

Section 4.1.1).

Algorithm C.1: CP-Scheduler’s createNewModelDefinition()

Input: none

Output: none

1: modelSrc  OPLModelSource.getSource()

2: for each resource r in resources do

3: for each task t in r.getAllScheduledTasks() do

4: tip  t.getTaskInProgress()

5: if tip is in the running state then

6: call addConstraints(modelSrc, t, r)

7: t.setCurrentlyExecuting(true)

8: else if tip is in the completed state then

9: call removeTask(t)

10: end if

11: end for

12: end for

13: modelDefinition  Create new OPL model definition using the updated

 OPL model source, modelSrc.

285

On the other hand, if the task’s TIP is in the completed state (line 8) then the CP-

Scheduler’s removeTask() method is invoked to remove the completed task from the

system (line 9). After all the scheduled tasks in the system are processed, the final step of

the algorithm is to create the new OPL model definition object using the updated modelSrc

and store it in the CP_Scheduler class’ modelDefinition field (line 13).

286

Appendix D Additional Results for the Performance Evaluation of the WFBB-RM Technique

In Appendix D.I to Appendix D.III, the complete set of results of the factor-at-a-time experiments (described in Section 7.5) are

presented. This includes the results of all 8 WFBB-RM configurations for each of the three workloads (CyberShake, LIGO, and

Genome). Note that for the sake of completeness, the results described in Section 7.5 are also included in the tables presented in this

appendix. Furthermore, in Appendix D.IV, additional results for the experiments conducted to compare the performance of WFBB-RM

with that of MRCP-RM are presented.

D.I. CyberShake Workload

The results of the factor-at-a-time experiments conducted using the CyberShake workload are presented in this section. More

specifically, the results of the experiments using the PD-based WFBB-RM configurations and the ED-based WFBB-RM configurations

are shown in Appendix D.I.I and Appendix D.I.II, respectively.

D.I.I Results of Experiments Using the PD-based WFBB-RM Configurations

Table D.1, Table D.2, Table D.3, and Table D.4 present the effect of job arrival rate, effect of earliest start time of jobs, effect

of job deadlines, and effect of the number of resources, respectively, when using the PD-based WFBB-RM configurations.

287

Table D.1. CyberShake workload: effect of λCS on P, T, and O when using the PD-based WFBB-RM configurations.

λCS

(jobs/sec)
P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

1/30
0.002 0.002 0.574 0.547 248.27 248.27 580.23 580.30 0.010 0.010 0.016 0.018

±0.001 ±0.001 ±0.034 ±0.034 ±0.48 ±0.48 ±1.14 ±1.09 ±0.000 ±0.000 ±0.000 ±0.000

1/22
0.195 0.195 1.075 1.211 293.99 293.99 566.12 568.68 0.016 0.016 0.019 0.022

±0.042 ±0.042 ±0.061 ±0.064 ±2.25 ±2.25 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000

1/18
1.824 1.824 2.487 2.832 404.99 404.99 575.80 581.43 0.045 0.045 0.025 0.030

±0.127 ±0.127 ±0.121 ±0.135 ±9.00 ±9.00 ±2.51 ±2.72 ±0.004 ±0.004 ±0.001 ±0.002

Table D.2. CyberShake workload: effect of emmax on P, T, and O when using the PD-based WFBB-RM configurations.

emmax P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

2
4.173 4.173 7.520 7.899 266.23 266.23 321.72 323.13 0.029 0.029 0.029 0.031

±0.112 ±0.112 ±0.140 ±0.148 ±1.14 ±1.14 ±0.60 ±0.65 ±0.001 ±0.001 ±0.000 ±0.001

5
0.207 0.207 1.075 1.211 294.52 294.52 566.12 568.68 0.016 0.016 0.019 0.022

±0.060 ±0.060 ±0.061 ±0.064 ±3.03 ±3.03 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000

10
0.000 0.000 0.107 0.115 301.60 301.60 941.27 947.05 0.012 0.012 0.020 0.024

±0.001 ±0.001 ±0.014 ±0.017 ±1.71 ±1.71 ±1.88 ±1.91 ±0.000 ±0.000 ±0.000 ±0.000

288

Table D.3. CyberShake workload: effect of smax on P, T, and O when using the PD-based WFBB-RM configurations.

smax (sec) P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

10000
0.514 0.514 1.948 2.250 357.15 357.15 547.67 552.78 0.022 0.022 0.024 0.027

±0.062 ±0.062 ±0.089 ±0.100 ±2.72 ±2.72 ±0.96 ±0.96 ±0.001 ±0.001 ±0.000 ±0.000

50000
0.207 0.207 1.075 1.211 294.52 294.52 566.12 568.68 0.016 0.016 0.019 0.022

±0.060 ±0.060 ±0.061 ±0.064 ±3.03 ±3.03 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000

250000
0.000 0.000 0.328 0.308 231.85 231.85 619.55 619.11 0.008 0.008 0.013 0.015

±0.000 ±0.000 ±0.024 ±0.023 ±0.23 ±0.23 ±1.02 ±1.01 ±0.000 ±0.000 ±0.000 ±0.000

Table D.4. CyberShake workload: effect of m on P, T, and O when using the PD-based WFBB-RM configurations.

m P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

40
4.367 4.367 5.122 5.633 706.42 706.42 614.08 625.32 0.088 0.088 0.029 0.034

±0.162 ±0.162 ±0.155 ±0.156 ±23.82 ±23.82 ±7.46 ±8.24 ±0.008 ±0.008 ±0.002 ±0.003

50
0.207 0.207 1.075 1.211 294.52 294.52 566.12 568.68 0.016 0.016 0.019 0.022

±0.060 ±0.060 ±0.061 ±0.064 ±3.03 ±3.03 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000

60
0.002 0.002 0.649 0.615 249.29 249.29 587.68 587.71 0.012 0.012 0.020 0.022

±0.002 ±0.002 ±0.031 ±0.031 ±0.66 ±0.66 ±1.05 ±1.02 ±0.000 ±0.000 ±0.000 ±0.000

289

D.I.II Results of Experiments Using the ED-based WFBB-RM Configurations

Table D.5, Table D.6, Table D.7, and Table D.8 present the effect of job arrival rate, effect of earliest start time of jobs, effect

of job deadlines, and effect of the number of resources, respectively, when using the ED-based WFBB-RM configurations.

Table D.5. CyberShake workload: effect of λCS on P, T, and O when using the ED-based WFBB-RM configurations.

λCS

(jobs/sec)
P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

1/30
0.002 0.002 0.028 0.035 248.27 248.27 491.37 499.00 0.010 0.010 0.016 0.018

±0.001 ±0.001 ±0.007 ±0.008 ±0.48 ±0.48 ±1.37 ±1.00 ±0.000 ±0.000 ±0.000 ±0.000

1/22
0.195 0.195 0.131 0.193 293.99 293.99 466.35 482.00 0.016 0.016 0.019 0.022

±0.042 ±0.042 ±0.022 ±0.027 ±2.25 ±2.25 ±1.14 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000

1/18
1.824 1.824 0.957 1.176 404.99 404.99 474.52 496.00 0.045 0.045 0.025 0.030

±0.127 ±0.127 ±0.110 ±0.104 ±9.00 ±9.00 ±2.75 ±3.00 ±0.004 ±0.004 ±0.001 ±0.002

290

Table D.6. CyberShake workload: effect of emmax on P, T, and O when using the ED-based WFBB-RM configurations.

emmax P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

2
4.173 4.173 4.986 5.428 266.23 266.23 298.85 302.00 0.029 0.029 0.029 0.031

±0.112 ±0.112 ±0.155 ±0.155 ±1.14 ±1.14 ±0.73 ±1.00 ±0.001 ±0.001 ±0.000 ±0.001

5
0.207 0.207 0.141 0.193 294.52 294.52 467.50 482.00 0.016 0.016 0.020 0.022

±0.060 ±0.060 ±0.035 ±0.027 ±3.03 ±3.03 ±1.70 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000

10
0.000 0.000 0.016 0.010 301.60 301.60 771.36 787.00 0.012 0.012 0.020 0.024

±0.001 ±0.001 ±0.005 ±0.003 ±1.71 ±1.71 ±2.78 ±3.00 ±0.000 ±0.000 ±0.000 ±0.000

Table D.7. CyberShake workload: effect of smax on P, T, and O when using the ED-based WFBB-RM configurations.

smax (sec) P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

10000
0.514 0.514 0.317 0.460 357.15 357.15 428.10 455.00 0.022 0.022 0.024 0.027

±0.062 ±0.062 ±0.037 ±0.049 ±2.72 ±2.72 ±0.99 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000

50000
0.207 0.207 0.141 0.193 294.52 294.52 467.50 482.00 0.016 0.016 0.020 0.022

±0.060 ±0.060 ±0.035 ±0.027 ±3.03 ±3.03 ±1.70 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000

250000
0.000 0.000 0.014 0.018 231.85 231.85 570.89 573.00 0.008 0.008 0.013 0.015

±0.000 ±0.000 ±0.005 ±0.005 ±0.23 ±0.23 ±1.60 ±1.00 ±0.000 ±0.000 ±0.000 ±0.000

291

Table D.8. CyberShake workload: effect of m on P, T, and O when using the ED-based WFBB-RM configurations.

m P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

40
4.367 4.367 3.454 3.662 706.42 706.42 533.58 550.00 0.088 0.088 0.029 0.034

±0.162 ±0.162 ±0.203 ±0.174 ±23.82 ±23.82 ±8.82 ±8.00 ±0.008 ±0.008 ±0.002 ±0.003

50
0.207 0.207 0.141 0.193 294.52 294.52 467.50 482.00 0.016 0.016 0.020 0.022

±0.060 ±0.060 ±0.035 ±0.027 ±3.03 ±3.03 ±1.70 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000

60
0.002 0.002 0.017 0.022 249.29 249.29 493.26 502.00 0.012 0.012 0.020 0.022

±0.002 ±0.002 ±0.005 ±0.006 ±0.66 ±0.66 ±1.40 ±1.00 ±0.000 ±0.000 ±0.000 ±0.000

D.II. LIGO Workload

This section presents the results of the factor-at-a-time experiments conducted using the LIGO workload. More specifically, the

results of the experiments using the PD-based WFBB-RM configurations and the ED-based WFBB-RM configurations are shown in

Appendix D.II.I and Appendix D.II.II, respectively.

D.II.I Results of Experiments Using the PD-based WFBB-RM Configurations

Table D.9, Table D.10, Table D.11, and Table D.12 present the effect of job arrival rate, effect of earliest start time of jobs, effect

of job deadlines, and effect of the number of resources, respectively, when using the PD-based WFBB-RM configurations.

292

Table D.9. LIGO workload: effect of λLG on P, T, and O when using the PD-based WFBB-RM configurations.

λLG

(jobs/sec)
P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

1/265
0.018 0.018 0.418 0.362 1345.90 1345.89 3680.43 3697.90 0.008 0.007 0.014 0.014

±0.005 ±0.005 ±0.059 ±0.024 ±0.64 ±0.64 ±16.53 ±8.33 ±0.000 ±0.000 ±0.001 ±0.000

1/180
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000

1/150
1.027 1.047 5.347 5.959 2005.44 2003.05 3588.80 3651.29 0.017 0.015 0.040 0.041

±0.118 ±0.114 ±0.195 ±0.242 ±28.66 ±27.76 ±25.84 ±26.15 ±0.001 ±0.001 ±0.002 ±0.002

Table D.10. LIGO workload: effect of emmax on P, T, and O when using the PD-based WFBB-RM configurations.

emmax P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

2
2.439 2.459 11.179 11.333 1457.51 1457.51 1987.27 1992.71 0.012 0.011 0.020 0.021

±0.139 ±0.140 ±0.188 ±0.213 ±4.44 ±4.43 ±4.66 ±4.71 ±0.000 ±0.000 ±0.000 ±0.000

5
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000

10
0.041 0.042 0.197 0.180 1458.44 1463.48 5212.01 5243.74 0.009 0.008 0.023 0.027

±0.011 ±0.008 ±0.021 ±0.018 ±6.18 ±4.62 ±19.41 ±16.92 ±0.000 ±0.000 ±0.000 ±0.000

293

Table D.11. LIGO workload: effect of smax on P, T, and O when using the PD-based WFBB-RM configurations.

smax (sec) P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

10000
0.099 0.101 1.395 1.305 1450.10 1450.17 3257.78 3278.96 0.009 0.008 0.020 0.020

±0.012 ±0.012 ±0.077 ±0.077 ±3.34 ±3.35 ±8.26 ±8.89 ±0.000 ±0.000 ±0.000 ±0.000

50000
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000

250000
0.092 0.081 1.147 1.109 1440.81 1427.49 3448.23 3464.41 0.010 0.008 0.018 0.018

±0.012 ±0.011 ±0.076 ±0.077 ±4.73 ±4.20 ±8.57 ±7.99 ±0.000 ±0.000 ±0.000 ±0.000

Table D.12. LIGO workload: effect of m on P, T, and O when using the PD-based WFBB-RM configurations.

m P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

40
4.113 4.136 7.862 8.124 3210.01 3210.49 4680.11 4769.01 0.034 0.033 0.062 0.062

±0.266 ±0.285 ±0.229 ±0.254 ±124.66 ±125.21 ±119.89 ±125.60 ±0.003 ±0.005 ±0.004 ±0.004

50
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000

60
0.028 0.028 0.621 0.582 1360.27 1360.27 3509.39 3519.75 0.010 0.009 0.019 0.019

±0.006 ±0.006 ±0.040 ±0.039 ±1.13 ±1.13 ±8.43 ±8.53 ±0.000 ±0.000 ±0.000 ±0.000

294

D.II.II Results of Experiments Using the ED-based WFBB-RM Configurations

Table D.13, Table D.14, Table D.15, and Table D.16 present the effect of job arrival rate, effect of earliest start time of jobs,

effect of job deadlines, and effect of the number of resources, respectively, when using the ED-based WFBB-RM configurations.

Table D.13. LIGO workload: effect of λLG on P, T, and O when using the ED-based WFBB-RM configurations.

λLG

(jobs/sec)
P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

1/265
0.018 0.018 0.108 0.104 1345.90 1345.90 3673.14 3662.84 0.008 0.007 0.013 0.014

±0.005 ±0.005 ±0.019 ±0.015 ±0.64 ±0.64 ±10.26 ±7.09 ±0.000 ±0.000 ±0.000 ±0.000

1/180
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000

1/150
1.057 0.989 5.423 5.146 2005.59 2004.65 3647.43 3612.06 0.016 0.015 0.040 0.041

±0.122 ±0.113 ±0.341 ±0.235 ±28.09 ±28.02 ±50.91 ±28.17 ±0.001 ±0.001 ±0.002 ±0.002

295

Table D.14. LIGO workload: effect of emmax on P, T, and O when using the ED-based WFBB-RM configurations.

emmax P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

2
2.434 2.436 9.838 10.006 1457.46 1457.71 1966.23 1979.70 0.011 0.010 0.020 0.021

±0.142 ±0.141 ±0.272 ±0.189 ±4.42 ±4.44 ±6.10 ±4.58 ±0.000 ±0.000 ±0.000 ±0.000

5
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000

10
0.043 0.044 0.063 0.082 1463.46 1463.44 5258.83 5242.99 0.008 0.008 0.023 0.024

±0.008 ±0.008 ±0.013 ±0.011 ±4.61 ±4.62 ±21.26 ±14.51 ±0.000 ±0.000 ±0.000 ±0.000

Table D.15. LIGO workload: effect of smax on P, T, and O when using the ED-based WFBB-RM configurations.

smax (sec) P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

10000
0.103 0.102 0.518 0.629 1450.17 1450.16 2987.98 3227.28 0.009 0.008 0.020 0.020

±0.012 ±0.012 ±0.064 ±0.054 ±3.35 ±3.35 ±8.02 ±6.62 ±0.000 ±0.000 ±0.000 ±0.000

50000
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000

250000
0.080 0.082 0.699 0.602 1427.32 1427.44 3421.39 3420.67 0.009 0.008 0.018 0.170

±0.010 ±0.011 ±0.065 ±0.062 ±4.14 ±4.16 ±7.05 ±7.27 ±0.000 ±0.000 ±0.000 ±0.000

296

Table D.16. LIGO workload: effect of m on P, T, and O when using the ED-based WFBB-RM configurations.

m P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

40
4.144 4.093 7.901 8.006 3217.69 3214.09 4901.42 4769.89 0.032 0.031 0.062 0.061

±0.269 ±0.268 ±0.227 ±0.240 ±125.83 ±127.07 ±127.63 ±123.16 ±0.003 ±0.004 ±0.004 ±0.040

50
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000

60
0.028 0.028 0.179 0.160 1360.27 1360.27 3461.67 3462.32 0.010 0.009 0.019 0.020

±0.006 ±0.006 ±0.019 ±0.018 ±1.13 ±1.13 ±7.81 ±7.60 ±0.000 ±0.000 ±0.000 ±0.000

D.III. Genome Workload

The results of the factor-at-a-time experiments conducted using the Genome workload are presented in this section. More

specifically, the results of the experiments using the PD-based WFBB-RM configurations and the ED-based WFBB-RM configurations

are shown in Appendix D.III.I and Appendix D.III.II, respectively.

D.III.I Results of Experiments Using the PD-based WFBB-RM Configurations

Table D.17, Table D.18, Table D.19, and Table D.20 present the effect of job arrival rate, effect of earliest start time of jobs,

effect of job deadlines, and effect of the number of resources, respectively, when using the PD-based WFBB-RM configurations.

297

Table D.17. Genome workload: effect of λGN on P, T, and O when using the PD-based WFBB-RM configurations.

λGN

(jobs/sec)
P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

1/3205
0.013 0.013 0.122 0.124 17544 17544 48911 48969 0.008 0.008 0.010 0.010

±0.004 ±0.004 ±0.022 ±0.024 ±927 ±927 ±2234 ±2242 ±0.000 ±0.000 ±0.000 ±0.000

1/2290
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001

1/1800
1.432 1.408 2.600 2.918 52312 52198 80318 80645 0.048 0.048 0.044 0.045

±0.451 ±0.452 ±0.567 ±0.605 ±12915 ±12897 ±14218 ±14207 ±0.015 ±0.015 ±0.019 ±0.020

Table D.18. Genome workload: effect of emmax on P, T, and O when using the PD-based WFBB-RM configurations.

emmax P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

2
0.490 0.489 7.792 8.108 17933 17933 26325 26437 0.008 0.008 0.011 0.011

±0.123 ±0.123 ±1.342 ±1.421 ±1001 ±1001 ±1446 ±1465 ±0.000 ±0.000 ±0.001 ±0.001

5
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001

10
0.028 0.028 0.081 0.097 17963 17963 74866 75009 0.007 0.007 0.013 0.013

±0.006 ±0.006 ±0.013 ±0.015 ±1007 ±1007 ±2616 ±2646 ±0.000 ±0.000 ±0.001 ±0.001

298

Table D.19. Genome workload: effect of smax on P, T, and O when using the PD-based WFBB-RM configurations.

smax (sec) P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

10000
0.037 0.037 0.431 0.574 17693 17693 45729 46052 0.007 0.007 0.012 0.011

±0.009 ±0.009 ±0.084 ±0.114 ±959 ±959 ±1942 ±1994 ±0.000 ±0.000 ±0.001 ±0.001

50000
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001

250000
0.080 0.080 0.592 0.687 18171 18172 45962 46194 0.007 0.007 0.012 0.011

±0.015 ±0.015 ±0.125 ±0.153 ±1049 ±1049 ±2009 ±2046 ±0.000 ±0.000 ±0.001 ±0.001

Table D.20. Genome workload: effect of m on P, T, and O when using the PD-based WFBB-RM configurations.

m P (%) T (sec) O (sec)

 PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

PD-SL-

TSP1

PD-TL-

TSP1

PD-SL-

TSP2

PD-TL-

TSP2

40
1.286 1.322 2.461 2.741 52320 52266 79537 79726 0.032 0.032 0.031 0.032

±0.403 ±0.417 ±0.510 ±0.544 ±13743 ±13692 ±14854 ±14708 ±0.011 ±0.011 ±0.014 ±0.015

50
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001

60
0.016 0.016 0.166 0.186 17583 17583 47591 47682 0.009 0.009 0.012 0.012

±0.004 ±0.004 ±0.029 ±0.034 ±935 ±935 ±2080 ±2095 ±0.000 ±0.000 ±0.000 ±0.000

299

D.III.II Results of Experiments Using the ED-based WFBB-RM Configurations

Table D.21, Table D.22, Table D.23, and Table D.24 present the effect of job arrival rate, effect of earliest start time of jobs,

effect of job deadlines, and effect of the number of resources, respectively, when using the ED-based WFBB-RM configurations.

Table D.21. Genome workload: effect of λGN on P, T, and O when using the ED-based WFBB-RM configurations.

λGN

(jobs/sec)
P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

1/3205
0.013 0.013 0.052 0.059 17544 17544 48358 48462 0.008 0.008 0.010 0.009

±0.004 ±0.004 ±0.010 ±0.012 ±927 ±927 ±2155 ±2170 ±0.000 ±0.000 ±0.000 ±0.000

1/2290
0.066 0.066 0.188 0.232 17963 17963 44082 44471 0.008 0.008 0.012 0.011

±0.013 ±0.013 ±0.039 ±0.045 ±1007 ±1007 ±1744 ±1795 ±0.000 ±0.000 ±0.001 ±0.000

1/1800
1.395 1.477 2.195 2.309 52472 52134 78558 78476 0.041 0.041 0.045 0.043

±0.442 ±0.470 ±0.577 ±0.586 ±13003 ±12926 ±14192 ±14011 ±0.016 ±0.021 ±0.019 ±0.019

300

Table D.22. Genome workload: effect of emmax on P, T, and O when using the ED-based WFBB-RM configurations.

emmax P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

2
0.489 0.492 6.405 6.645 17933 17933 26088 26257 0.008 0.008 0.011 0.011

±0.123 ±0.125 ±1.193 ±1.285 ±1001 ±1001 ±1408 ±1438 ±0.000 ±0.000 ±0.001 ±0.001

5
0.066 0.066 0.188 0.188 17963 17963 44082 44082 0.008 0.008 0.012 0.012

±0.013 ±0.013 ±0.039 ±0.039 ±1007 ±1007 ±1744 ±1744 ±0.000 ±0.000 ±0.001 ±0.001

10
0.028 0.028 0.050 0.064 17963 17963 72259 72922 0.008 0.008 0.014 0.014

±0.006 ±0.006 ±0.008 ±0.010 ±1007 ±1007 ±2303 ±2383 ±0.000 ±0.000 ±0.001 ±0.001

Table D.23. Genome workload: effect of smax on P, T, and O when using the ED-based WFBB-RM configurations.

smax (sec) P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

10000
0.037 0.037 0.170 0.216 17693 17693 44181 44524 0.008 0.008 0.011 0.011

±0.009 ±0.009 ±0.037 ±0.044 ±959 ±959 ±1729 ±1777 ±0.000 ±0.000 ±0.001 ±0.001

50000
0.066 0.066 0.188 0.188 17963 17963 44082 44082 0.008 0.008 0.012 0.012

±0.013 ±0.013 ±0.039 ±0.039 ±1007 ±1007 ±1744 ±1744 ±0.000 ±0.000 ±0.001 ±0.001

250000
0.080 0.080 0.290 0.302 18171 18172 44399 44749 0.008 0.008 0.012 0.012

±0.015 ±0.015 ±0.082 ±0.075 ±1049 ±1049 ±1806 ±1850 ±0.000 ±0.000 ±0.001 ±0.001

301

Table D.24. Genome workload: effect of m on P, T, and O when using the ED-based WFBB-RM configurations.

m P (%) T (sec) O (sec)

 ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

ED-SL-

TSP1

ED-TL-

TSP1

ED-SL-

TSP2

ED-TL-

TSP2

40
1.305 1.310 2.147 2.220 52106 52128 78411 78278 0.035 0.028 0.031 0.032

±0.417 ±0.414 ±0.517 ±0.517 ±13597 ±13629 ±14887 ±14615 ±0.012 ±0.015 ±0.014 ±0.014

50
0.066 0.066 0.188 0.188 17963 17963 44082 44082 0.008 0.008 0.012 0.012

±0.013 ±0.013 ±0.039 ±0.039 ±1007 ±1007 ±1744 ±1744 ±0.000 ±0.000 ±0.001 ±0.001

60
0.016 0.016 0.057 0.065 17583 17583 46641 46784 0.010 0.010 0.012 0.012

±0.004 ±0.004 ±0.011 ±0.012 ±935 ±935 ±1937 ±1958 ±0.000 ±0.000 ±0.000 ±0.000

302

D.IV. Comparison of WFBB-RM and MRCP-RM

This section presents the additional results of the factor-at-a-time experiments

conducted to compare the performances of WFBB-RM and MRCP-RM when processing

an open stream of MapReduce jobs with SLAs (refer to Section 7.6).

D.IV.I Effect of Task Execution Times

Figure D.1 and Figure D.2 present the performance of WFBB-RM and MRCP-RM

in terms of P, T, and O when memax is varied.

Figure D.1. WFBB-RM vs MRCP-RM: effect of memax on P.

0

0.5

1

1.5

2

2.5

3

10 50 100

P
 (

%
)

memax (sec)

WFBB-RM MRCP-RM

303

Figure D.2. WFBB-RM vs MRCP-RM: effect of memax on T and O.

D.IV.II Effect of Earliest Start Time of Jobs

The performance of WFBB-RM and MRCP-RM in terms of P, T, and O when smax

is varied is presented in Figure D.3 and Figure D.4.

Figure D.3. WFBB-RM vs MRCP-RM: effect of smax on P.

0

0.05

0.1

0.15

0.2

0.25

0

200

400

600

800

1000

10 50 100

O
(s

ec
)

T
(s

ec
)

memax (sec)

WFBB-RM: T MRCP-RM: T WFBB-RM: O MRCP-RM: O

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10000 50000 250000

P
 (

%
)

smax (sec)

WFBB-RM MRCP-RM

304

Figure D.4. WFBB-RM vs MRCP-RM: effect of smax on T and O.

D.IV.III Effect of Job Deadlines

Figure D.5 and Figure D.6 present the performance of WFBB-RM and MRCP-RM

in terms of P, T, and O when emmax is varied.

Figure D.5. WFBB-RM vs MRCP-RM: effect of emmax on P.

0

0.01

0.02

0.03

0.04

0.05

0

50

100

150

200

250

300

350

400

450

10000 50000 250000

O
(s

ec
)

T
(s

ec
)

smax (sec)

WFBB-RM: T MRCP-RM: T WFBB-RM: O MRCP-RM: O

0

0.5

1

1.5

2

2.5

3

3.5

4

2 5 10

P
 (

%
)

emmax

WFBB-RM MRCP-RM

305

Figure D.6. WFBB-RM vs MRCP-RM: effect of emmax on T and O.

0

0.02

0.04

0.06

0.08

0.1

0.12

0

50

100

150

200

250

300

350

400

450

2 5 10

O
(s

ec
)

T
(s

ec
)

emmax

WFBB-RM: T MRCP-RM: T WFBB-RM: O MRCP-RM: O

