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Abstract 

The objective of this thesis is to devise effective resource management techniques 

for processing a workload comprising an open stream of multi-stage jobs on a distributed 

computing environment, such as a private cluster or a set of resources acquired a priori 

from a public cloud. Each job is associated with a service level agreement (SLA) 

characterized by an earliest start time, an execution time, and an end-to-end deadline. The 

two important operations in resource management that this thesis focuses on are resource 

allocation (matchmaking) and scheduling. Given a pool of jobs to execute, a matchmaking 

algorithm chooses the resources to be allocated to a given job, whereas a scheduling 

algorithm determines the order in which these jobs are to be executed for achieving the 

desired system objectives. Multi-stage jobs have multiple phases of execution and require 

processing from multiple system resources.  

Resource management techniques for processing MapReduce jobs (used for 

facilitating Big Data analytics), as well as other multi-stage jobs such as scientific 

workflows characterized by multiple phases of execution and different types of precedence 

relationships, are considered. The key techniques devised in this thesis research include: 

(1) resource management techniques based on decomposing the end-to-end deadline of a 

multi-stage job into components (e.g., sub-deadlines) each of which is associated with a 

specific task in the job, (2) alternative resource management algorithms that use 

optimization techniques, and (3) techniques for handling inaccuracy/error in user estimates 

of job execution times (submitted as part of the SLA). A comprehensive and rigorous 

performance evaluation of the resource management techniques is conducted using 

prototyping and measurement on a real system deployed on a cloud as well as simulation. 
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Chapter 1 Introduction 

Cloud computing has emerged as one of the most prevalent parallel and distributed 

computing paradigms. One of the key objectives of cloud computing is to deliver reliable 

services/applications hosted on the “cloud” such that consumers can access the 

services/applications anywhere and at any time (i.e., on-demand) via the Internet [1]. The 

authors of [1] define a “cloud” as follows:   

“A Cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented as 

one or more unified computing resource(s) based on service-level agreements established 

through negotiation between the service provider and consumers.” 

The computer systems and resources of the cloud that include compute, storage, and 

network resources are often housed in a facility called a datacenter. 

Since the emergence of cloud computing, its popularity has steadily increased and 

it is now deployed extensively in the domain of Information Technology (IT) because it 

improves and simplifies how IT is managed and consumed. A number of reputable 

financial institutions and market research organizations, including Merrill Lynch and 

Gartner, have predicted a multi-billion-dollar market for the cloud computing industry 

[2][3][4]. Furthermore, as pointed out in [5], the annual world-wide spending on cloud 

computing for enterprise IT is expected to increase significantly with time. Consequently, 

research on cloud computing is receiving a great deal of interest from researchers and 

practitioners from academia as well as industry. 

The importance of cloud computing that provides resources on demand to various 

types of users, including enterprises and engineering and scientific institutions, is growing 



 

 

2 

 

rapidly [6]. Although cloud computing is an effective and economically viable solution for 

distributed computing, it poses a number of challenges. A survey [7] presented on cloud 

computing stated that security and performance are the two top priorities for cloud service 

consumers and cloud service providers. In a cloud, the user has a lack of control over the 

execution environment, and there is also a concern with the security and privacy of the data 

stored in the cloud. Another key issue in cloud computing is related to performance. Public 

cloud service providers, such as Amazon [8] and Microsoft [9], deploy datacenters that 

comprise a large pool of resources. Many enterprises and institutions also have their own 

private clouds for managing their IT infrastructure, performing data processing operations, 

and facilitating research. Irrespective of the type of cloud deployed, effective and efficient 

resource management techniques are crucial for harnessing the power of the underlying 

resource pool and to achieve the performance objectives of the system. Achieving a high 

system performance is important because it can lead to more satisfied users and high 

utilization of resources, leading to more revenue for the cloud service provider. For 

example, with an effective resource management technique the system can achieve a high 

job throughput, low job response times (latency), high utility of resources, and a high 

quality of service (QoS) for consumers [6]. Thus, the focus of this thesis is on the critical 

issue of resource management on clouds.  

The rest of this chapter is organized as follows. In Section 1.1, the motivation and 

challenges behind the research of the thesis is described. Next, in Section 1.2, the 

objectives, contributions, and scope of the thesis are presented. Lastly, Section 1.3 provides 

an outline of how the remainder of the thesis is organized. 
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1.1 Motivations and Challenges for the Thesis 

A significant amount of research is available in the area of resource management 

on parallel and distributed systems, including grids [10] (a predecessor of cloud computing) 

and clouds, characterized by on-demand jobs that are to be satisfied on a best effort basis. 

However, comparatively less work is available for resource management where jobs 

require a QoS that is often captured by a service level agreement (SLA). This is an active 

and open research area [1][6]. As in the case of grid computing [10], which also supported 

resources on demand, QoS and SLAs remain an important issue. A SLA, which defines a 

contract between the service requester and the service provider regarding the level of QoS 

associated with a job, is an important characteristic of cloud computing [11]. Ensuring that 

the SLA (i.e., QoS requirements) of a job is satisfied is important for service providers 

because it is imperative for achieving a high quality of experience and satisfaction for the 

cloud users. A satisfied user is more likely to use the same service provider again. 

Furthermore, violating a SLA can lead to fines for the service provider and a loss of 

revenue. The SLA may vary from application to application and various parameters can be 

included in a SLA, such as delays, packet loss, uptime, and mean time to recover. Similar 

to [1] and [11], this thesis focuses on SLAs that are characterized by an earliest start time, 

an execution time, and an end-to-end deadline for job completion. This, for example, is 

important for latency-sensitive business and scientific applications that require a timely 

processing of data. Note that the deadline for the job is a soft deadline, which means that 

the job can complete its execution even if it misses its deadline; however, the desired 

system objective is to minimize the number of such late jobs. Missing a deadline may lead 

to a low quality of experience for the user and a SLA violation for the service provider. 
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Thus, minimizing the number of late jobs, which leads to a higher number of satisfied users 

and a higher quality of service, is an important objective of the system.  

Due to cloud computing becoming more prevalent, a variety of different 

applications are run on clouds, including those that are characterized by multiple phases of 

execution and require processing from multiple system resources (referred to as multi-stage 

jobs). Most of the research on resource management for jobs characterized by SLAs have 

not considered: 

1). Jobs requiring service from multiple system resources as required for supporting 

multi-stage jobs. Most of the research on resource management for jobs with 

SLAs has only considered jobs that need to be processed by a single resource. 

2). An open stream of job arrivals. Most of the previous research in the literature has 

only addressed meeting the deadlines for a fixed number of jobs executing on the 

system (i.e., a batch workload). However, clouds are typically subjected to an 

open stream of job arrivals and not a fixed number of jobs. 

The objective of the research presented in this thesis is aimed at filling this gap. The type 

of resources that this thesis is concerned with are nodes in a distributed system where each 

node has its own compute resources (CPU and memory), storage devices, and 

communication devices, as well as runs its own operating system. For example, each of 

these nodes can be PCs in a private cluster or alternatively, virtual machines (described in 

more detail in Section 2.1) provisioned from a public cloud.  

Multi-stage jobs are important in a variety of contexts. For example, a job invoking 

an application with multiple components or a job comprising multiple tasks that require 

executing on multiple resources. Another scenario is in the context of a workflow that is 



 

 

5 

 

characterized by multiple phases of execution where each phase can comprise multiple 

tasks with precedence relationships and each phase requires execution on multiple devices. 

Scientific applications and workflows that are used in various fields of study, such as 

physics and biology, are examples of multi-stage jobs that are run on clouds. When 

considering resource management for an open stream of multi-stage jobs with SLAs, a 

complex resource management problem arises that has a number of challenging issues that 

warrant further investigation. These challenges are summarized next. 

 SLA budgeting: How to decompose the end-to-end SLA into components each 

of which is to be associated with a specific component in the end-to-end path 

traversed for processing the job? 

 Resource management algorithm: Effective matchmaking and scheduling 

algorithms are required for selecting resources from a given resource pool and 

determining the order of execution of jobs mapped to the same resource for 

satisfying the SLAs. Matchmaking and scheduling is known to be a NP-hard 

problem, and when considering an open stream of multi-stage jobs with SLAs, 

the complexity of the problem increases significantly due to a continuous stream 

of jobs arriving on the system.  

 Single step resource management techniques: Investigating alternate 

approaches that avoid the budget-based technique in order to make resource 

management decisions on multiple resources in a single joint step.  

Note that a naïve solution to solve the resource management problem described is to 

reserve all the resources that a job requires for the entire duration of time specified in the 

SLA. However, this approach is not efficient because with multiple phases of execution, 
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each resource may not be used during each phase and reserving all the resources for the 

entire duration of time leads to poor resource utilization and less revenue for the service 

provider. Reserving each resource only for the duration it is used for executing a job is a 

more efficient and effective solution because it allows more jobs to be executed on the 

cloud, leading to a more efficient use of resources. Therefore, the techniques described in 

this thesis avoids the naïve solution and instead proposes more efficient and intelligent 

resource management techniques. 

1.2 Objective and Contributions of the Thesis 

The focus and objective of this thesis is to devise efficient resource management 

techniques and algorithms for processing an open stream of multi-stage jobs where each 

job is characterized by a SLA (comprising an earliest start time, an execution time, and an 

end-to-end deadline) on a parallel and distributed computing environment with a fixed 

number of resources (or nodes), such as a private cluster or a set of resources acquired a 

priori from a public cloud. Recall from the previous section that each resource (or node) 

has its own compute resources (CPU and memory), storage devices, and communication 

devices, as well as runs its own operating system. More specifically, the goal is to devise 

resource management techniques that can make decisions that minimize the number of jobs 

that miss their deadlines, while incurring a low processing overhead. Note that the resource 

management techniques that are presented in this thesis can be used by public cloud service 

providers such as Amazon, as well as by a user who uses his/her own resources that are 

available on a private cluster or that are acquired from a public cloud. 

An example of a multi-stage application that this thesis considers is MapReduce 

[12] (described in more detail in Section 2.3), which is used by many companies and 
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institutions for processing and analyzing large data sets (i.e., facilitating Big Data 

analytics). Devising effective resource management techniques for processing MapReduce 

jobs with deadlines forms an important component of this thesis. In addition to MapReduce 

jobs, which are characterized by two phases of execution, this thesis also devises resource 

management techniques for processing workflows with different types of precedence 

relationships and more than two phases of execution, such as scientific workflows used in 

the domain of physics and biology. 

The new resource management techniques and algorithms that are presented in this 

thesis have contributed to the state of the art in the field of resource management on clouds 

as reflected in the various research papers that have been published (described in more 

detail in Section 1.2.1). The major contributions of this thesis are summarized next: 

 Deadline budgeting algorithms: Algorithms are devised to decompose the end-

to-end deadline associated with a job into components (e.g., sub-deadlines) each 

of which is associated with a specific task in the job. In particular, algorithms are 

devised to handle both MapReduce type jobs characterized by two phases of 

executions and scientific workflows with different types of precedence 

relationships. 

 Budget-based resource management technique: Effective matchmaking and 

scheduling algorithms are devised to process multi-stage jobs on parallel and 

distributed systems using the budgets (component SLAs) determined by the 

deadline budgeting algorithms.  

 Resource management techniques based on optimization methods: Alternate 

resource management techniques, which avoid the budget-based technique, are 
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devised to make matchmaking and scheduling decisions on multiple resources in 

a single joint resource management step. These resource management techniques 

formulate and solve the resource management problem as an optimization 

problem using mixed integer linear programming (MILP) [13] and constraint 

programming (CP) [14]. Both MILP and CP are well-known theoretical 

techniques that can solve optimization problems and find optimal solutions. 

Various implementations of the formulations using commercial-off-the-shelf and 

open source software packages are considered, including IBM ILOG CPLEX 

Optimization Studio (CPLEX) [15].  

o Although previous works have used optimization methods to perform 

matchmaking and scheduling, most of these techniques are offline 

techniques and only work in a closed system for processing a batch 

workload with a fixed number of jobs. The resource management 

techniques based on optimization methods (and associated performance 

optimizations) that this thesis presents are devised to process an open stream 

of multi-stage jobs with SLAs.  

 Handling error associated with user-estimated job execution times: Studies 

on real systems show that user estimates of job execution times (included in a 

SLA, for example) are error prone [16][17][18]. A novelty of the research 

presented in this thesis is the techniques devised for handling inaccuracy or error 

in user estimates of job execution times to build in the appropriate robustness into 

the resource management techniques. With little work existing in this area in the 

context of MapReduce type systems, addressing the challenges in devising 
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techniques to improve the robustness of the resource management algorithms 

makes a strong contribution to the state of the art. 

 Insights resulting from a performance analysis based on simulation and a 

proof-of-concept prototype: An in-depth and rigorous performance evaluation 

of the resource management techniques is conducted using prototyping and 

measurement on a real system deployed on a cloud (Amazon EC2 [8]), as well as 

using simulation. A detailed analysis of the results is provided to gain insights 

into system behavior and performance, as well as to investigate the impact of 

various workload and system parameters on the performance of each technique. 

In addition, the relative performance of the resource management techniques 

compared to other techniques in the literature is provided. Lastly, a comparative 

performance analysis of the proposed techniques is performed to determine the 

system and workload parameters for which one technique is superior in 

performance to the others.  

1.2.1 List of Publications 

Based on the results of the research, four papers [19][20][21][22] have been 

published in refereed international conferences. In addition, a book chapter [23] and a 

journal article [24] have been accepted for publication. The details are presented next. 

Archival Publications: 

 N. Lim and S. Majumdar, “Resource Management for MapReduce Jobs 

Performing Big Data Analytics”, in Big Data Management, Architecture, and 

Processing, K.-C. Li, H. Jiang, and A. Zomaya, Eds. USA: CRC Press, Taylor 

& Francis Group, 2016 (accepted for publication). 
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 N. Lim, S. Majumdar, and P. Ashwood-Smith, “MRCP-RM: a Technique for 

Resource Allocation and Scheduling of MapReduce Jobs with Deadlines”, IEEE 

Transactions on Parallel and Distributed Systems, October 2016 (accepted for 

publication).  

Refereed Conference Publications:  

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “Resource Management 

Techniques for Handling Requests with Service Level Agreements”, 

International Symposium on Performance Evaluation of Computer and 

Telecommunication Systems (SPECTS), Monterey, CA, USA, 6-10 July 2014, 

pp. 618 -625. 

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “Engineering Resource 

Management Middleware for Optimizing the Performance of Clouds Processing 

MapReduce Jobs with Deadlines”, International Conference on Performance 

Engineering (ICPE), Dublin, Ireland, 24 -26 March 2014, pp.161-172.  

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming-

Based Resource Management Technique for Processing MapReduce Jobs with 

SLAs on Clouds”, International Conference on Parallel Processing (ICPP), 

Minneapolis, MN, USA, 9-12 Sept 2014, pp. 411-421. 

 N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming 

Based Hadoop Scheduler for Handling MapReduce Jobs with Deadlines on 

Clouds”, International Conference on Performance Engineering (ICPE), 

Austin, TX, USA, 31 Jan – 4 Feb 2015, pp. 111-122. 
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1.2.2 Scope of the Thesis 

The resource management techniques described in this thesis are devised for 

distributed computing environments with a fixed number of resources (or nodes) subjected 

to a workload comprising an open stream of multi-stage jobs with SLAs. Such 

environments can include a cluster of computers or a set of virtual machines that are 

provisioned a priori from a cloud. Furthermore, the resource management techniques also 

consider a single datacentre environment where the network delays and data transmission 

times are negligibly small. Adapting the techniques for environments where the number of 

resources in the system can be dynamically changed or for geographically-dispersed multi-

datacentre environments where the network delays and data transmission times may be 

large are out of scope for this research and can form a direction for future research, as 

described in Section 8.6. 

As discussed earlier, the SLA submitted as part of the job includes an earliest start 

time, an execution time, and an end-to-end soft deadline. In this thesis, the estimated job 

execution times are provided by the user. The estimation of job execution times by the 

system instead of the user is beyond the scope of this thesis. However, this thesis does 

concern dealing with inaccuracy/errors in user-estimated job execution times, as described 

in Chapter 6. Moreover, the deadlines of the jobs submitted by the user are soft deadlines, 

which means that jobs are permitted to miss their deadlines but the objective of the system 

is to minimize the number of missed deadlines to preserve a high quality of service.  

1.3 Outline of the Thesis 

The remainder of the thesis is organized as follows. In Chapter 2, background 

information is provided and related work is discussed. The focus of Chapter 3 is on 
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describing the resource management techniques devised to process a batch of MapReduce 

jobs with SLAs. The MapReduce Constraint Programming based Resource Management 

(MRCP-RM) technique devised for systems subjected to an open stream of MapReduce 

jobs with SLAs, along with its adaption onto a real system, Hadoop [25], referred to as the 

Hadoop Constraint Programming based Resource Management (HCP-RM) technique, are 

discussed in Chapter 4 and Chapter 5, respectively. In Chapter 6, the techniques for 

improving the robustness of the resource management algorithms through handling of 

errors/inaccuracies in user-estimated execution times are discussed. The focus of  Chapter 

7 is on describing the Workflow Budget-Based Resource Management (WFBB-RM) 

technique, which can process an open stream of multi-stage jobs with different structures 

and types of precedence relationships, such as scientific workflows. Lastly, the conclusions 

of the thesis and directions for future research are presented in Chapter 8.  
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Chapter 2 Background and Related Work 

This chapter presents background information on the concepts, technologies and 

related work that is relevant to this thesis. In Section 2.1, background information on cloud 

computing is provided. Section 2.2 then presents a representative set of existing work 

related to resource management on clouds for processing jobs and workflows with SLAs. 

The focus of Section 2.3 is on motivating and describing MapReduce, which is a popular 

multi-stage job that this thesis considers. In Section 2.4, a description of Apache Hadoop, 

an open-source implementation of the MapReduce programming model, is provided.  

Resource management techniques for processing MapReduce jobs with various objectives, 

including MapReduce jobs with deadlines, are presented in Section 2.5. Next, in Section 

2.6, a representative set of related work describing techniques to handle error and 

inaccuracies in user-estimated job execution times is described. Lastly, Section 2.7 

compares the techniques described in this thesis with techniques from related work. 

2.1 Cloud Computing 

In cloud computing, hardware resources (e.g., processor, memory, storage, and 

network elements) and software resources (e.g., operating systems, tools, and applications) 

are made accessible on-demand over a network (typically the Internet) [1]. The cloud 

computing paradigm uses a service-oriented model that offers “everything-as-a-service” 

(XaaS) [1]. To accomplish this goal, cloud computing utilizes several concepts and 

technologies, including virtualization, service-orientation, elasticity, scalability, and utility 

computing. Virtualization technology allows the hardware resources (e.g., CPU, memory, 

storage) of a physical machine to be partitioned into multiple independent virtual machines 

(VMs). A VM is an emulation of a physical machine (e.g., computer) that has its own CPU, 
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memory, storage, and runs its own operating system. Logically, a VM is viewed as a 

physical machine but in reality, the VM runs on the physical hardware that may be shared 

with other VMs. With the help of virtualization technology, cloud computing can deliver 

an on-demand, service-oriented model that offers: Infrastructure-as-a-Service (IaaS), 

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [1]. IaaS delivers basic 

computational resources (e.g., virtual machines) as an on-demand service, and PaaS offers 

a higher-level service (e.g., an application framework with development tools) where 

consumers can create and deploy their own scalable Web applications without having to 

invest money to build and maintain their own physical infrastructure. Lastly, SaaS provides 

consumers with complete end-user applications. Communication and social applications 

such as Customer Relationship Management systems and email are examples of SaaS.  

The scalability and elasticity characteristics of a cloud provide the ability to grow 

or shrink the number of resources allocated to a consumer’s request dynamically with time. 

For example, if a Web application that is deployed on the cloud is suddenly exhibiting poor 

performance due to a surge in traffic leading to a large number of requests, additional 

resources from the cloud can be deployed to handle the additional requests. Similarly, if 

the Web application is not using all the resources it has provisioned, resulting in a low 

resource utilization, money can be saved by scaling down the number of resources that are 

provisioned. With the utility computing model, consumers can lease resources on-demand 

from the service provider and pay only for the time the resources are used. This is 

analogous to how people pay for everyday utilities at home such as electricity, gas, and 

water.  
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A summary of the primary advantages of the cloud that are attractive to users and 

has helped expand its popularity is provided next. 

 Low investment and utility computing: An organization or business can utilize 

cloud computing for their IT infrastructure instead of purchasing a large number 

of physical resources and spending money to house/maintain the resources. In 

addition, the utility computing or “pay-as-you-go” feature of the cloud allows 

users to acquire resources on demand and pay only for the time the resources 

are used. For example, cloud service providers such as Amazon [8] charge users 

an hourly rental fee when they provision a virtual machine. This low upfront 

cost is of great value for small start-up companies as well as larger enterprises 

who want to reduce costs by migrating some of their business operations to the 

cloud. 

 Scalability and elasticity: Cloud computing enables a consumer to dynamically 

grow and shrink the number of resources provisioned to match the current 

number of resources required. This provides a significant benefit for handling 

temporary increases in resource usage and allows consumers to efficiently 

spend their money.  

 Green computing: Consumers using cloud computing also contribute to the 

green computing initiative. By consolidating the IT operations of multiple 

consumers at a single datacentre instead of each consumer (e.g., organization) 

maintaining their own IT infrastructure, an effective resource sharing is 

achieved that can lead to a reduction in power consumed by the computing, 

storage, and cooling equipment.   
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There are two main types of clouds that are deployed today: public clouds and private 

clouds. Public clouds offer resources to the general public. Two of today’s popular public 

clouds include: (1) Amazon Elastic Compute Cloud (EC2) [8], which provides IaaS and 

allows users to deploy virtual machines called instances, and (2) Microsoft’s Windows 

Azure [9], which provides both IaaS and PaaS to users. The second type of cloud is a 

private cloud that is only accessible to the members of a given group. For example, two 

variants of the private cloud are: (1) an enterprise cloud that serves the IT needs for 

employees of a given company, organization, or institution and (2) a research and 

engineering cloud that unifies resources located in multiple institutions to foster resource 

sharing and collaboration. There is also a third type of cloud called a hybrid cloud that 

borrows features from both private and public clouds. Hybrid clouds provide and manage 

a set of private resources (owned by an organization, for example), but the hybrid cloud 

can also provision resources from a public cloud when necessary (e.g., to improve 

performance or to handle a surge in the number of requests). 

2.2 Resource Management on Clouds 

Irrespective of the type of cloud deployed, effective resource management 

strategies and algorithms are needed for harnessing the power of the underlying resource 

pool of the datacentre. Even though the resource pool of the datacentre is vast, it is still 

limited and needs to be efficiently shared among multiple users. By using effective 

resource management strategies, the following benefits can be achieved: higher quality of 

service for consumers, higher job throughput, lower job response times, and higher 

utilization of resources [6]. This thesis focuses on the following areas of resource 

management that is outlined by [6]:  
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 Resource allocation (matchmaking): involves determining how to distribute 

the resources of the cloud economically among competing users and assigning 

one or more resource(s) to a customer’s job. 

 Resource scheduling: involves determining when each job assigned to a 

resource should start to execute.  

Matchmaking and scheduling of jobs onto the resources of a cloud are two 

important operations performed by a resource manager deployed in the resource 

management middleware of a cloud. When a job arrives, the resource manager invokes a 

matchmaking algorithm that selects the resource(s) from a given pool of resources to be 

allocated to the job. Once a number of jobs get allocated to a specific resource, a scheduling 

algorithm is used to determine the order in which each of these jobs are to be executed. 

The matchmaking operation and the scheduling operation are often jointly referred to as 

the mapping operation. Note that in some systems matchmaking and scheduling can be 

performed in a joint resource management step. The matchmaking and scheduling problem 

is a NP-hard problem, and the problem becomes even more complex when the user’s 

requirements for quality of service that is often captured in a SLA need to be satisfied, 

while also achieving the desired system objectives for the service providers, such as 

maintaining high resource utilization and minimizing the number of overall SLAs that are 

violated.  

2.2.1 Resource Management on Clouds for Processing Jobs with SLAs 

In this section, a representative set of work describing techniques for resource 

management on clouds for processing jobs with SLAs is described. The existing research 
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is categorised based on the objectives/goals of the research and a discussion of each such 

category is presented in a subsection. 

2.2.1.1 Techniques for Maintaining High Utilization of Resources 

In this section, techniques that focus on efficiently provisioning resources in the 

cloud for achieving high utilization of resources are described. 

The authors of [26] design and evaluate a QoS-aware cloud middleware that 

configures and manages cloud resources based on SLAs. An inefficient approach to 

guarantee that a job’s SLA is not violated is to use a resource overprovision policy, but this 

is not an optimal solution because it leads to poor system utilization, which in turn can 

reduce revenue for the service provider. One of the main components of the middleware is 

a load balancer that monitors the QoS of the system and distributes the load across the 

platform evenly. In addition, the proposed middleware can dynamically add and remove 

resources at runtime as needed to meet the SLAs of the jobs.  

SmartSLA, a cost-aware resource management framework that addresses how to 

efficiently manage the resources in a shared cloud database system, is presented in [27]. 

The objective of the resource management framework is to intelligently allocate the limited 

resources of a cloud among multiple clients, while ensuring that SLAs are not violated. 

Machine learning techniques are used to identify the optimal configuration of the system 

resources (e.g., CPU, memory, and storage) for a client to meet their SLAs, while 

optimizing the revenue of the cloud service provider.  

In [28], the authors focus on the problem of pre-reserved resources in the cloud 

leading to low resource utilization. Pre-reservation of resources allows users with a 

complex applications or services to reserve multiple resources ahead of time so that their 
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SLAs can be satisfied. A resource management mechanism that includes a resource pre-

reservation strategy and a resource borrowing/lending strategy is presented. The idea 

behind resource borrowing/lending is to allow a user to lend idle pre-reserved resources to 

a user with a shortage of resources. A system controller monitors usage statistics and builds 

a model that minimizes operating costs while guaranteeing SLAs are not violated.  

2.2.1.2 Techniques for Co-allocation and Advance Reservation of Resources 

The focus of this section is on techniques for co-allocation and advance reservation 

of multiple cloud resources, including computing and storage resources.  

In [11], the authors discuss the important challenges and architectural elements of 

SLA-oriented resource management in a cloud environment. Many existing resource 

management systems in today’s datacentres do not yet provide full support for SLA-

oriented resource allocation and also do not collectively incorporate customer-driven 

service management, computational risk management, and autonomic resource 

management into the resource management system. The authors present an efficient online 

resource management algorithm that is used in distributed environments for co-allocating 

resources and supporting advance reservations.  

The authors of [29] present an efficient online resource management algorithm that 

is used in distributed environments for co-allocating resources and supporting advance 

reservations. Data structures based on 2-dimensional trees are used to organize the 

temporal availability of resources. The approach uses efficient range searches to identify 

all the available resources within a specified time window that can be used for co-

allocation.  
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An adaptive resource co-allocation technique for a cloud environment is proposed 

in [30]. The technique focuses on co-allocating CPU and memory resources and uses a 

utility function driven approach to optimize resource allocation. More specifically, the 

authors use a step-wise resource co-allocation approach that repeatedly optimizes the VM 

placement in each control interval to ensure that load fluctuation can be captured. 

The focus of [31] is on the resource provisioning problem for enriched cloud 

services, which require co-allocating multiple resources in the cloud, including computing, 

storage, and network resources. Two enriched cloud services are presented: a distributed 

data storage service and a multicast data transfer service. The authors model and solve the 

resource provisioning problem for these two services using mixed integer linear 

programming where the constraints correspond to the QoS requirements of the services.  

In [32], the authors focus on devising resource allocation techniques on clouds for 

applications that require multiple resources (e.g., CPU, network bandwidth, memory and 

storage). The proposed heuristic based approach includes an on-demand resource 

allocation mechanism that automatically starts new VMs as required, as well as a load-

balancing mechanism to ensure that resources are utilized efficiently.  

The authors of [33] focus on the problem of SLA-based resource allocation in a 

cloud environment for multi-tier applications, where each tier provides a service to the next 

tier and uses services from the previous tier. A heuristic algorithm based on force-directed 

search for solving the resource allocation problem is presented. The algorithm optimizes 

the allocation of processing, memory, and communication resources. 
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2.2.1.3 Techniques for Virtual Machine Provisioning and Placement 

In this section, resource management techniques that investigate efficiently 

provisioning and placing virtual machines (VMs) in a cloud datacentre are described.  

In [34], the authors present a resource management framework that comprises two 

key components: a VM provisioning manager and a VM placement manager. The VM 

provisioning manager decides how much physical resources (CPU and memory) to allocate 

to host applications, whereas the VM placement manager decides where to place the 

application workload within the datacenter. Both the VM provisioning and the VM 

placement problems are formulated as constraint satisfaction problems and solved using 

constraint programming where the objective is to ensure that the applications hosted on the 

cloud meet their SLAs, while also keeping energy costs minimized.  

 The authors of [35] present an application service provider based resource 

management technique. The proposed technique formulates the resource management 

problem as a mixed integer linear optimization problem where the objective is to find the 

number of VMs that should be allocated to an application to fulfil its SLA, while 

minimizing the financial cost of provisioning the resources. In addition, the authors also 

present reactive and proactive heuristic policies to approximate the optimal solution. 

2.2.2 Resource Management on Clouds for Processing Workflows 

Due to cloud computing becoming more prevalent, the various types of applications 

and workflows executed on clouds have become more extensive. A representative set of 

existing work related to resource management on clouds for processing workflows is 

presented next. A workflow is usually modelled using a directed acyclic graph (DAG), 
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where each node in the graph represents a task in the workflow and the edges of the graph 

represents the precedence relationships among the tasks. 

 In [36], a strategy to schedule workflows in a hybrid cloud, which is a private cloud 

that can request resources from a public cloud on a pay-per-use basis when required, is 

described. The goal is to determine when and how many resources to request in order to 

satisfy the deadline of an application while minimizing monetary costs. A Path Clustering 

Heuristic algorithm is presented to find an initial schedule for the workflow that only 

considers the resources in the private cloud. If the deadline of the workflow cannot be met, 

the system decides what type of resources and how many resources to request from a public 

cloud to ensure that the workflow can meet its deadline.  

Scheduling multiple workflows, each one with their own QoS requirements, is the 

focus of the research presented in [37]. The authors present a scheduling strategy called 

Multiple QoS Constrained Scheduling Strategy of Multi-Workflows that considers the 

overall performance of the system (i.e., QoS requirements of multiple users) and not just 

the completion time of a single workflow.  

In [38], a Particle Swarm Optimization (PSO) methodology is used to develop a 

meta-heuristic based scheduling algorithm to minimize the total monetary cost of executing 

a workflow application in the cloud. PSO is a stochastic optimization technique that is 

frequently used in computational intelligence and can be used to solve combinatorial 

optimization problems. The algorithm attempts to minimize both the execution cost as well 

as the data transmission (communication) cost of executing workflows in the cloud.  

A technique for scheduling workflows on clouds with user-defined QoS 

requirements such as financial budget constraints and reliability constraints is presented in 
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[39]. Users submitting the workflow can specify a QoS parameter that they prefer to be 

optimized, such as make span minimization or monetary cost minimization. Similar to [38], 

the proposed technique uses a set-based PSO approach where the objective of the technique 

is to schedule workflows from various users such that as many QoS requirements can be 

satisfied as possible.  

  The authors of [40] present a multi-objective optimization framework for workflow 

task allocation and scheduling on public clouds. The framework uses an extensible cost 

model and heuristic algorithms to determine the number of virtual machines that should be 

provisioned to execute a workflow, while also considering QoS parameters such as 

workflow runtime, communication overhead, and overall financial cost. Both single and 

multi-objective evolutionary algorithms are used by the framework to perform the resource 

allocation and scheduling of the workflows.  

A heuristic based workflow scheduling algorithm for service-oriented grids, called 

Partial Critical Paths (PCP), is presented in [41]. The objective of PCP is to minimize the 

financial cost of provisioning resources for workflow execution, while meeting a user-

defined deadline. In [42], the authors adapt the PCP algorithm for a cloud environment and 

propose two workflow scheduling algorithms based on PCP: a single-phase algorithm 

called IaaS Cloud Partial Critical Paths (IC-PCP) and a two-phase algorithm called IaaS 

Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2). A simulation-based 

performance evaluation of the algorithms is conducted on a closed system using a batch of 

synthetic workflows that are based on real scientific applications. The simulation results 

show that both algorithms are effective, but IC-PCP performs better than IC-PCPD2 in 

most cases.  
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2.3 MapReduce 

As mentioned in Section 1.2, a popular multi-stage application that this thesis 

considers is MapReduce. Modern large-scale processing systems should be capable of 

processing large volumes of data (often referred to as Big Data) that are prevalent in 

today’s world. The abundance of data in today’s world is a result of the numerous sources 

of data available, such as:  

 scientific data (e.g., health-related data, weather data, and satellite data) 

 industrial/organizational data (e.g., financial data, manufacturing data, and retail 

data) 

 business intelligence data (e.g., sales data, customer behaviour data, and product 

data) 

 system data (e.g., system logs, network logs, and status files) 

In addition, with the advent of the Internet of Things paradigm leading to a popularity of 

smart facilities and cyber-physical systems such as sensor-equipped bridges, smart 

buildings, and industrial machinery [43], a new source of Big Data (from sensors, for 

example) has emerged. Analyzing this Big Data for making meaningful decisions and 

obtaining knowledge and insights is important in various types of environments, including 

enterprise and scientific applications as well as cyber-physical systems.  

MapReduce [12] is a programming model, originally proposed by Google, whose 

purpose is to simplify performing massively distributed parallel processing so that very 

large and complex data sets can be processed and analyzed efficiently. When dealing with 

a large volume of data, it is necessary to distribute the computation among multiple 
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machines to enable parallel processing and reduce the overall processing time.  However, 

there are a number of challenges associated with using parallelism, including how to 

perform communication and coordination among the different machines, and how to 

handle and recover from errors and machine failures. In addition, developing and 

debugging/testing an application that runs on a distributed system is more difficult and 

complex than developing an application that runs on a single machine. One of the benefits 

of MapReduce is that it provides an abstraction to hide the complex details and issues of 

parallelization.  

Various companies and institutions use MapReduce, typically in conjunction with 

cloud computing, for large scale data processing (e.g., sorting, indexing, and grouping) and 

analyzing very large and complex data sets (i.e., facilitating Big Data analytics) 

[44][45][46]. This includes data mining applications (e.g., web crawling), artificial 

intelligence applications (e.g., machine learning), and scientific applications (e.g., 

bioinformatics). For example, Google has previously used MapReduce applications to 

analyze web documents to generate search indices for its web search engine, and Facebook 

uses MapReduce to analyze its users’ activities and the success of advertisements on its 

website [47]. Thus, it is common for companies and institutions to submit MapReduce jobs 

to a private cluster or a cloud for processing. In both cases, effective resource management 

techniques are required to handle the matchmaking and scheduling of the submitted 

MapReduce jobs as described in more detail in Section 2.5. 

 A MapReduce job is characterized by multiple phases of execution, and in the map 

phase and the reduce phase there are multiple tasks, as illustrated in Figure 2.1. Many 

computations are expressed using the MapReduce programming model. A classic example 
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is the URL access frequency application that processes the logs of web servers to count the 

number of distinct URL accesses [12]. This application is a variation of the well-known 

WordCount MapReduce application [12]. The input that needs to be processed is the logs 

of the Web server. The first step is to split the input data into blocks with a default size of 

64 MB, which are called splits (refer to Figure 2.1). Next, in the map phase, map tasks, 

which execute a user-defined map function, are created to process each of the splits. The 

map tasks are independent from each other and can be executed in parallel, possibly on 

different resources.  In the URL access frequency application, the map function reads each 

URL and generates a set of intermediate key/value pairs in the form: {URL, 1}. This 

key/value pair indicates that one instance of a URL is found. Note that the intermediate 

dataset generated by the map phase can contain multiple duplicate key/value pairs (e.g., 

{www.carleton.ca, 1} can appear multiple times). In the shuffle phase, the intermediary 

key/value pairs with the same key are grouped together as shown in Figure 2.1 and then 

passed on to the reduce phase.  

During the reduce phase, reduce tasks, which execute a user-defined reduce 

function, process the sorted intermediate key/value pairs to generate the final output, which 

is typically an aggregate or summary of the original input data that is smaller and more 

meaningful. Similar to the map tasks, the reduce tasks are independent from one another 

and can be executed in parallel, possibly on different resources. Note that reduce tasks 

cannot complete their execution until all the map tasks have finished executing. In the URL 

access frequency application, the reduce function sums all the values with the same key to 

emit the output dataset: {URL, total count}. Therefore, the final output will be a list of 

URLs and total number of times each URL is accessed.  



 

 

27 

 

Input 
Data

Mapper

Mapper

Mapper

Split 0

Split 1

Split 2

Reducer

Reducer

Reducer

Part 0

Part 1

Part 2

Output
Data

Map Phase Shuffle Phase Reduce Phase

Map Tasks Reduce Tasks

 

Figure 2.1. Example of a MapReduce job [48]. 

 

2.4 Apache Hadoop 

Apache Hadoop [25][48] is an open-source software framework (written in Java) 

that implements the MapReduce programming model (described in the previous section). 

Hadoop is designed for executing data-intensive distributed computing applications (i.e., 

Big Data applications), including web analytics applications, scientific applications, 

applications to perform data mining in social networks, and applications to process and 

analyze enterprise data [44][49]. The applications that are most suitable for Hadoop are 

those that require processing data that can be complex, unstructured, and be in a variety of 

different formats (e.g., XML, JSON, CSV, text, and more) in a parallel (distributed) 

manner. The Hadoop software framework contains three main sub-frameworks: Hadoop 

Common, Hadoop Distributed File System (HDFS), and Hadoop MapReduce. Hadoop 

Common provides utility functions including remote procedure call facilities and object 

serialization libraries that are leveraged by the HDFS and MapReduce frameworks. HDFS 
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is a distributed file system that is based on the Google File System [50], a distributed file 

system created by Google. HDFS provides redundant storage for the input data required by 

Hadoop jobs, and it also stores the intermediary data and output data generated by Hadoop 

jobs. Lastly Hadoop MapReduce is an implementation of Google’s MapReduce 

programming model [12].  

 A set of machines (where each machine is called a node) that runs Hadoop is 

referred to as a Hadoop cluster (see Figure 2.2). A typical Hadoop cluster comprises a 

single master node and one or more slave nodes. The master node is responsible for 

maintaining the HDFS and assigning MapReduce tasks to slave nodes for execution. The 

slave nodes perform work (e.g., read/write to HDFS or execute MapReduce tasks) assigned 

by the master node. In the original Hadoop MapReduce architecture (MRv1) [51], the 

master node executes two processes (which are called Hadoop daemons): NameNode and 

JobTracker. Each slave node also executes two Hadoop daemons: DataNode and 

TaskTracker. Note that a discussion on the second version of the Hadoop MapReduce 

architecture (MRv2) is provided in Section 2.4.1. 
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Figure 2.2. Example of a Hadoop cluster using MRv1 [51]. 
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The NameNode and DataNodes are the Hadoop daemons in charge of managing 

HDFS. Each file that is written to HDFS is split into blocks of 64 MB (default value) and 

each block is stored on the storage device of the node where a DataNode is running. In 

addition, each block is replicated three times (default value) and stored on different 

DataNodes to provide data redundancy and availability. It is the job of NameNode to keep 

track of which DataNode stores the blocks of each file in the system (which is called the 

metadata of the HDFS). Another important function of NameNode is to direct DataNodes 

to perform HDFS block operations (creation, deletion, and replication). DataNodes keep 

in constant contact with NameNode to receive I/O instructions, and they also handle read 

and write requests from HDFS clients.  

An example illustrating how HDFS works is presented in Figure 2.3. Note that in 

this example, the block replication factor is two. As shown in the illustration, NameNode 

maintains the metadata of HDFS, and the file named ‘file.txt’ is composed of two blocks: 

Block 1A and Block 1B, which are each replicated two times. Block 1A is stored on 

DataNode 1 and DataNode 2, and Block 1B is stored on DataNode 1 and DataNode 3. 

JobTracker provides the connection between the applications that are submitted by 

users and the Hadoop cluster, and it has the following responsibilities: initialize jobs and 

prepare them for execution, determine when the map and reduce tasks of jobs should be 

executed and which TaskTrackers should execute them (i.e., perform matchmaking and 

scheduling), as well as monitor all the tasks that are currently running. JobTracker is also 

responsible for managing TaskTrackers, which operate as the JobTracker’s slaves and have 

the primary purpose of executing the map and reduce tasks that JobTracker assigns to them. 

Each TaskTracker periodically sends polling/update messages (called heartbeats) to  
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Figure 2.3. Example of HDFS. 

 

JobTracker to update its progress on the tasks it is currently executing (if any) as well as to 

receive new tasks to execute. If JobTracker does not receive a heartbeat message from a 

TaskTracker within one minute (default value), JobTracker assumes that the TaskTracker 

has failed and remaps all the tasks that are assigned to the failed TaskTracker to other 

available TaskTrackers in the cluster. Each TaskTracker in the Hadoop cluster has a map 

task capacity (or number of map task slots) and a reduce task capacity (or number of reduce 

task slots), which specify the maximum number of map tasks and maximum number of 

reduce tasks, respectively, that the TaskTracker can execute in parallel at any point in time.  

An illustration of the connection between JobTracker and TaskTrackers is shown 

in Figure 2.4. As shown in the figure, JobTracker maintains a list of active jobs and 

completed jobs. There are two active jobs in the example system, and JobTracker has 

assigned TaskTracker1 two map tasks to execute:  Map Task 1 from Job B (Map B1) and 

Map Task 2 from Job C (Map C2). 



 

 

31 

 

JobTracker

Job B

Map 1

Map 2

Job C

...

          Active Jobs           Tasks   

TaskTracker 2

...

TaskTracker 2

...

TaskTracker 1

Map 
B1

...

TaskTracker 1

Map 
B1

...

TaskTracker 3

...

TaskTracker 3

...

Reduce 1
...

Map 1

Map 2
...

Reduce 1
...

Completed 
Jobs

Job A

Completed 
Jobs

Job A

Map 
C2

Map 
B2

Reduce 
B1

Map 
C1

Reduce 
C1

...

 

Figure 2.4. Example of Hadoop MapReduce architecture v1. 

 

2.4.1 Hadoop MapReduce Architecture Version 2 (MRv2) 

The second version of the Hadoop MapReduce architecture (MRv2) is named Yet 

Another Resource Negotiator [52]. The major change in MRv2 from MRv1 is the 

introduction of a new hierarchical approach that replaces JobTracker and divides its 

functionality into two main responsibilities: allocation of system resources and job 

scheduling/monitoring. More specifically, JobTracker and TaskTracker from MRv1 are 

replaced by three new components (or Hadoop daemons) in MRv2: ResourceManager, 

NodeManager, and ApplicationMaster. Thus, a Hadoop cluster based on MRv2 has a single 

ResourceManager daemon running on the master node, a NodeManager daemon executing 

on each slave node in the cluster, and an ApplicationMaster daemon for each application 

running on the cluster.  

The ResourceManager daemon has two main components: Scheduler and 

ApplicationManager. The Scheduler allocates resources (e.g., compute, memory, and 
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bandwidth) to each of the applications running on the cluster. In MRv2, the resources that 

an application requires to execute is defined based on the abstract notion of a resource 

container. A resource container defines an application’s resource requirements that can 

include the following: number of CPU cores, memory size, disk size, and network 

bandwidth. The ApplicationManager is responsible for accepting job submissions from 

users, obtaining the resource container for starting the ApplicationMaster, and restarting 

the execution of ApplicationMasters after application or hardware failures. The 

ApplicationMaster is the Hadoop daemon responsible for negotiating resource containers 

from the Scheduler for executing the client’s application. In addition, ApplicationMasters 

also work in conjunction with the NodeManagers (of the slave nodes) to execute and 

monitor the status/progress of the applications, as well as to track and monitor the status 

and usage of the resource containers. Overall, the changes made in MRv2 improve Hadoop 

by enhancing reliability and scalability, and enabling greater resource sharing through 

multi-tenancy. 

2.5 Resource Management Techniques for Processing MapReduce Jobs 

This section presents a representative set of work related to resource management 

for MapReduce jobs that have a variety of different objectives, including reducing job 

completion times, reducing data transmission between resources to minimize network 

traffic, handling of heterogeneous resources, sharing of resources, and managing the 

energy consumption of resources. Research with similar objectives are grouped into 

separate categories and discussed in the respective subsections. 
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2.5.1 Techniques to Reduce Job Completion Times 

The techniques described in this section focus on scheduling MapReduce jobs to 

minimize job completion times and maintaining high resource utilization. 

In [53], the authors present an abstraction of the MapReduce matchmaking and 

scheduling problem by formulating it as an optimization problem using linear 

programming where the objective is to find a schedule that minimizes the overall 

completion time of the jobs in the cluster. Since using linear programming to solve such a 

problem is NP-hard [54], optimal solutions are difficult and time-consuming to compute 

even for offline versions on which the details of the batch of jobs to process are known 

ahead of time. As such, the authors propose algorithms with heuristics to approximate the 

optimal solutions within a factor of three of the optimal value. 

The authors of [55] also model the MapReduce scheduling problem as a linear 

program where the objective is to minimize the overall completion time of the jobs in the 

cluster. Two types of jobs are considered. The first type is data-intensive jobs which require 

performing data mining and analysis of very large data sets, including system logs and 

historical data. The second type are computationally-intensive jobs, which are jobs that 

involve running algorithms or operations with high processing complexity, such as 

computations involving floating point operations. The modelling of the linear program is 

based on the traditional job shop scheduling theory. A dispatch-rule based online 

scheduling policy called LPT-θ that is based on existing algorithms is proposed to 

approximate the optimal solution. 

A MapReduce framework called Dynamically ELastic MapReduce (DELMA) that 

is capable of dynamically adjusting the cluster size (i.e., adding and removing nodes from 
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the processing of a job) on the fly is presented in [56]. The main features of DELMA 

include the following: (1) ability to adjust the cluster size dynamically without having to 

restart jobs already executing; (2) ability to lower completion time of jobs by adding 

voluntary or unutilized nodes to the cluster; and (3) ability to replace slow or faulty nodes 

while a job is being processed.  

In [57], a cloud service model for MapReduce named Cura is presented. The 

objective of Cura is to provide cost-effective MapReduce services in the cloud by 

implementing an efficient resource allocation scheme that reduces the resource usage cost 

in the cloud. The core resource management schemes that Cura provides include cost-

aware resource provisioning, VM-aware scheduling, and online virtual machine 

reconfiguration.  

2.5.2 Data-Locality-Aware Techniques 

MapReduce applications typically process very large datasets and frequent 

transmission of data from one machine in the cluster to another machine in the cluster over 

the network can severely reduce system performance due to limited network bandwidth in 

the cluster. Therefore, it is beneficial to use a data-locality-aware system to limit the data 

transfer between nodes as much as possible. A representative set of data locality-aware 

techniques are discussed next. 

In [58], a scheduling algorithm for workflows comprising multiple MapReduce 

jobs with precedence relationships is presented. The proposed scheduling algorithm uses a 

pre-data placement strategy that reduces data transmission over the network, and it also 

adopts the list scheduling algorithm, which is a priority-based scheduling algorithm. The 

basic idea of the list scheduling algorithm is to assign each job in the workflow a priority 
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and schedule the job with the highest priority first. The proposed technique addresses a 

number of issues including: how to group datasets, where to place them, and how many 

times to replicate the datasets.  

The authors of [59] present a scheduling technique that takes advantage of data 

locality when scheduling map tasks. The proposed technique attempts to schedule map 

tasks on nodes that already contain the input data of the respective tasks (referred to as 

local map tasks) in order to prevent time-consuming data transmission over the network. 

More specifically, the technique gives each node in the cluster a chance to execute any 

local map task in the queue before non-local map tasks are executed. Experimental results 

demonstrate that the proposed technique achieves a lower average job response time in 

comparison to that achieved by a FIFO scheduling technique. 

A Locality-Aware Reduce Task Scheduler (LARTS) is presented in [60], which 

considers data-locality when scheduling reduce tasks. LARTS considers the size and the 

location of the input data for reduce tasks when making scheduling decisions with the goal 

of minimizing unnecessary network traffic, which can in turn improve system performance. 

Through experimentation, the authors showed that using LARTS over the traditional 

Hadoop FIFO scheduler can lead to a 7% reduction in job execution times.  

2.5.3 Techniques for Handling Heterogeneous Computing Environments 

This section describes resource management techniques for heterogeneous 

environments where the resources may have different processing, memory, and network 

capacities.  

In [61], a MapReduce framework called MApReduce with adaptive Load balancing 

for heterogeneous and Load imbalAnced clusters (MARLA) is presented. MARLA aims 
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to address the problems that MapReduce implementations, such as Hadoop, have in 

heterogeneous and load-imbalanced computing environments. The problem with the 

traditional approach used in other frameworks is that in clusters with heterogeneous 

resources, nodes that have a lower performance profile may be assigned a similar workload 

(i.e., equal-sized data partition to process) to those nodes that may exhibit higher 

performance. MARLA alleviates this problem by using a dynamic task scheduling 

mechanism that allows each node in the cluster to request tasks at its own pace. 

The authors of [62] also focus on resource management for MapReduce workloads 

in a heterogeneous computing environment. More specifically, a load-balancing algorithm 

whose purpose is to evenly distribute the workload among nodes with different processing 

speeds is presented. The algorithm is based on genetic algorithm theory, which is an 

artificial intelligence-based search heuristic that solves optimization problems by 

simulating how natural evolution works.  

In [63], the authors propose a new approach to solving the MapReduce resource 

management problem on clouds where the system is characterized by heterogeneous 

resources. The objective of the proposed approach is to minimize the total financial cost of 

executing MapReduce jobs on the cloud. The authors model the resource management 

problem as a constrained combinatorial optimization problem and solve the problem using 

an innovative constructive algorithm.  

2.5.4 Resource Sharing Techniques 

Resource management techniques that focus on fairly sharing the resources of a 

cluster among multiple users as well as techniques that borrow unused resources from other 

clusters are described in this section. 
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The Fair Scheduler and Capacity Scheduler, which are two schedulers that are 

included with Hadoop, focus on fairly sharing the resources of the cluster among multiple 

users. The Fair Scheduler [64] is developed by Facebook and its objective is to ensure that 

each job (on average) gets an equal share of the available resources in the cluster. The idea 

is to prevent many small jobs from starving the execution of a long job and vice versa.  The 

Fair Scheduler groups jobs into pools and each pool is assigned a minimum share of the 

cluster’s resources (e.g., a minimum number of map task slots and reduce task slots). The 

Capacity Scheduler [65] is developed by Yahoo and its objective is similar to the Fair 

Scheduler: share a large cluster among many different independent users (or 

organizations). Jobs are submitted into queues where each queue is allocated a guaranteed 

capacity, which is a proportion of the total task slots of the cluster. Note that the unused 

capacity of a queue can be temporarily allocated to other queues when needed. The jobs 

within a queue can also be prioritized, where the jobs with a higher priority gain access to 

the queue's resources first. 

A technique called resource stealing, which allows currently running tasks to use 

the unutilized task slots of a node, which the authors refer to as residual resources, is 

presented in [66]. The idea is that when there are available task slots on a node, the system 

splits the input data of a task into two or more smaller blocks of data and creates an 

additional sub-task to process each block of data to make use of the unutilized task slots.  

In [67], a hierarchical MapReduce framework, which supports executing 

MapReduce jobs on multiple clusters, such as clusters with unused resources, is described. 

A hierarchical MapReduce programming model is also proposed where computations are 

expressed with three functions: Map, Reduce, and GlobalReduce. The input to the 
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GlobalReduce function comprises the output from all the reduce tasks of a job, and is 

executed on only one node in the cluster. By supporting the execution of MapReduce jobs 

in multiple clusters, a more effective resource sharing can be achieved. 

2.5.5 Techniques for Energy Management of Resources 

This section presents resource management techniques that focus on green 

computing issues in the context of MapReduce jobs: minimizing the energy consumed by 

a distributed system, such as a cloud or cluster, when executing MapReduce jobs. 

The authors of [68] investigate techniques to improve the energy-efficiency of 

running MapReduce jobs in datacentres and computational grids without severely affecting 

performance. The authors study the performance and energy-efficiency trade-offs of 

Hadoop using various workloads. The system activity traces that were recorded during 

experiments show that MapReduce computations involve a large number of I/O operations 

(e.g., reading/writing a large volume of data from/to disks), as well as network I/O 

operations) leading to low CPU utilization at various points in time. Through their study, 

the authors have found that careful resource allocation to match an application’s degree of 

parallelism and using the well-known dynamic voltage and frequency scaling technique 

can improve energy-efficiency without a large performance cost. 

The focus of [69] is also on the challenge of making the execution of MapReduce 

jobs more energy-efficient. The authors consider a very bursty MapReduce workload with 

distinct CPU, memory, and network requirements that is executed on a heterogeneous 

datacentre. An online energy minimization path algorithm called Green MapReduce 

Scheduler (GEMS) for scheduling MapReduce jobs is presented. GEMS reduces energy 
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consumption while maintaining a low task response time by using sleeping policies on the 

compute servers and the network switches simultaneously.  

2.5.6 Techniques for Handling MapReduce Jobs with Deadlines 

This section presents a representative set of work describing techniques for 

processing MapReduce jobs with deadlines. MapReduce jobs with an associated deadline 

for completion have recently become important for latency-sensitive applications [70] such 

as those used in the context of live business intelligence, personalized advertising, 

spam/fraud detection, real-time analysis of event logs, and various additional real-time data 

analytics applications. Business intelligence refers to analyzing the raw data of a business 

or corporation so that effective business strategies can be developed and more informed 

business decisions can be made. Event log analysis involves processing event logs to find 

specific patterns, filter event occurrences, and group similar event occurrences together. 

Such event log analysis can be used for various types of computing systems that have event 

monitors to collect and signal event occurrences, including operating systems, database 

management systems, and cyber-physical systems. More generally, allowing users to 

specify deadlines, allows the system to prioritize jobs and ensure that time-critical jobs are 

completed on time. In some situations, it is ideal to analyze the most up-to-date data and 

receive the results in a timely manner so that the best decisions can be made. Thus, it is 

common for various companies and institutions to submit MapReduce jobs with deadlines 

to a cluster or a cloud for processing. An important component of this thesis is on devising 

effective and efficient resource management techniques for processing an open stream of 

MapReduce jobs with SLAs, where each SLA is characterized by an earliest start time, an 

execution time, and a deadline.  
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The authors of [71] propose a Deadline Constraint Scheduler for Hadoop to process 

jobs with deadlines. A job execution cost model is devised that considers parameters such 

as the execution time of map tasks, the execution time of reduce tasks, and the size of the 

input data to process. This model is used to perform a schedulability test to determine if a 

submitted job can be completed before its deadline given the current available resources in 

the cluster. If the job cannot meet its deadlines, users have the option of changing the 

deadline requirements and resubmitting the job.  

In [72], the authors investigate the problem of scheduling MapReduce workloads 

comprising jobs with deadlines as well as jobs without deadlines. The authors present a 

scheduler that adopts a sampling-based technique called Tasks Forward Scheduling (TFS) 

to predict the execution times of map tasks and reduce tasks. TFS predicts the execution 

times of tasks by initially executing a few tasks and then using the actual runtimes of these 

initial tasks to predict the execution times of future tasks. In addition, the proposed 

scheduler also leverages a resource allocation model named Approximately Uniform 

Minimum Degree of Parallelism to dynamically control the execution of each job such that 

the job executes at its minimum degree of task parallelism to meet its deadline. The idea is 

to prevent a single job from monopolizing all the resources in the cluster and to allow more 

jobs to be executed on the cluster in parallel.  

In [70] two resource allocation policies based on earliest deadline first (EDF) are 

presented. The first policy is called Minimum Resource Quota Earliest Deadline First 

(MinEDF), which allocates the minimum number of task slots required for completing a 

job before its deadline (similar to [72] described earlier). The second policy is called 

Minimum Resource Quota Earliest Deadline First with Work-Conserving Scheduling 
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(MinEDF-WC). MinEDF-WC enhances MinEDF by adding the ability to dynamically 

allocate and deallocate resources (task slots) from active jobs when required. This ability 

to dynamically allocate and deallocate resources allows a machine with spare resources to 

share its unused resources with other jobs that need them.  

A policy for dynamic provisioning of public cloud resources to schedule 

MapReduce jobs with deadlines is described in [73]. Initially, jobs are executed on a local 

cluster, and if required, resources from a public cloud are dynamically provisioned to meet 

the job’s deadline. The authors present a resource provisioning policy that aims to 

minimize the number of resources that are provisioned from the cloud since provisioning 

resources from the cloud incurs a financial cost.  

The authors of [74] investigate resource management algorithms for minimizing 

the cost of allocating virtual machines to execute MapReduce jobs with deadlines. Two 

VM provisioning strategies are proposed: (1) List and First-Fit (LFF) and (2) Deadline-

aware Tasks Packing (DTP). The LFF approach sorts the pricing policies of VMs according 

to either increasing order of unit cost or decreasing order of VM performance. Each map 

task is assigned to its own VM and reduce tasks are assigned to one of the VMs already 

provisioned for map tasks. In the DTP approach, the idea is to assign the map tasks and 

reduce tasks of jobs to execute on existing VMs as much as possible until a job cannot meet 

its deadline, in which case a new VM is provisioned to execute the job.  

In [75], the authors focus on the joint considerations of workload balancing and 

meeting deadlines for MapReduce jobs. Scheduling algorithms are proposed that are based 

on integer linear programming and solved with a linear programming solver using a 

rounding approach. Moreover, a new MapReduce scheduler for processing MapReduce 
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jobs with deadlines based on bipartite graph modelling called the Bipartie Graph Modeling 

MapReduce Scheduler (BGMRS) is presented in [76]. BGMRS considers nodes with 

varying performance (e.g., those present in a heterogeneous cloud computing environment) 

and is able to obtain the optimal solution of the scheduling problem by transforming the 

problem into a well-known graph problem: minimum weighted bipartite matching. 

2.6 Handling Error/Inaccuracies in User-estimated Job Execution 

Times 

Estimates of job runtimes provided by users are often error prone/inaccurate and 

users tend to overestimate the runtimes of their jobs [16][17][18]. The error/inaccuracy in 

user-estimated execution times can be detrimental to system performance. This is because 

a matchmaking and scheduling algorithm makes decisions based on a user’s estimated 

execution times, and thus errors/inaccuracies can diminish the quality of the resource 

management decisions that are made [77][78]. A representative set of work describing 

techniques for handling error associated with user estimates of job execution times is 

presented next.  

In [77], a middleware framework for grids that provides robustness by handling 

error/inaccuracies in user-estimated job execution times is presented. The authors describe 

a pre-scheduling mechanism based on overbooking, which can prevent unnecessary 

rejection of jobs when the user-estimated execution times are overestimated. Overbooking 

allows a small proportion of jobs to miss their deadlines, which means that even if the 

schedulability analysis determines a job cannot meet its deadline, the job can still be 

accepted as long as the proportion of late jobs remains lower than the overbooking 

threshold. Note that other works (see [79] and [80], for example) have also used a similar 
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overbooking mechanism to handle jobs with overestimated execution times. The authors 

also present a Schedule Exceptions Manager that monitors the resource schedule and 

adapts the resource schedule when there are overestimated/underestimated job execution 

times.  

The authors of [81] present a Soft Advance Reservation (SAR) technique for grids 

subjected to advance reservation requests. The SAR technique relaxes the requirement that 

all advance reservation requests, which are typically characterized by an earliest start time, 

an execution time, and a deadline for completion, must meet their deadlines. In addition, a 

technique for handling errors associated with user-estimates of job runtimes is also 

presented. The technique described adopts a history-based approach where the previous 

two requests submitted by the same user is used to compute a system-generated estimated 

runtime for the current request.  

In [82], the authors present a technique to handle error in user-estimated job 

execution times for a popular scheduling algorithm, named First-come-first-serve (FCFS) 

with backfilling, used in parallel supercomputing environments. First, the algorithm 

calculates a system-generated prediction of the job runtime and uses this value for 

scheduling. The system-generated predicted runtime is calculated using the most recent 

historical data (e.g., average runtime of the two previous submitted jobs from the user). If 

the system’s prediction of the job runtime is too short, it is extended, and the job can run 

until it finishes or until it reaches the user-estimated runtime, which serves as the kill-time 

of the job. Using the historical data of the job runtimes at various degrees has also been 

used by other researchers (see [83], [84], and [85], for example) to predict the runtime of 

future requests. 
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The research presented in [86] also concerns improving scheduling algorithms 

based on backfilling, specifically focusing on how to handle jobs with underestimated 

execution times. Similar to [82], the improved algorithm does not abort jobs with 

underestimated runtimes.  Instead, the jobs can run for an extended period if it does not 

cause other jobs to be delayed. If extending the job’s runtime does affect other requests in 

the system, the job is aborted. Experimental results show that the improved backfilling 

algorithm reduces the number of aborted requests significantly.   

The research in [78] also investigates the effect of job execution time estimation 

error on algorithms that depend on user-estimated job runtimes such as backfilling 

algorithms and the shortest job first algorithm. The authors present techniques for adjusting 

the user-estimated runtimes based on historical data of the accuracy of previous user 

estimates of job runtimes. More specifically, the user-estimation accuracy (denoted R) is 

defined as the ratio of the request’s actual runtime over the user estimation of the request 

runtime.  The objective is to generate more accurate job runtimes to allow the scheduler to 

make more intelligent scheduling decisions for improving system performance. A number 

of different schemes are presented for determining which kind of historical data to use to 

calculate R, including a user-based scheme that uses historical data from the same user, a 

project-based scheme that uses the historical data from the same project, and a combined 

scheme that uses both these types of historical data.  

2.7 Comparison of Thesis Research with Related Work 

A wide variety of issues regarding resource management on clouds for processing 

jobs with SLAs are described in the literature and were reviewed in the previous sections. 

Most of the work in the literature has only addressed meeting deadlines for jobs that require 
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a single resource or handling a batch workload that comprises a fixed number of jobs 

executing on the system. To the best of our knowledge, none of the related works focus on 

the problem of meeting an end-to-end SLA (characterized by an earliest start time, an 

execution time, and an end-to-end deadline) for multi-stage jobs that require service from 

multiple resources, such as workflows and MapReduce jobs, on an open system subjected 

to a stream of job arrivals.  This is the focus of attention for this thesis.  

With respect to MapReduce jobs, none of the existing works have dealt with all the 

aspects of the problem that this thesis concerns. The works described in Section 2.5.1 to 

Section 2.5.5 do not consider jobs with deadlines, but instead focus on other aspects of 

matchmaking and scheduling of MapReduce jobs. Moreover, the works described in 

Section 2.5.6, which do consider MapReduce jobs with deadlines, do not consider jobs 

with SLAs characterized by an earliest start time, which is important in the context of 

advance reservation requests. Furthermore, the techniques described in Section 2.5.6 

(except [70]) do not handle workloads comprising an open stream of job arrivals, instead a 

batch workload comprising a fixed number of jobs is used. Note that the resource 

management techniques described in this thesis are compared with the techniques 

described in [70] (see Section 4.5). Additionally, the default schedulers that Hadoop [25] 

come installed with, including the FIFO, Capacity, and Fair schedulers, do not support jobs 

with deadlines. FIFO simply schedules jobs in a first-in first-out manner whereas the 

Capacity and Fair schedulers (which are described in Section 2.5.4) focus on fairly sharing 

the cluster’s resources among multiple users. Other third party Hadoop schedulers, such as 

the adaptive scheduler [87], dynamically alter the number of resources when required, 

whereas this thesis concerns systems with a fixed number of resources.  
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A key contribution of this thesis is presenting techniques to handle 

error/inaccuracies in user-estimated job execution times that are submitted as part of the 

SLA of the job. In particular, techniques are presented for processing MapReduce jobs with 

inaccurate job execution times. None of the techniques described in Section 2.5.6, which 

consider MapReduce jobs with deadlines, handle errors/inaccuracies with user-estimates 

of job runtimes. On the other hand, the techniques described in Section 2.6 do consider the 

handling of errors associated with user-estimated job runtimes but these techniques do not 

deal with all the aspects of the problem that this research focuses on: matchmaking and 

scheduling an open stream of MapReduce jobs with SLAs. Most of the work on techniques 

for handling errors/inaccuracies in user-estimated job runtimes focus on scheduling 

algorithms used in parallel supercomputing environments, including first-come-first-serve 

with backfilling, and do not concern resource management for environments that process 

MapReduce applications. Moreover, there is a wide body of research that describes 

techniques for predicting the runtimes of the jobs such as those described in [83][84][85]. 

However, previous investigations have shown that the system predicted runtimes can still 

be error prone [77]. The techniques described in this thesis can tolerate errors/inaccuracies 

in user-estimated job runtimes, whether provided by the user or generated by the system, 

to avoid degradation in system performance.  

In summary, this thesis focuses on investigating issues in resource management on 

clouds that have not been addressed in the current state of the art: handling workloads 

characterized by an open stream of multi-stage jobs with SLAs and effectively handling 

errors associated with user-specified execution times in such workloads.  
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Chapter 3 Resource Management Techniques for Processing a 

Batch of MapReduce Jobs with SLAs  

In this chapter, resource management techniques for processing a batch of 

MapReduce jobs with SLAs are described. More specifically, the resource management 

techniques that are presented formulate and solve the matchmaking and scheduling 

problem as an optimization problem. The rest of the chapter is organized as follows. First, 

the problem description and model is presented in Section 3.1. Next, Section 3.2 provides 

an overview of the approach for solving the resource management problem. The focus of 

Section 3.3 and Section 3.4 are on describing the formulation of the resource management 

problem using optimization techniques. In Section 3.5, the experiences in implementing 

the optimization models using various software packages are discussed. Section 3.6 and 

Section 3.7 present and discuss the performance evaluation of the resource management 

techniques. Lastly, a summary and discussion of the chapter is provided in Section 3.8. 

3.1 Problem Description and Model 

This section provides a model for matchmaking and scheduling MapReduce jobs 

with SLAs comprising an earliest start time, an execution time, and an end-to-end deadline. 

The workload comprises a set (batch) of MapReduce jobs to execute, 𝐽 =

 {𝑗𝑜𝑏 1, 𝑗𝑜𝑏 2, … , 𝑗𝑜𝑏 𝑛}  where n is the number of jobs in the set. Each job j (j = 1, 2, …, 

n) in the set J has the following attributes: 

 A set of map tasks: 𝑇𝑗
𝑚𝑝  = {𝜏𝑗,1 , 𝜏𝑗,2, … , 𝜏𝑗, 𝑘𝑗

𝑚𝑝} where 𝑘𝑗
𝑚𝑝

denotes the number 

of map tasks in job j.  
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 A set of reduce tasks: 𝑇𝑗
𝑟𝑑  = {𝜏𝑗,1 + 𝑘𝑗

𝑚𝑝  , 𝜏𝑗,2 + 𝑘𝑗
𝑚𝑝 , … , 𝜏

𝑗,𝑘𝑗
𝑟𝑑 + 𝑘𝑗

𝑚𝑝}  where 𝑘𝑗
𝑟𝑑

 

denotes the number of reduce tasks in job j.  

 An earliest start time (or release time) (𝑠𝑗), which is the earliest time at which job 

j can start to execute. 

 Deadline (𝑑𝑗) by which the job should be completed (i.e., soft deadline). A job 

with a soft deadline is permitted to miss its deadline; however, the desired system 

objective is to minimize the number of jobs that do miss their deadlines. 

A set called AT is defined as the union of  𝑇𝑗
𝑚𝑝

 and 𝑇𝑗
𝑟𝑑 for all the jobs j in J (j = 1, 

2, …, n):  AT = ⋃  (𝑇𝑗
𝑚𝑝  ∪  𝑇𝑗

𝑟𝑑)𝑗∈𝐽 . Thus, AT contains all the tasks of all the jobs. Each 

task t (𝑡 ∈ 𝐴𝑇) is either a map task or a reduce task and is characterized by an execution 

time (in seconds), 𝑒𝑡, and a resource capacity requirement (𝑞𝑡) that specifies the number of 

resources a task needs to execute. A typical map and reduce task only requires executing 

on one resource [48], and therefore  𝑞𝑡 is set to 1. The execution times of the map tasks 

includes the time required to read the input data, and the execution times of the reduce 

tasks includes the time required to exchange data (e.g., intermediate keys) between the map 

phase and reduce phase.  

The set of MapReduce jobs, J, is executed on a distributed/parallel computing 

environment, which is represented by a set of resources, 𝑅 = {𝑟𝑒𝑠 1, 𝑟𝑒𝑠 2, … , 𝑟𝑒𝑠 𝑚} 

where m is the number of resources in the system. Such an environment can represent a 

private cluster, or a set of nodes acquired a priori from a cloud (e.g., Amazon EC2) for 

processing the MapReduce jobs arriving on the system. Each resource r in R (r =1, 2, ..., 

m) is modelled after a Hadoop TaskTracker (described in Section 2.4) where each resource 
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has a map task capacity (number of map task slots), 𝑐𝑟
𝑚𝑝

, and a reduce task capacity 

(number of reduce task slots), 𝑐𝑟
𝑟𝑑. The map task and reduce task capacities specify the 

maximum number of map tasks and reduce tasks, respectively, that each of the resources 

can execute in parallel at any point in time.  

The requirements for matchmaking and scheduling the set of jobs J on to the set of 

resources R are summarized next. Each task t in AT can only be scheduled to start at or 

after job j’s earliest start time, sj. Secondly, each task t in AT can only be mapped to a single 

resource r where t executes on r for et time units. For a job j, all the map tasks of job j must 

complete executing before the reduce tasks of job j can start executing. Furthermore, at 

each point in time, the capacity limits of the resources cannot be violated (i.e., a resource 

cannot be assigned to run more tasks in parallel than its capacity). The objective of the 

system is to minimize the number of jobs that miss their deadlines. Note that the laxity of 

a job can be used to determine how stringent the job’s deadline is, and it can be used to 

help a system prioritize which jobs to execute first. A discussion on the laxity of jobs is 

provided in the upcoming sub-section.  

3.1.1 Laxity of Jobs 

The laxity (also called slack time) of a job is the extra time that a job has for meeting 

its deadline if it starts executing at its earliest start time, and it is used as an indicator for 

how stringent the deadline of a job is. The laxity of a job j (denoted Lj) is calculated as 

follows: 

𝐿𝑗 = 𝑑𝑗  − 𝑠𝑗  −  𝑆𝐸𝑇𝑗 (3.1) 

 

where dj is the deadline of job j, sj is the earliest start time of job j, and SETj is the sample 

execution time of job j. SETj is calculated with the user-specified task execution times of 
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the job. More specifically, SETj can be calculated in one of three ways: (1) maximum job 

execution time—assumes the job is executed on a system with a single resource (denoted 

SETj
max), (2) minimum job execution time—assumes the job is executed at its maximum 

degree of parallelism (denoted SETj
min), or (3) execution of the job when it executes at is 

maximum degree of parallelism on a set of resources R with m resources (denoted SETj
R). 

SETj
R is determined by mapping job j on to a set of resources that represent the resources 

in R, assuming that job j is the only job in the system. The tasks of job j are mapped by 

using the “ready tasks with the highest execution time first”. Tasks are considered ready 

when all of their preceding tasks have completed executing and are mapped in non-

increasing order of their execution times. Each task is scheduled to start executing at its 

earliest possible time on the m resources.  

3.2 Overview of the Approach 

The matchmaking and scheduling problem (described in the previous section) is 

formulated and solved as an optimization problem using mixed integer linear programming 

(MILP) [13] and constraint programming (CP) [14]. Both MILP and CP are well-known 

theoretical techniques that can solve optimization problems and have been shown to be 

effective in solving planning and scheduling problems, such as the traditional job shop 

scheduling problem [88]. Thus, the use of MILP and CP lead to an optimal solution in the 

sense that the schedule that is generated results in the number of jobs that miss their 

deadlines being minimized.  Both MILP and CP have the same general modelling structure: 

decision variables, objective function, and constraints. The decision variables are initially 

unknown and are assigned values once the problem is solved (i.e., they are the output of 

the model). The objective function is a mathematical function that generates the value that 
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needs to be optimized (minimized or maximized). Lastly, the constraints are a set of 

mathematical formulas that restrict the values that the decision variables can be assigned. 

Solving the optimization model involves assigning values to the decision variables to 

optimize the value generated by the objective function, while ensuring that none of the 

constraints are violated. 

MILP is a subfield of mathematical programming (also referred to as mathematical 

optimization) where the model has the following characteristics: (1) some of the decision 

variables must be integers and (2) the objective function and constraints are mathematically 

linear [13]. The theoretical basis for MILP and mathematical optimization in general is 

numerical algebra [89]. To solve MILP problems, techniques such as cutting-planes 

(constraint relaxations) and Branch and Bound are used. The theoretical foundation for CP 

is different than that of MILP. CP was developed by computer science researchers in the 

mid-1980s by combining knowledge and techniques from artificial intelligence, logic and 

graph theory, and computer programming languages [14]. Search algorithms, including 

back-tracking and local search [14], are commonly used to solve CP models. The general 

idea in these search algorithms is to use logical inferences to assign values to the decision 

variables and then evaluate if the new values of the decision variables produce a better 

output (higher value if maximizing or lower value if minimizing) for the objective function. 

Unlike MILP models, CP models natively support a variety of arithmetic operators 

and logical constraints such as integer division and the ‘implies’ constraint [90]. To 

formulate logical constraints in a MILP model, the ‘big-M’ formulation technique [13] is 

typically used. In addition, CP also defines a general set of specialized constraints, called 

global constraints, that model frequently used patterns seen in optimization problems [91]. 
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For example, one such constraint is the cumulative constraint, which is often used in 

scheduling problems to ensure that the capacity of each resource is not violated at any point 

in time. One of the limitations of CP models is that, natively, the decision variables can 

only be discrete (i.e., integer or Boolean) [14], whereas MILP models can support both 

discrete and continuous decision variables.  

Figure 3.1 provides an illustration of the approaches that are used to solve the 

matchmaking and scheduling problem. As described in Section 3.1, the input required by 

the resource management model consists of a set of jobs J and a set of resources R. The 

matchmaking and scheduling problem that is formulated using CP is called the CP Model 

and is discussed in detail in Section 3.3. Similarly, the matchmaking and scheduling 

problem that is formulated using MILP is called the MILP Model and is described in 

Section 3.4. Three implementations of the MILP Model and CP Model using different 

software packages are considered: 

 Approach 1: the MILP Model is implemented and solved using LINGO [92] 

(commercial software). 

 Approach 2: the CP Model is implemented using MiniZinc/FlatZinc [93] and 

solved using Gecode [94] (both open source software). 

 Approach 3: the CP Model is implemented and solved using IBM ILOG CPLEX 

Optimization Studio (abbreviated CPLEX) [15] (commercial software). 

The output produced after solving the resource management model includes the 

following: (1) the assigned resource and scheduled start time for the tasks of each job, (2) 

the completion time of the batch of jobs, and (3) the number of jobs that miss their 

deadlines. The measurements that are made on the system to evaluate the different 



 

 

53 

 

approaches is the processing time required by the respective CP or MILP solver to produce 

the output. In general, the complexity of solving a MILP or CP problem is NP-Complete 

but state-of-the art solvers can make optimizations to solve problems in polynomial time 

[14]. Since commercial solvers, such as IBM CPLEX [15], are proprietary and their 

algorithms are often unknown, it is difficult to theoretically define the complexity of 

solving the problem. Thus, the complexity of the algorithms is evaluated empirically using 

experimentation as described in Section 3.6. 
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Figure 3.1. Overview of approaches for solving the resource management problem using 

optimization techniques. 

 

This chapter of the thesis is motivated by the following issues. The first is how to 

employ the existing theory on MILP and CP for devising efficient resource management 

algorithms that can minimize the number of jobs missing their deadlines on a closed system 

subjected to a batch workload comprising MapReduce jobs with deadlines. The second 

issue is the development of efficient implementations of the algorithms using commercial-
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off-the-shelf and open source software packages that produce an acceptable system 

overhead accrued during the execution of the resource management algorithms. 

3.3 Formulation of the CP Model 

The formulation of the CP Model is presented in Table 3.1. Recall from Section 3.1 

that the input required by the CP Model comprises a set of resources R and a set of jobs J. 

In addition, a set AT contains all the tasks of all the jobs in J. The decision variables of the 

CP Model are outlined: 

 xtr: A binary variable for matchmaking, which is set to 1 if a task t is assigned to a 

resource r; otherwise, xtr is set to 0. There is an xtr variable for all combinations of 

task t in AT and resource r in R. Thus, the number of xtr decision variables is equal 

to the product of the number of tasks in AT and the number of resources in R. 

 at: An integer variable for scheduling, which specifies the assigned (or scheduled) 

start time of a task t. There is an at variable for each task t in AT.  

 Nj: A binary variable that is set to 1 if job j misses its deadline. Each job j in J has 

an Nj variable that is initialized to 0. 

Note that an integer variable is used for at because CP does not support real values as 

discussed in the previous section. Although time is a continuous variable, discrete time 

values can be considered by changing the unit of time. For example, if the execution of a 

task takes 3.8 minutes, the time can be converted into an integer value by changing the unit 

of time to seconds (i.e., 228 seconds). In some cases, if the lengths of times are very 

different (e.g., 0.8 sec versus 1000 sec), it may not be ideal to change the unit of time 

because the converted values can be quite large: 0.8 sec becomes 800 ms and 1000 sec 

becomes 100000 ms. In this case, it may be more appropriate to round the non-discrete 
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time values to the nearest higher integer. For instance, the 0.8 sec can be rounded up to 1 

sec.  

Table 3.1. CP Model. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑁𝑗

𝑗∈𝐽

                    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

∑ 𝑥𝑡𝑟

𝑟∈𝑅

= 1        ∀ 𝑡 ∈ 𝐴𝑇 (1a) 

(𝑎𝑡𝑚𝑝  ≥  𝑠𝑗            ∀𝑡𝑚𝑝 ∈ 𝑇𝑗
𝑚𝑝

)         ∀ 𝑗 ∈ 𝐽 (2a) 

(𝑎𝑡𝑟𝑑  ≥  𝑚𝑎𝑥
𝑡𝑚𝑝∈𝑇

𝑗
𝑚𝑝

 (𝑎𝑡𝑚𝑝  + 𝑒𝑡𝑚𝑝)       ∀𝑡𝑟𝑑 ∈ 𝑇𝑗
𝑟𝑑)   ∀𝑗 ∈ 𝐽 (3a) 

( 𝑚𝑎𝑥
𝑡𝑟𝑑∈𝑇𝑗

𝑟𝑑
 (𝑎𝑡𝑟𝑑  +  𝑒𝑡𝑟𝑑)  >  𝑑𝑗   ⟹  𝑁𝑗 = 1 )      ∀𝑗 ∈ 𝐽 (4a) 

(
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 ({𝑎𝑡|𝑥𝑡𝑟 = 1}  ∀𝑡 ∈ 𝑇𝑚𝑝,  {𝑒𝑡|𝑥𝑡𝑟 = 1}  ∀𝑡 ∈ 𝑇𝑚𝑝,

 {𝑞𝑡|𝑥𝑡𝑟 = 1}  ∀𝑡 ∈ 𝑇𝑚𝑝,  𝑐𝑟
𝑚𝑝)  

) ∀𝑟 ∈ 𝑅 

where 𝑇𝑚𝑝 = ⋃ (𝑇𝑗
𝑚𝑝)𝑗∈𝐽  

(5a) 

(
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 ({𝑎𝑡|𝑥𝑡𝑟 = 1}  ∀𝑡 ∈ 𝑇𝑟𝑑,  {𝑒𝑡|𝑥𝑡𝑟 = 1}  ∀𝑡 ∈ 𝑇𝑟𝑑,

 {𝑞𝑡|𝑥𝑡𝑟 = 1}  ∀𝑡 ∈ 𝑇𝑟𝑑,  𝑐𝑟
𝑟𝑑)  

) ∀𝑟 ∈ 𝑅 

where 𝑇𝑟𝑑 = ⋃  (𝑇𝑗
𝑟𝑑)𝑗∈𝐽  

(6a) 

(𝑥𝑡𝑟 ∈ {0,  1}       ∀ 𝑡 ∈ 𝐴𝑇)   ∀𝑟 ∈ 𝑅  (7a) 

𝑁𝑗 ∈ {0,  1}          ∀𝑗 ∈ 𝐽 (8a) 

𝑎𝑡 ∈ ℤ                  ∀ 𝑡 ∈ 𝐴𝑇   (9a) 

 

Table 3.1 shows that the objective function of the CP Model states that the number 

of late jobs should be minimized. This is accomplished by minimizing the sum of all the 

Nj variables. Recall that Nj is set to 1 if a job j misses its deadline.  A description of the 

constraints of the CP Model is provided next. Constraint (1a) states that each task t in AT 

can only be assigned to a single resource. This is accomplished by summing all the xtr 
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variables of a given task t and asserting that the sum is equal to 1. Ensuring that the map 

tasks for each job j in J (stored in set Tj
mp) has an assigned (or scheduled) start time (at) 

that is at or after the job j’s earliest start time (sj) is captured by constraint (2a). Constraint 

(3a) enforces that the reduce tasks for each job j in J (stored in set Tj
rd) are scheduled to 

start after all the map tasks of the respective job j are finished executing. The time at which 

all the map tasks finish executing is equal to the completion time of the latest finishing map 

task (LFMT).  To find the LFMT, constraint (3a) iterates through all the map tasks of a 

given job j (stored in Tj
mp) and uses the max function to find the task with the highest 

completion time, where the completion time of a task t is equal to the sum of at and t’s 

execution time (et). Note that the max function returns the maximum value from a given 

set of values.  

Ensuring that the Nj for all the jobs that miss their deadlines is set to 1 is the purpose 

of constraint (4a). A job j misses its deadline (dj) if the completion time of the latest 

finishing reduce task (LFRT) exceeds dj. The completion time of the LFRT is calculated 

in a similar manner to how the completion time of the LFMT is calculated. The difference 

is that the job j’s reduce tasks (stored in Tj
rd) are passed to the max function instead of job 

j’s map tasks. Note that the CP Model makes use of the logical operator, implies (=>) in 

constraint (4a). The next two constraints (5a) and (6a) are the resource capacity constraints 

and impose that the map and reduce task capacities of each resource in R are not violated 

at any point in time. These constraints are formulated using the CP global constraint 

function, cumulative [91]. For each point in time, the cumulative function sums up the 

number of executing tasks at the given time point and ensures that this number does not 

exceed the resource capacity limit. Four parameters are required by the cumulative 
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constraint: a set of scheduled start times of the tasks, a set of execution times of the tasks, 

a set of the resource requirements of the tasks, and the capacity of the resource. There are 

two cumulative constraints for each resource r in R: one for resource r’s map task slots and 

one for resource r’s reduce task slots. For a particular constraint, only the tasks that are 

assigned to that resource (i.e., xtr = 1) are included as input for the constraint. Lastly, the 

remaining constraints (7a) to (9a) define the domain of the decision variables, which are 

the valid values that the decision variables can be assigned. 

Complexity of the CP Model: The number of decision variables and the number of 

constraints in the CP Model are directly proportional to the number of jobs, number of 

tasks, and number of resources in the input sets J, AT, and R, respectively. The number of 

decision variables was discussed earlier and the number of constraints is discussed next. 

For each task t in AT, there is a constraint (1a) and a constraint (9a). Furthermore, for each 

map task of each job in J, there is a constraint (2a), and for each reduce task of each job in 

J, there is a constraint (3a). There is also a constraint (4a) and a constraint (8a) for each job 

in J. Moreover, for each resource in R, there is a constraint (5a) and a constraint (6a). Lastly, 

the number of constraint (7a) in the CP Model is equal to the product of the number of 

resources in R and the number of tasks in AT. In the experiments performed (refer to 

Section 3.7), the CP Model was observed to give rise to a reasonable memory requirement 

and CPU time requirement.  

3.4 Formulation of the MILP Model 

 The MILP Model is presented in Table 3.2, and it uses a time-indexed formulation 

[95], which is a commonly used model for formulating scheduling problems using discrete 

time (i.e., integer values for time). Recall from the previous section that although time is a 
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continuous variable, discrete time values can be used by changing the unit of time or by 

rounding the values. The discrete time values are contained in a set I called the time range.  

Similar to the CP Model, the input required by the MILP Model is a set of resources (R) 

on which to execute the set of jobs (J), and there is a set AT that contains all the tasks of 

all the jobs in J. The MILP Model uses the following decision variables: 

 xtri: A binary matchmaking and scheduling variable that is 1 if a task t is assigned 

to start executing on a resource r at time i; otherwise, xtri is 0. There is an xtri 

variable for each combination of tasks t in AT, resource r in R, and times i in I.  

 Nj: A binary variable that denotes if a job misses its deadline. Nj is set to 1 if job 

j misses its deadline; otherwise Nj is set to 0. There is an Nj variable for each job 

j in J, and Nj is initially set to 0 for all the jobs. 

The objective function of the MILP Model is identical to that of the CP Model: 

minimize the number of jobs that miss their deadlines. Furthermore, the constraints of the 

MILP Model have the same functionality as that of the CP Model (shown in Table 3.1); 

however, the MILP Model’s constraints are expressed differently. This is because the 

MILP Model uses a single decision variable for matchmaking and scheduling (xtri), 

whereas the CP Model defines a separate decision variable for matchmaking (xtr) and for 

scheduling (at). In addition, the CP Model leverages CP’s global constraints and native 

support for mathematical operators such as the ‘implies’ operator (⟹). A walkthrough of 

the MILP Model’s constraints is provided next. 

Constraint (1b) specifies that each task t in AT is assigned to a single resource only. 

Similar to constraint (1a), this is accomplished by summing all the xtri variables for each 

task t and ensuring that the sum is equal to 1. Guaranteeing that the scheduled start time of 
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all the map tasks of each job j in J is after job j’s earliest start time (sj) is captured by 

constraint (2b). Constraint (2b) iterates through all the map tasks of each job j in J (stored 

in Tj
mp) and finds the xtri variable for the task that is set to 1. Recall that constraint (1b) 

ensures that each task t has only one xtri variable equal to 1. Thus, the term (i | xtri = 1) 

identifies the scheduled start time of task t on resource r, which is at time i. Constraint (3b) 

enforces that the reduce tasks of all the jobs are scheduled to start only after all the job’s 

map tasks are completed. This is accomplished by iterating through all the reduce tasks of 

each job j (stored in Tj
rd) and ensuring that the start time of the reduce task is at or after the 

completion time of the latest finishing map task (LFMT) of job j. The completion time of 

the LFMT is calculated using the max function as in the case of constraint (3a), discussed 

in the previous section.  

Constraint (4b) states that Nj, which is initially set to 0, should be set to 1 if job j 

misses its deadline. A job j misses its deadline if the completion time of the latest finishing 

reduce task (LFRT) of job j is after its deadline (dj). The completion time of the LFRT is 

calculated using the max function, as described in the previous section. To ensure that Nj is 

set to 1 if job j misses its deadline, the left-hand side of the constraint is set to the product 

of Nj and dj, and it is asserted to be greater than or equal to the right-hand side of the 

constraint, which is set to the completion time of the LFRT minus dj (see Constraint (4b) 

in Table 3.2). For example, given a scenario where a job j has dj = 30 sec, and job j’s 

completion time is 35 sec, which means the job missed its deadline. In this case, the right-

hand side of the constraint evaluates to 5 sec and the left-hand side of the constraint 

evaluates to 0 (since Nj is initially set to 0). To satisfy constraint (4b) (i.e., make the left-

hand side of the constraint greater than or equal to the right-hand side), Nj must be changed 
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to 1. This in turn makes the left-hand side of the constraint evaluate to 30, and the constraint 

will be satisfied since 30 is greater than 5. 

Table 3.2. MILP Model. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑁𝑗

𝑗∈𝐽

                    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

(∑ ∑ 𝑥𝑡𝑟𝑖 = 1

𝑟∈𝑅𝑖∈𝐼

) ∀ 𝑡 ∈ 𝐴𝑇    (1b) 

( [(𝑖| 𝑥𝑡𝑟𝑖 = 1)   ∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐼  ≥  𝑠𝑗]        ∀𝑡 ∈ 𝑇𝑗
𝑚𝑝)         ∀𝑗 ∈ 𝐽 (2b) 

([

(𝑖| 𝑥𝑡𝑟𝑖 = 1) ∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐼  ≥  

𝑚𝑎𝑥
𝑡𝑚𝑝∈𝑇𝑗

𝑚𝑝
((𝑖| 𝑥𝑡𝑚𝑝𝑟𝑖 = 1) ∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐼  +  𝑒𝑡𝑚𝑝)]  ∀𝑡 ∈ 𝑇𝑗

𝑟𝑑)  ∀𝑗 ∈ 𝐽 (3b) 

(𝑁𝑗𝑑𝑗  ≥  𝑚𝑎𝑥
𝑡∈𝑇𝑗

𝑟𝑑
 ((𝑖| 𝑥𝑡𝑟𝑖 = 1) ∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐼  + 𝑒𝑡)  −  𝑑𝑗)   ∀𝑗 ∈ 𝐽 (4b) 

∑ ∑ 𝑥𝑡𝑟𝑖′𝑞𝑡  ≤  𝑐𝑟
𝑚𝑝

𝑖′∈𝐼𝑡𝑟𝑖
∗𝑡∈𝑇𝑚𝑝

   

∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐼  

where  𝐼∗
𝑡𝑟𝑖 = {𝑖′|𝑖 − 𝑒𝑡  <  𝑖′  ≤  𝑖}, 

𝑇𝑚𝑝 = ⋃  (𝑇𝑗
𝑚𝑝

)𝑗∈𝐽   
(5b) 

∑ ∑ 𝑥𝑡𝑟𝑖′𝑞𝑡  ≤  𝑐𝑟
𝑟𝑑

𝑖′∈𝐼𝑡𝑟𝑖
∗𝑡∈𝑇𝑟𝑑

  

 ∀𝑟 ∈ 𝑅,  ∀𝑖 ∈ 𝐼  

where  𝐼∗
𝑡𝑟𝑖 = {𝑖′|𝑖 − 𝑒𝑡 <  𝑖′ ≤  𝑖}, 

𝑇𝑟𝑑 = ⋃  (𝑇𝑗
𝑟𝑑)𝑗∈𝐽   

(6b) 

𝑥𝑡𝑟𝑖 ∈ {0,  1}          ∀ 𝑡 ∈ 𝐴𝑇,    ∀𝑟 ∈ 𝑅,   ∀𝑖 ∈ 𝐼  (7b) 

𝑁𝑗 ∈ {0,  1}          ∀ 𝑗 ∈ 𝐽 (8b) 

𝑖 ∈ ℤ (9b) 

 

Ensuring that the map and reduce task capacities of each resource are not violated 

at any point in time is captured by constraints (5b) and (6b), respectively. Constraints (5b) 

and (6b) use an integer set  𝐼∗
𝑡𝑟𝑖 that is defined to contain the scheduled start time of task 

t, if at time i, t is still executing on resource r. The purpose of 𝐼∗
𝑡𝑟𝑖 is to ensure that only 
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tasks still executing at time i are included in the calculations to determine the number of 

tasks that are executing on a resource at time i. The total number of tasks executing on a 

resource r, at any point in time, must not exceed the capacity of the resource. As shown in 

constraints (5b) and (6b) in Table 3.2, 𝐼∗
𝑡𝑟𝑖 is a set of integers defined as follows: {𝑖′| 𝑖 −

𝑒𝑡 < 𝑖′ ≤ 𝑖} where 𝑖′ represents the values in the set 𝐼∗
𝑡𝑟𝑖. The following sample task t1 is 

used to explain the use of 𝐼∗
𝑡𝑟𝑖: task t1 has an execution time et1 of 5 sec, and the decision 

variable xtri = 1 has the following values for its indices: t is t1, r is r1, and i is 23 sec. This 

means that task t1 is assigned to start executing on resource r1 at time 23 sec. Given the 

values for t1 described and the current time of interest is 25 sec, the set 𝐼∗
𝑡𝑟𝑖   with the 

indices t, r, and i equal to t1, r1, 25, respectively (i.e., 𝐼∗
𝑡1,𝑟1,25) has the following values 

{21, 22, 23, 24, 25}. As can be observed, the set of numbers 𝐼∗
𝑡1,𝑟1,25 does contain the 

scheduled start time of t1, which is at time 23 sec because at time 25 sec, task t1 is still 

executing on r1. Conversely, if the current time of interest is set to 30 sec, the set 

𝐼∗
𝑡1,𝑟1,30 = {26, 27, 28, 29, 30} does not contain the scheduled start time of task t1 (23 sec) 

because by that time task t1 has already finished executing. Lastly, constraints (7b) to (9b) 

specify the valid domain of the decision variables, which restrict the values that the 

respective decision variables can have. 

3.4.1 Comparison of the MILP Model and the CP Model 

Overall, it is observed that the constraints in the CP Model (refer to Table 3.1) are 

expressed in a more intuitive and simple manner. Expressing the constraints using MILP, 

as shown in Table 3.2, is more complex. For example, in the formulation of the CP Model, 

constraint (4a) simply uses the logical operator ‘implies” (⟹) to set Nj to 1 if job j misses 

its deadline. Furthermore, to formulate constraint (5a) and (6a), the CP Model uses the 
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global constraint, cumulative [91]. Conversely, the formulation of the corresponding MILP 

Model’s constraints: (4b), (5b), and (6b) requires using more complex mathematical 

formulas that are not as intuitive.  

The fact that the MILP Model has a single decision variable for matchmaking and 

scheduling (xtri) also makes the expression of the constraints that use the assigned (or 

scheduled) start time of a task more complicated (e.g., see constraints (2b), (3b), and (4b)). 

Conversely, the CP Model defines a decision variable for matchmaking (xtr) and another 

decision variable for scheduling (at). This simplifies the formulation of the CP Model’s 

corresponding constraints: (2a), (3a), and (4a), which can directly reference the scheduled 

start time of a given task t using at. 

3.5 Design and Implementation Experience 

 As outlined in Section 3.2, three approaches are used to implement the CP Model 

and MILP Model. This section presents the experience in implementing the CP Model and 

MILP Model using the various software packages. Overall, it is determined that all three 

software packages have an associated learning curve period; however, configuring, 

implementing, and executing the models using LINGO and IBM CPLEX are easier 

compared to using MiniZinc/Gecode because both LINGO and CPLEX provide a feature-

rich integrated development environment (IDE), whereas MiniZinc/Gecode only provide 

a command-line interface. 

3.5.1 Approach 1: MILP Model Implemented Using LINGO 

LINGO is a tool used to build, model, and solve optimization problems (through 

mathematical programs) developed by LINDO Systems Inc. [92]. LINGO provides a built-

in algebraic modeling language for expressing optimization models and a powerful and 
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efficient solving engine capable of solving a range of mathematical optimization problems, 

including linear, non-linear, and integer problems.  

An important feature in the implementation of the MILP Model using LINGO is 

captured in how constraint (4b) is implemented. LINGO provides an If-Then-Else flow 

of control construct, which performs a similar role to the if-else statements used in 

general programming languages such as Java and C. The If-Then-Else construct could 

have been used to simplify the implementation of constraint (4b) whose purpose is to set 

the decision variable Nj to 1 if the job j misses its deadline; however, it was determined that 

using the If-Then-Else construct to implement constraint (4b) changed the program from 

a mixed integer linear program (MILP) into a mixed integer non-linear program (MINLP). 

MINLPs are generally more complex and require more time to solve compared to MILPs 

[92], and this leads to a longer time before a solution is found. Thus, the use of the If-

Then-Else construct is avoided in the implementation of the MILP Model. Refer to 

Appendix A.I for a more detailed discussion of implementing the MILP Model using 

LINGO. 

3.5.2 Approach 2: CP Model Implemented Using MiniZinc and Gecode 

In Approach 2, the CP Model is implemented with MiniZinc 1.6 [93][96], which is 

an open-source CP modeling language that is designed to efficiently model and express 

constraint programming problems. To solve the MiniZinc model, it is first converted to a 

FlatZinc [93] model. FlatZinc is a low-level language that is designed to be easily translated 

to a form which CP solving engines can use. One such solving engine that supports solving 

FlatZinc models is Gecode 3.7.3 (short for Generic Constraint Development Environment) 

[94]. Gecode is an open-source tool implemented in C++ for solving CP problems. 
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A novelty of the implementation of the CP Model using MiniZinc is the devising 

of a modified cumulative constraint for implementing constraints (5a) and (6a). The 

original cumulative constraint provided by MiniZinc [93] cannot be used because it is not 

able to handle the two different task types present in MapReduce jobs:  map tasks and 

reduce tasks. Thus, a modified cumulative constraint, called mr_cumulative, is devised to 

ensure that map tasks and reduce tasks are only scheduled on the map task slots and reduce 

task slots of the resources, respectively, and to ensure that the capacities of the resources 

are not violated at any point in time. The required parameters for the mr_cumulative 

constraint are presented:  

predicate mr_cumulative(array[int] of var int: startTime,  
   array[int] of int: execTime, 

   array[int] of int: resourceReq,  
   array[int] of int: resourceCapacity,  
   array[int, int] of var int: x,  
   array[int] of int: type,  
   int: taskType) 

 

The first four parameters: startTime, execTime, resourceReq, and resourceCapacity are 

arrays that contain the start time of the tasks, the execution time of the tasks, the resource 

requirement of the tasks, and the capacity of the resources, respectively. These four 

parameters are the original parameters in the cumulative function provided by MiniZinc. 

The new parameters added to the mr_cumulative constraint include: a matchmaking 

variable x (recall Section 3.3), a type attribute of the tasks that indicates whether the task 

is a map task (type = 0) or a reduce task (type = 1), and a variable taskType that indicates 

if the constraint should be computed for map tasks (taskType = 0) or for reduce tasks 

(taskType = 1). Another change made in mr_cumulative is that it ensures the resource 

capacities are not violated for all the resources in R within the function, which means that 

mr_cumulative only needs to be invoked once. Conversely, the cumulative constraint 
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provided by MiniZinc only checks a single resource within the function, and thus needs to 

be invoked once for each resource.   

A code snippet of the mr_cumulative constraint is shown: 

forall (r in Resources) ( 
 forall( i in Times ) (  
  resourceCapacity[r] >=     
  sum( t in Tasks where type[t] == taskType) (   
   x[t,r]*resourceReq[t] *  
   bool2int( startTime[t] <= i /\ i < startTime[t] + 
     execTime[t]))  
  )  
); 

 

The mr_cumulative constraint iterates through all the resources in the Resources set, and 

for each resource it ensures that at each time point in the Times set the capacity of the 

resource is equal to or exceeds the number of tasks that are running at that point in time. 

Note that the values of the integers in the Times set range from the lower bound of the task 

start times to the upper bound of the task completion times. The matchmaking variable, x, 

is used to ensure that only tasks mapped to the resource of interest are included in the sum. 

Recall that xtr is 1 if task t is assigned to resource r, and each task can only be assigned to 

one resource. The bool2int library function is used to convert a Boolean value to an 

integer, where true is equal to 1 and false is equal to 0. The inequality that is passed to the 

bool2int function is used to ensure that only tasks that are still executing at the time of 

interest, i, are included in the resource capacity calculations. More specifically, a task is 

still running at time i if the scheduled start time of the task is less than or equal to i and i is 

less than the completion time of the task. A more in-depth discussion of implementing the 

CP Model using MiniZinc is provided in Appendix A.II. 
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3.5.3 Approach 3: CP Model Implemented Using CPLEX 

In Approach 3, the CP Model is implemented and solved using IBM CPLEX 12.5 

[15]. More specifically, CPLEX’s Optimization Programming Language (OPL) [97] is 

used to implement the CP Model. OPL is an algebraic language explicitly designed for 

expressing optimization problems, and therefore it can provide a natural representation of 

optimization models that is more compact and less complex to implement compared to 

using general-purpose programming languages such as Java or C. The implementation of 

the CP Model using OPL is referred to as the OPL Model. The OPL Model is solved using 

CPLEX’s CP Optimizer constraint programming solving engine, which provides 

specialized variables, constraints, and other mechanisms for modelling and solving 

scheduling problems efficiently [98][99]. For example, the CP Optimizer provides a built-

in decision variable data type called interval that can be used to represent tasks (or 

activities) that need to be scheduled. The interval data type has five inherent attributes: 

start time, duration, end time, optionality, and intensity. The start time, duration, and end 

time attributes function as their names imply. The optionality attribute is used to indicate 

whether the interval is required to be present in the solution provided by the solving engine. 

For example, the optionality attribute can be used to model optional tasks that are not 

required to be executed for the solution to be valid, but can be executed if the constraints 

are not violated. Lastly, the intensity attribute defines the resource usage or utility of a task 

over its interval. 

A key feature of the implementation of the CP Model using OPL is that it makes 

use of CPLEX’s interval decision variable data type, which allows the system to use the 

optimized library functions and constraints that CPLEX provides, such as the alternative 
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constraint and pulse function [98]. This in turn allows the system to efficiently solve the 

CP Model by reducing processing time and memory requirements [99]. The CP Model’s 

decision variables, at and xtr, are implemented using CPLEX’s interval data types as 

follows: 

dvar interval taskIntervals [t in Tasks] size t.execTime 
dvar interval xtr [o in Options] optional 

 

The taskIntervals and xtr variables represent the CP Model’s at and xtr decision 

variables, respectively. Note that the keyword dvar is used to declare a decision variable 

in OPL. In the first line, the component [t in Tasks] specifies that taskIntervals is an 

array and there is an interval variable for each task in the input set Tasks. Each interval 

variable contains the task’s start time, end time, and execution time. The size keyword 

specifies the duration of the interval variable, which in this case is set to the execution 

time of the task, execTime.  

The second line defines that the decision variable xtr is an array of intervals, and 

each element in the array is associated with a tuple in the Options set, which is a set that 

contains Option tuples. The Option tuple and Options set are defined as follows: 

tuple Option { 
 Task task; 
 Resource resource; 
}; 
{ Option } Options = { <t,r> | t in Tasks, r in Resources }; 
 

The Option tuple represents a single xtr decision variable, and it has two attributes: Task 

and Resource, which are also tuples themselves. The Options set is a derived set that 

contains all the possible combinations of tuples of the form <Task, Resource>. Going 

back to the declaration of the xtr decision variable, it is observed that the intervals 

contained in xtr are declared to be optional, which allows only a subset of the intervals 
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to be present in the solution generated by the CP Optimizer. By default, if an interval is 

not defined to be optional, the CP Optimizer is required to assign a start time and end 

time for the interval. Refer to Appendix A.III for a more comprehensive discussion of 

implementing the CP Model using IBM CPLEX. 

3.6 Performance Evaluation of the Resource Management Techniques 

for Processing a Batch of MapReduce Jobs with SLAs  

 To evaluate the effectiveness and efficiency of the three approaches, simulation 

experiments are conducted on a closed system using various batch workloads where each 

batch comprises of multiple MapReduce jobs to execute. Such an experimental 

environment that is based on a closed system is similar to what is used by [53][71][72] and 

is apt for evaluating and comparing the performance of the modeling techniques and 

solvers. The goal of the performance evaluation is to determine which of the three 

approaches can solve the matchmaking and scheduling problem for a batch of MapReduce 

jobs with SLAs most efficiently, as well as to determine the size of workload that each 

approach is capable of handling.   

A separate set of experiments is performed for evaluating the performance of each 

approach. The inputs used for a given set of experiments include a set of jobs, J, and a set 

of resources, R, on which to execute J. The MILP/CP solver program that is used by a 

given approach to solve the MILP/CP Model is executed on a PC that is described in 

Section 3.6.1. Each experiment concludes after successfully matchmaking and scheduling 

all the jobs in the batch. At the end of a successful experimental run the output that is 

produced includes the following: a schedule for the system (i.e., the assigned resource and 

scheduled start time for each task of each job in J), the time required to complete the 
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execution of the batch of MapReduce jobs, and the number of jobs that miss their deadlines. 

The processing time required by the MILP/CP solver to produce the output is measured by 

using the respective solver’s built-in timing utilities. 

The rest of this section is organized as follows. In Section 3.6.1, the experimental 

setup, including the metrics used in the performance evaluation, are described. Following 

this, a description of the system and workload parameters that are used in the experiments 

is provided in Section 3.6.2. 

3.6.1 Experimental Setup 

The simulation experiments are conducted on a PC running on Windows 7 

Professional with a 3.2 GHz Intel Core 2 Duo CPU and 6.00 GB of RAM. Note that in the 

experiments, only the execution of the jobs on the resources is simulated. The generation 

and solving of the MILP Model and the CP Model are performed by executing the 

respective CP/MILP solver on the PC described. The performances of the three approaches 

are evaluated using the following metrics: 

 Batch workload completion time (C): The time at which all the jobs in the batch 

workload finish executing. 

 Processing time overhead (PO): The time required for the solver to read the input 

data (job, task, and resource sets), generate the model, solve the model, and 

produce the output. 

 Number of jobs that miss their deadlines (N). 

The values of the performance metrics, N and C, are produced as output by the simulation 

run. On the other hand, the value of PO is measured using the built-in timers of the 

respective software packages (LINGO, Gecode, and CPLEX). It is expected that lower 
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values of PO can be achieved and larger workload sizes can be processed if the MILP/CP 

solvers of the respective approaches are executed on a system with a faster CPU and more 

memory. Each experiment is repeated a sufficient number of times such that the confidence 

intervals at a confidence level of 95%, which are shown in the figures (refer to Section 3.7) 

as bars originating from the mean value, are less than approximately ±5%.  

3.6.2 System and Workload Parameters for Batch Workloads 

Table 3.3 outlines the system and workload parameters for the simulation 

experiments. The workloads are synthetic workloads that are generated in a similar manner 

as workloads used by other researchers in similar investigations. For example, the Large 2 

workload is adapted from [53], whereas the other workloads are derived by using the same 

distributions as those used in [53]. Each workload shown in Table 3.3 is characterized by 

a number of parameters, which are described next. In the ‘Jobs’ column, n is defined as the 

number of jobs in the batch. The earliest start time and deadline of a job j is represented by 

sj and dj, respectively. The earliest start time of the jobs are generated using a discrete 

uniform (DU) distribution. The deadline of each job j is calculated as the sum of sj and the 

product of SETj
max and an execution time multiplier, em. Recall from Section 3.1.1 that 

SETj
max is the maximum execution time of job j (i.e., the tasks of the job are executed 

sequentially on a single resource). The parameter em is used to determine the laxity of the 

job and is generated using a uniform distribution (U). To ensure that dj is an integer, the 

ceiling function is used at the end of the calculation.  Depending on the type of workload, 

the number of map tasks (𝑘𝑗
𝑚𝑝

) and the number of reduce tasks (𝑘𝑗
𝑟𝑑) of a job j are either 

generated using DU distributions or are fixed values. The next column, ‘Task Execution 

Times’, specifies the execution times of map tasks (𝑚𝑒) and reduce tasks (𝑟𝑒).  Since CP 



 

 

71 

 

does not support real values (recall the discussion in Section 3.3), the task execution times 

are set to be integers and various DU distributions are used to generate the execution times. 

The last column, ‘Resources’, defines the number of resources (m) in the resource set, R. 

In addition, for each resource r in R, the number of map task slots (𝑐𝑟
𝑚𝑝) and reduce task 

slots ( 𝑐𝑟
𝑟𝑑) is specified.  

 

Table 3.3. System and Workload Parameters for the Batch Workloads. 

Workload 
Jobs, J 

(sj and dj in sec) 

Task Execution Times  

(sec) 
Resources, R 

Small 1 

n = 5 
sj ~ DU(1, 50) 

dj ~⌈𝑠𝑗  +  𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗  𝑈(1, 5)⌉ 

𝑘𝑗
𝑚𝑝

 = 10, 𝑘𝑗
𝑟𝑑 = 3 

𝑚𝑒 ~ DU(1, 15) 
𝑟𝑒 ~ DU(1, 50) 

m = 10 
𝑐𝑟

𝑚𝑝
 = 2  

 𝑐𝑟
𝑟𝑑  = 2 

 

Small 2 

n = 5 
sj ~ DU(1, 50) 

dj ~⌈𝑠𝑗  +  𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉ 

𝑘𝑗
𝑚𝑝

~ DU(1,15) 

𝑘𝑗
𝑟𝑑~ DU(1, 𝑘𝑗

𝑚𝑝
) 

𝑚𝑒 ~ DU(1, 15) 
𝑟𝑒 ~ DU(1, 75) 

m = 25  
𝑐𝑟

𝑚𝑝
 = 2  

 𝑐𝑟
𝑟𝑑  = 2 

 

Medium 

n = 10 
sj ~ DU(1,50) 

dj ~ ⌈𝑠𝑗  + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉ 

𝑘𝑗
𝑚𝑝

 = 10 

𝑘𝑗
𝑟𝑑 = 5 

𝑚𝑒 ~ DU(1, 25) 
𝑟𝑒 ~ DU(1, 75) 

m = 15  
𝑐𝑟

𝑚𝑝
 = 2  

 𝑐𝑟
𝑟𝑑  = 2 

 

Large 1 

n = 2 
s1 = 0, s2 = 500 

dj ~ ⌈𝑠𝑗  + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉ 

𝑘𝑗
𝑚𝑝

 = 100 

𝑘𝑗
𝑟𝑑 = 30 

𝑚𝑒 ~ DU(1, 15) 
𝑟𝑒 ~ DU(1, 50) 

m = 25  
𝑐𝑟

𝑚𝑝
 = 4 

  𝑐𝑟
𝑟𝑑  = 4 

 

Large 2 
(adopted from 

[53]) 

n = 50 
sj ~ DU(1, 1500) 

dj ~ ⌈𝑠𝑗  + 𝑆𝐸𝑇𝑗
𝑚𝑎𝑥 ∗ 𝑈(1, 2)⌉ 

𝑘𝑗
𝑚𝑝

~ DU(1, 100) 

𝑘𝑗
𝑟𝑑~ DU(1,  𝑘𝑗

𝑚𝑝
) 

𝑚𝑒 ~ DU(1, 10) 
 

𝑟𝑒 =  ⌈
∑ 𝑒𝑡𝑡∈𝑇𝑗

𝑚𝑝

𝑘𝑗
𝑟𝑑 ⌉ 

 

m = 50 
 𝑐𝑟

𝑚𝑝
 = 2  

𝑐𝑟
𝑟𝑑 = 2 

 

 

 

The simulation experiments are performed using various batch workloads with 

different characteristics, such as the number of jobs in the batch, the number of tasks in 
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each job, and the execution times of the tasks, to investigate the impact of different 

workload characteristics on system performance. For example, in the Small 1 workload 

there are 5 jobs, each job with 10 map tasks with execution times varying from 1 sec to 15 

sec and 3 reduce tasks with execution times varying from 1 sec to 50 sec. On the other 

hand, the Large 2 workload comprises 50 jobs with each job having a varying number of 

map tasks from 1 to 100 and a varying number of reduce tasks from 1 to 𝑘𝑗
𝑚𝑝

. Thus, on 

average the Large 2 workload has about 3750 tasks and the Small 1 workload has 65 tasks.  

3.7 Results of the Performance Evaluation  

The following sub-sections present and discuss the simulation results of the three 

approaches devised to process a batch of MapReduce jobs with SLAs. Note that all three 

approaches focus on meeting deadlines of the jobs in the workload and their primary 

objective is to minimize N. Ensuring that C is small is a secondary objective that can be 

considered given that the primary objective is achieved. The discussion of the experimental 

results focus on C and PO since all three approaches are observed to be able to generate a 

schedule for the system that minimizes N (i.e., all three approaches achieve the same value 

of N for a given workload). 

3.7.1 Small and Medium Workloads 

Figure 3.2 and Figure 3.3 present the values of C and PO, respectively, for the three 

approaches when using the small and medium workloads. Note that Approach 2 is not able 

to generate a solution for the Medium workload even after executing the solver for a couple 

of hours (indicated by the missing bars in the graphs). This may be due to the limitations 

of the solver from being able to match make and schedule such a large number of tasks 
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(leading to a model that contains a large number of decision variables and constraints) on 

the system experimented with.  

As expected, the results show that for all three approaches, the increase in the size 

of the workload (e.g., number of jobs and tasks) gives rise to an increase in PO and C 

because of the higher contention for resources. From Figure 3.3, it is observed that 

Approach 3 achieves the lowest PO (less than 0.47 sec) (note that the bars are small and 

may not be visible in the figure); however, it also generates a schedule that produced a 

slightly higher C. This can be attributed to the solver used in Approach 3 (IBM CPLEX) 

generating the first schedule that optimizes the objective function (minimizing N) without 

focusing on minimizing C. The lower PO achieved by Approach 3 is attributed to the 

mechanisms that CPLEX’s CP Optimizer solving engine provides to efficiently solve 

matchmaking and scheduling problems, including the use of the interval decision variables 

and functions to operate on those variables [98]. 

 

 

Figure 3.2. Results of C when using the small and medium workloads. 
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Another observation that is made from Figure 3.3 is that the approaches that 

implement the CP Model (i.e., Approaches 2 and 3) achieve a lower PO compared to 

Approach 1, which implements the MILP Model. The reason for this behaviour can be 

attributed to the large number of decision variables that the solver for the MILP Model has 

to generate and solve. Recall that the MILP Model uses a decision variable xtri, and there 

is an xtri variable for each combination of tasks in AT, resources in R, and time points in I. 

In the CP Model, there are fewer decision variables because separate decision variables are 

used for matchmaking, xtr and scheduling, at.  

 

 

Figure 3.3. Results of PO when using the small and medium workloads. 
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schedule for the Large 2 workload (indicated by missing bars in the graphs). When 

attempting to generate solutions for the larger workloads with Approaches 1 and 2, the 

system eventually ran out of memory and the solver would crash. The solvers of Approach 

1 and Approach 2 cannot handle such a large number of decision variables and constraints 

on the system experimented with. The results demonstrate that for the Large 1 workload, 

Approach 3 outperforms Approach 1 in terms of PO and C for reasons similar to those 

discussed in Section 3.7.1. 

 

 

Figure 3.4. Results of C when using the large workloads. 
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to restrict when jobs can start to execute. For example, the granularity of a set I = {1, 2, 3, 

…, 100} can be made coarser as follows: I = {2, 4, 6, …, 100}. Note that such a change 

reduces the number of members of I by 50%. The more values in I, the longer it takes for 

Approach 1’s solver (LINGO) to generate and solve the MILP Model because of the large 

number of decision variables that need to be processed. Recall that the MILP Model has a 

decision variable, xtri, for each combination of tasks t in AT, resources r in R, and time 

points i in I. As such, the number of variables that are present in the MILP Model increases 

as the number of tasks, or number of resources, or number of time points increase.  

 

 

Figure 3.5. Results of PO when using the large workloads. 
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granularity of I coarser is that it can cause C to increase because some tasks cannot be 

scheduled to start executing at their earliest possible start times. For example, if a job j has 

sj equal to 27 sec and there is an interval of 25 sec between time points, the tasks of job j 

cannot be executed until time 50 sec. Figure 3.4 shows that C for Approach 1 is over 2500 

sec, which is about three times longer than the C achieved by Approach 3. Therefore, the 

results show that for Approach 1, there is a trade-off between being able to process large 

workloads and achieving a small C. 

3.7.3 Summary of Simulation Results 

 This section summarizes the key observations made from analyzing the results of 

the experiments.  

 Approach 1: Approach 1 does not perform well in the experiments compared to the 

other two approaches. Along with Approach 2, Approach 1 did generate a schedule that 

produced the lowest C when using the small workloads; however, Approach 1 is measured 

to have a higher PO compared to Approach 2. In addition, when using the Medium 

workload, Approach 1 achieves a C that is 11.5% lower compared to the C achieved by 

Approach 3, but Approach 1’s PO is also 375% higher compared to Approach 3’s PO. 

Lastly, when using the Large 1 workload, Approach 1 is outperformed by Approach 3 in 

terms of both C and PO. Thus, for the system and workload parameters experimented with, 

it is not recommended that Approach 1 be used unless PO is not a concern. If, in addition 

to meeting deadlines, reducing the completion times for the batch is important, Approach 

1 may be suitable to use in situations in which the matchmaking and scheduling for the 

jobs can be performed ahead of time (e.g., offline). 
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Approach 2: Approach 2 is only able to handle the smaller workloads (less than 150 

tasks) on the system experimented with.  When processing the large workloads, Approach 

2 could not generate a schedule because the system would eventually run out of memory 

and the solver would crash. As discussed, along with Approach 1, Approach 2 generates a 

schedule with the lowest C when using the small workloads. Even though Approach 2’s 

PO is lower compared to Approach 1’s PO, Approach 2’s PO is still over 100 times higher 

than the PO achieved by Approach 3. Thus, when using the small workloads, there is a 

trade-off between having a lower C (achieved using Approach 2) versus a lower PO 

(achieved using Approach 3). Similar to Approach 1, Approach 2 can be considered for 

processing small workloads when matchmaking and scheduling can be performed at a time 

prior to when the batch becomes ready to execute. 

Approach 3: The experimental results demonstrate that Approach 3 has the best 

overall performance. Regardless of the size of the workload experimented with, it achieves 

a much lower PO compared to the other two approaches. However, when using the small 

workloads, Approach 3 has a slightly higher C compared to the other approaches. For 

example, when using the Small 2 workload, Approach 3 has a C that is 81% higher 

compared to the C achieved by Approach 1 and Approach 2. Approach 3, however, does 

achieve a PO that is over 100 times smaller compared to the PO measured for Approach 1 

and Approach 2. On many systems satisfying the deadlines is sufficient and achieving a 

small batch completion time (C) is only a secondary objective. Furthermore, Approach 3 

can process the larger workloads (i.e., Large 2 workload) that the other two approaches 

cannot handle. In fact, the experiments described in Section 3.7.2 indicate that Approach 3 

can handle workloads containing over 1000 tasks.  
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3.8 Summary and Discussion 

In this chapter, the problem of matchmaking and scheduling a batch of MapReduce 

jobs with SLAs is formulated and solved using MILP and CP. The MILP Model and CP 

Model that are devised are implemented and solved using three approaches:  

 Approach 1: MILP Model implemented and solved using LINGO [92]  

 Approach 2: CP Model implemented using MiniZinc/FlatZinc [93] and solved 

using Gecode [94] 

 Approach 3: CP Model implemented and solved using IBM CPLEX [15]. 

Note that the objective of each approach is to generate a schedule that minimizes the 

number of jobs that miss their deadlines. Moreover, this chapter also described our 

experiences with using the various optimization techniques and software packages to 

formulate and solve the matchmaking and scheduling problem. A significant learning curve 

is associated with using the software in each of the respective approaches; however, 

configuring, implementing, and executing the models using Approaches 1 and 3 are easier 

compared to using Approach 2 because both LINGO and CPLEX provide a feature-rich 

integrated development environment, whereas MiniZinc and Gecode only provide 

command-line interfaces.  

 A number of simulation experiments are performed using various batch workloads 

to evaluate the performance of the three approaches. Insights into system behaviour and 

performance are gained from analyzing the results of the experiments, which are 

summarized next. 

 Superiority of Approach 3: In all the experiments conducted, Approach 3 achieves 

the lowest PO; however, it also generated a schedule that produces a slightly 
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higher C in some experiments. In addition, Approach 3 is the only approach 

capable of processing the large workloads that have over 1000 tasks (refer to 

Section 3.7.2). 

o When using the small workloads, Approach 1 and Approach 2 achieve a 

lower C compared to Approach 3; however, the PO achieved by these 

approaches is much higher (over 100 times higher) compared to the PO 

achieved by Approach 3. 

 Superiority of CP: The results of the experiments show that Approaches 2 and 3, 

which use CP, achieve a smaller PO compared Approach 1, which uses MILP. In 

addition, from the experiences in using MILP and CP to formulate the 

matchmaking and scheduling problem, it is found that using CP is simpler and 

more intuitive compared to using MILP. 

Based on the results of the experiments, it is found that Approach 1 and Approach 

2 are most useful in cases where the workloads are small (a few hundred tasks) and there 

is sufficient time to perform the resource management decisions (e.g., offline, where 

processing time is not a concern). On the other hand, because of its lower processing 

overhead, it is expected that Approach 3 can be used to devise a resource management 

technique that can handle an open stream of MapReduce jobs with SLAs. Having a low 

processing overhead is an important feature to consider when there is an open stream of 

job arrivals because a low matchmaking and scheduling overhead is key to efficiently 

process jobs that are continuously arriving on the system. Furthermore, Approach 3 is the 

only approach able to process the large workloads, comprising over 1000 tasks.  Thus, a 

constraint programming based approach is chosen for devising a resource management 
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technique for processing an open stream of MapReduce jobs with SLAs, which is described 

in Chapter 4.  
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Chapter 4 MapReduce Constraint Programming based Resource 

Management Technique for Open Systems 

This chapter concerns resource management on open systems that are subjected to 

a continuous stream of MapReduce jobs with SLAs arriving on the system. The 

experimental results from Section 3.7 showed the superiority of using the CP Model 

implemented using IBM CPLEX, including its more intuitive and simple formulation of 

constraints, lower processing overhead, and its ability to handle larger workloads. This 

motivated the investigation of a novel MapReduce Constraint Programming based 

Resource Management technique (referred to simply as MRCP-RM) that can effectively 

perform matchmaking and scheduling of an open stream of MapReduce jobs with SLAs. 

Similar to Chapter 3, the SLA for the job comprises an earliest start time, an execution 

time, and an end-to-end deadline. However, a key difference between the techniques 

described in Chapter 3 and MRCP-RM is that MRCP-RM can process an open stream of 

job arrivals whereas the techniques described in Chapter 3 can only be used in a closed 

system subjected to batch workloads with a fixed number of jobs.  

The rest of the chapter is organized as follows. Section 4.1 presents an overview of 

the MRCP-RM technique including a discussion of the modifications made to the OPL 

Model. A detailed description of the MRCP-RM algorithm is then provided in Section 4.2. 

The performance optimizations devised to reduce the processing time overhead of the 

MRCP-RM technique are described in Section 4.3. Following that, the experiments 

conducted to evaluate the performance of the MRCP-RM technique are described in 

Section 4.4. A discussion of the results of the experiments are then presented in Section 
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4.5 and Section 4.6. Lastly, a summary and discussion of the chapter is provided in Section 

4.7. 

4.1 Overview of the MRCP-RM Technique 

Figure 4.1 presents a diagram showing an environment deploying the MRCP-RM 

technique.  Users submit MapReduce jobs to the system which are placed in the job queue. 

If the resource manager is available (i.e., not busy mapping another set of jobs), it invokes 

the MRCP-RM algorithm, which is described in more detail in Section 4.2, to perform 

matchmaking and scheduling (collectively called mapping). MRCP-RM not only maps all 

the newly submitted jobs in the job queue, but it also remaps the tasks of jobs that have 

been previously scheduled but have not started executing. This is performed to provide the 

most flexibility in matchmaking and scheduling to minimize the number of late jobs. For 

example, to minimize the number of late jobs, a newly submitted job with an earlier 

deadline may need to be scheduled in the place of a previously scheduled job that has a 

later deadline. The MRCP-RM technique uses IBM CPLEX [15] to generate an OPL 

Model, which is an implementation of the CP Model using IBM’s Optimization 

Programming Language (OPL) [97]. Recall the discussion of the CP Model and the OPL 

Model described in Section 3.3 and Section 3.5.3, respectively. More specifically, an OPL 

Model is created that has new constraints added for each of the tasks that have started but 

not completed executing. To solve the OPL Model, MRCP-RM uses IBM CPLEX’s CP 

Optimizer solving engine [98]. Once a solution is found, a schedule will be generated that 

indicates which resources that tasks should be assigned to (matchmaking) and when the 

tasks on a particular resource should start executing (scheduling).  
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An implementation of the MRCP-RM technique is developed using Java and 

NetBeans IDE [100]. This implementation is used to conduct the experiments described in 

Section 4.4. The Job, Task, and Resource entities of the resource management model (recall 

Section 3.1) are implemented as Java classes. The implementation of MRCP-RM also 

leverages the Java implementation of the IBM ILOG OPL API and IBM ILOG Concert 

Technology API (abbreviated Concert API) [97] to create and solve the OPL Model using 

the CP Optimizer solving engine.  

Distributed Computing Environment

Resource 
Manager using 

MRCP-RM

Resource 
Manager using 

MRCP-RM

CPLEX CP 
Optimzer
CPLEX CP 
Optimzer

ilog.concert
ilog.opl
ilog.cp

ilog.concert
ilog.opl
ilog.cp

<<uses>><<uses>>

. . .Resource 1Resource 1 Resource mResource m

Submit jobsSubmit jobs

UsersUsers

Job Queue

Job 3Job 3 Job 2Job 2 Job 1Job 1Job 3 Job 2 Job 1

<<solve>><<solve>>

OPL ModelOPL Model

<<create>><<create>>

 

Figure 4.1. Example of a system deploying the MRCP-RM technique.  

 

4.1.1 Modifications to the OPL Model 

A few modifications to the OPL Model are made to support the MRCP-RM 

algorithm. The first change is the introduction of a new attribute of type integer, named 

isRunning, to the Task tuple. This new attribute is set to 1 to indicate that a task is currently 

running on a resource and cannot be rescheduled or assigned to a new resource; otherwise, 
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isRunning is set to 0. In addition, the implementation of constraint (2a) is modified to 

make use of the new isRunning attribute as follows: 

forall (j in Jobs) { 
 forall(t in Tasks: t.parentJob == j.id && t.isRunning == 0) { 
          startOf(taskIntervals[t]) >= j.earliestStartTime; 
    }       
} 

 

Recall from Section 3.3 that the purpose of constraint (2a) is to enforce that the scheduled 

start time of a job’s tasks is after the earliest start time of the job. As shown, the constraint 

iterates through all the jobs in the Jobs set, and for each job, it examines each Task t in the 

Tasks set that have a value of parentJob equal to the id of the current job being examined. 

The parent job attribute of the Task tuple identifies which job the task belongs to. For 

example, if the parent job attribute of a task is 2, it means that this task belongs to the job 

with an id equal to 2. The new addition is that the constraint now only needs to check the 

scheduled start times of tasks that are not currently running (i.e., isRunning is 0). The tasks 

that are already running (i.e., isRunning is 1) already have had their scheduled start times 

checked previously when the tasks were initially scheduled on the system, and thus, they 

do not need to be checked again. Note the use of OPL’s startOf() function [98] in the 

constraint, which returns the start time of the supplied interval variable. 

4.2 MRCP-RM Algorithm 

Algorithm 4.1 presents the MRCP-RM algorithm. A visual representation and a 

high-level overview of the algorithm in the form of a flowchart is also provided in Figure 

4.2. The input required by the algorithm is a set of jobs J on which to map on to a set of 

resources R. The first phase of the algorithm checks the earliest start time of each job j in 

J to see if its earliest start time is less than the current time, and if this is true, the earliest 
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start time of the job is set to the current time (see lines 1-4 of Algorithm 4.1 and step 1 of 

Figure 4.2). The reason why some jobs have an earliest start time in the past is because 

these jobs were previously scheduled but have not started or completed executing.  

The second phase of the algorithm checks the status/state of each task currently 

scheduled on the system (lines 5-6 of Algorithm 4.1 and steps 2 and 3a of Figure 4.2) to 

see if the task is: (1) scheduled to execute at a later time (line 7 of Algorithm 4.1 and step 

4a of Figure 4.2), (2) finished executing (line 13 of Algorithm 4.1 and step 4b of Figure 

4.2) , or (3) currently running (line 10 of Algorithm 4.1 and step 4c of Figure 4.2). To 

accomplish this, the MRCP-RM algorithm processes each resource r in R, and for each 

resource r, it checks when each of the tasks assigned to resource r are scheduled to execute. 

Note that each resource keeps its list of scheduled tasks sorted by non-decreasing order of 

the respective scheduled start time of the tasks. When MRCP-RM finds that a task t’s 

scheduled start time is greater than the current time (i.e., the task has not started running), 

task t and the remaining scheduled tasks on the resource that t is scheduled on do not need 

to be processed at this point. Thus, MRCP-RM breaks out of the loop so that it can check 

the scheduled tasks of the next resource in R (line 8 of Algorithm 4.1).  

Tasks that have started executing need to be further processed by the MRCP-RM 

algorithm (line 9 of Algorithm 4.1). More specifically, each task is checked to see whether 

or not it has completed executing. If the task has finished executing (i.e., the task’s expected 

completion time is less than or equal to the current time) (line 13 of Algorithm 4.1), the 

task is marked as complete and it is removed from its parent job’s task list (line 14 of 

Algorithm 4.1 and step 4b of Figure 4.2). Furthermore, if all the tasks of the job have 

finished executing, the algorithm also records that the job has completed executing (lines 
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15-16 of Algorithm 4.1 and steps 5-7 of Figure 4.2). On the other hand, if the task has not 

completed executing (i.e., the task’s expected completion time is greater than the current 

time) (line 10 of Algorithm 4.1), the MRCP-RM algorithm adds a new constraint to the 

OPL Model to specify the scheduled start time, scheduled completion time, and assigned 

resource of the currently running task (line 11 of Algorithm 4.1 and step 4c of Figure 4.2). 

For example, if the first task of job 3 (denoted t3_1) is currently running on resource r1 

and has a scheduled start time and completion time equal to 11 to 30 time units, the 

following constraint is added to the OPL Model: 

forall (o in Options : o.resource.id == 1 && o.task.id == "t3_1") 
{ 

 startOf(xtr[o]) == 11 && endOf(xtr [o]) == 30;  
} 

 

The purpose of adding these constraints to the OPL Model is to inform the CP 

Optimizer of the scheduled time interval and assigned resource of the currently running 

tasks. This will prevent the CP Optimizer from scheduling other tasks on the resource at 

the same time intervals where tasks are already running (if the resource does not have the 

capacity to execute more than one task). In addition, the task’s isRunning attribute is set 

to true (line 12 of Algorithm 4.1) to inform the CP Optimizer that the task is currently 

running and it does not need to enforce constraint (2a) for this task. Recall from Section 

3.3 that constraint (2a) ensures that each task t of each job j in J has a scheduled start time 

that is after the earliest start time of the job. Constraint (2a) does not need to be enforced 

for tasks that are already executing because the scheduled start times of these tasks were 

already checked when they were first scheduled on the system. Moreover, since a job’s 

earliest start time may have been changed to the current time (recall lines 1-4 of Algorithm 

4.1), currently running tasks will not be able to satisfy constraint (2a) because their 
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scheduled start time is in the past (i.e., before the current time). Thus, as described in 

Section 4.1.1, constraint (2a) is changed to only check the earliest start times of tasks that 

are not currently running. 

 

Algorithm 4.1: MRCP-RM Algorithm 

Input: a set of jobs J and a set of resources R 

Output: none 

1: for each job j in J do 

2:  if job j’s earliest start time is less than the current time then 

3:   Set job j’s earliest start time to the current time. 

4: end for 

5: for each resource r in R do 

6:  for each task t in resource r’s scheduled tasks list do 

7:   if task t’s start time is greater than the current time then 

8:    break 

9:   else //task t has started executing 

10:    if task t’s end time is greater than the current time then 

11:     Add a new constraint to the OPL Model that specifies task t’s  

    scheduled start time, scheduled end time, and assigned resource. 

12:     Set task t’s isRunning field to true. 

13:    else  

14:     Record that task t is complete and remove t from its parent job’s 

    tasks list. 

15:     if all the tasks in t’s parent job have completed executing then 

16:      Remove the job from J. 

17:    end if 

18:   end if 

19:  end for 

20: end for 

21: Create a new OPL Model and attach the data source containing J and R. 

22: Generate and solve the OPL Model. 

23: Extract and save the values of the decision variables (scheduled start time and 

assigned resource for each task). 

 

 

After all the tasks are processed (line 20 of Algorithm 4.1 and step 3b of Figure 

4.2), the third phase of the MRCP-RM algorithm is started. This involves using CPLEX’s 

Java APIs to generate and solve the new OPL Model with new constraints added for each 

of the tasks that have started but not completed executing (lines 21-22 of Algorithm 4.1 
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and steps 3b and 8 of Figure 4.2). After finding a solution to the OPL Model, the values of 

the decision variables, which indicate the assigned resource and the scheduled start time of 

each task, are used to generate the new schedule for the system (line 23 of Algorithm 4.1 

and step 9 of Figure 4.2). A more detailed description of how CPLEX’s Java APIs [97], 

which includes the following packages: ilog.concert, ilog.cp, and ilog.opl, are used 

to create and solve the OPL Model is provided in Appendix B.I. 

4.2.1 Complexity of the MRCP-RM Algorithm 

The time complexity analysis for the MRCP-RM algorithm is described in this 

section. The execution time of the first phase of the algorithm (see lines 1-4) is linearly 

proportional to the number of jobs in J. Next, the execution time of the second phase of the 

algorithm (see lines 5-20) is proportional to the number of tasks scheduled in the system. 

The highest and most significant component of the execution time of the MRCP-RM 

algorithm comes from using CPLEX to solve the OPL Model (see lines 21-23). The overall 

time complexity of the MRCP-RM algorithm is thus dominated by that of the CPLEX 

based solution of the CP Model. In general, the complexity of solving a CP problem is NP-

Complete but state-of-the art solvers can make optimizations to solve problems in 

polynomial time [14]. Since commercial solvers such as IBM CPLEX [15] are proprietary 

and their algorithms are unknown, it is difficult to theoretically define the complexity of 

solving the CP Model. Thus, the complexity of the algorithm is evaluated empirically 

through experimentation as discussed later in the performance evaluation sections. 

Moreover, Section 4.6.6 discusses the scalability of the algorithm. 
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Figure 4.2. Flowchart of the MRCP-RM algorithm. 
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4.3 Performance Optimizations for the MRCP-RM Technique 

This section describes two performance optimizations introduced to reduce the 

MRCP-RM technique’s matchmaking and scheduling overhead, which includes the time it 

takes to use IBM CPLEX to generate and solve the OPL Model. 

4.3.1 Performance Optimization 1: Separating the Matchmaking and 

Scheduling Operations 

The first performance optimization (denoted POpt1) involves separating the 

matchmaking and scheduling operations. During preliminary testing, it was found that 

separating the matchmaking and scheduling operations in the MRCP-RM algorithm can 

reduce the time required for the CP Optimizer to generate and solve the OPL Model. The 

idea is to consolidate the number of resources in R into a single combined resource. This 

single combined resource contains the map task capacity (or number of map task slots) and 

reduce task capacity (or number of reduce task slots) of all the resources in the system. For 

example, consider a scenario where the system has 50 resources and each resource r in R 

has 𝑐𝑟
𝑚𝑝

 = 2 and 𝑐𝑟
𝑟𝑑 = 2. In this scenario, the single combined resource r1 has 𝑐𝑟1

𝑚𝑝 = 100 

and 𝑐𝑟1
𝑟𝑑 = 100. For a batch of 25 jobs where each job comprises 75 map tasks and 25 reduce 

tasks and a system with 50 resources where each resource has 2 map task slots and 2 reduce 

task slots, it takes the MRCP-RM algorithm approximately 1 minute to solve the OPL 

Model. On the other hand, when using a single combined resource (i.e., 1 resource with 

100 map task slots and 100 reduce task slots), it only takes the MRCP-RM algorithm 

approximately 15 seconds to find a solution to the OPL Model. This can be attributed to 

the CP Optimizer having fewer decision variables and constraints to process. 
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A description of how POpt1 is used in conjunction with the MRCP-RM algorithm 

is provided next. The first step is to use the MRCP-RM algorithm (described in Section 

4.2) to solve an OPL Model using a single combined resource that represents all the 

resources in R. The schedule that is generated is referred to as the single resource schedule, 

and it contains the scheduled start time of each task of each job in J, but it does not contain 

matchmaking information (i.e., which resources that the tasks are assigned to). The second 

step is to use the Split Single Resource Schedule algorithm to assign the tasks from the 

single resource schedule to the resources in the original set of resources R. This is 

accomplished by performing the following operations. First, the algorithm moves the map 

tasks and reduce tasks from the single combined resource to a set of single capacity map 

resources (MR) and a set of single capacity reduce resources (RR), respectively. As the 

names suggest, each resource in MR has only one map task slot (i.e., 𝑐𝑟
𝑚𝑝 = 1) and each 

resource in RR has only one reduce task slot (i.e., 𝑐𝑟
𝑟𝑑 = 1). Second, the algorithm creates 

new resources to represent the original resources in R and assigns tasks to each of the new 

resources created. More specifically, each resource is assigned map tasks and reduce tasks 

from the single capacity resources in MR and RR, the numbers of which are equal to 

resource r’s map task capacity and reduce task capacity, respectively. A detailed discussion 

of the Split Single Resource Schedule algorithm is provided in Appendix B.II. 

 An example of invoking the Split Single Resource Schedule algorithm to partition 

a single combined resource that has 100 map task slots and 100 reduce task slots into 50 

resources with at least one map task slot and 30 resources with at least one reduce task slot 

is described. First, the Split Single Resource Schedule algorithm creates 100 single 

capacity map resources and 100 single capacity reduce resources. The map tasks and 
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reduce tasks from the single combined resource are then assigned to the single capacity 

resources. Next, the Split Single Resource Schedule algorithm creates 50 resources, each 

with ⌊100/50⌋ = 2 map task slots, and 30 out of the 50 resources will have reduce task 

slots. More specifically, each of these 30 resources will have at least ⌊100/30⌋ = 3  reduce 

task slots. Since there are 100 − 30 ∗ 3 = 10 remaining reduce task slots, 10 out of the 30 

resources will have an additional reduce task slot, and thus, these 10 resources will have a 

total of 4 reduce task slots. Each new resource r is then assigned map tasks from  𝑐𝑟
𝑚𝑝

 

single capacity resources in MR and assigned reduce tasks from 𝑐𝑟
𝑟𝑑 single capacity 

resources in RR. 

4.3.2 Performance Optimization 2: Handling Earliest Start Time of Jobs 

The second performance optimization, referred to as POpt2, focuses on optimizing 

the processing of jobs with earliest start times that are greater than their arrival times. After 

performing a number of preliminary experiments, it was found that when the workload 

comprises a large number of jobs that have earliest start times in the future (i.e., jobs that 

have arrived on the system but cannot start executing because their earliest start times have 

not yet past), the time required to perform the matchmaking and scheduling operations 

increases substantially. It was found that the main cause for this is that MRCP-RM maps 

the tasks of newly arriving jobs as well as the tasks of previously scheduled jobs that have 

not started executing. Recall from Section 4.1 that this is performed to provide the most 

flexibility in matchmaking and scheduling the jobs such that the number of late jobs is 

minimized. In general, when there are more tasks to map, the time required to generate and 

solve the OPL Model increases because there are more decision variables and constraints 

to process. To reduce this overhead, a mechanism is implemented to only start 
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matchmaking and scheduling jobs when the current time is greater than or equal to the 

job’s respective earliest start time, sj. Jobs that arrive and have their sj in the future are 

placed in a queue of jobs that are to be mapped at a later time. This in turn prevents MRCP-

RM from having to continuously map jobs that cannot execute yet, reducing the 

matchmaking and scheduling overhead.  

4.4 Performance Evaluation of the MRCP-RM Technique 

To investigate the effectiveness and efficiency of the MRCP-RM technique, an in-

depth simulation-based performance evaluation using synthetic workloads is conducted. 

Simulation is used because it provides the flexibility to systematically change the system 

and workload parameters. Both synthetic and real workloads have been used by researchers 

in performance evaluation of resource management algorithms [101]. Although real 

workloads are representative of real systems, they are inflexible in the sense that they 

cannot be modified easily to answer “what if” questions. Synthetic workloads, on the other 

hand, allow researchers to directly vary the different parameters that can affect 

performance and thereby permit the investigation of the impact of varying a given 

parameter on system performance. Note that a performance evaluation of the constraint 

programming based resource management technique using a real workload is described in 

Chapter 5. 

First, simulation experiments are conducted to compare the performance of MRCP-

RM with that of a technique called MinEDF-WC [70] (see Section 4.4.2), which has 

objectives similar to the MRCP-RM technique, using a synthetic workload based on 

MapReduce jobs used by Facebook (referred to as the Synthetic MapReduce Workload – 

Facebook). Second, experiments are performed to investigate the effect of various system 
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and workload parameters on the performance of the MRCP-RM technique. A Generic 

Synthetic MapReduce Workload (described in Section 4.4.3) is used in these experiments. 

Note that this performance evaluation focuses on the relative performance of the MRCP-

RM technique compared to that of the MinEDF-WC technique [70] and understanding the 

performance trends as captured in the degree of change in the performance metrics in 

response to changes in the system and workload parameters.  

The rest of this section is organized as follows. The experimental setup and the 

metrics used in the performance evaluation are described in Section 4.4.1. Descriptions of 

the two workloads used in the simulation experiments are then described in Section 4.4.2 

and Section 4.4.3. 

4.4.1 Experimental Setup 

The simulation experiments are executed on a PC running Windows 8 Professional 

64-bit on an Intel Core i5-4670 CPU (3.40 GHz) equipped with 16 GB of RAM. The 

following performance metrics are used to evaluate the MRCP-RM technique: 

 Proportion of late jobs (P) = 𝑁 / 𝑛 where N is the number of late jobs in an 

experiment and n is the total number of jobs processed in an experiment. 

 Average job turnaround time (T): The turnaround time of a job j is equal to CTj–

sj where CTj is the completion time of job j and sj is the earliest start time of job j. 

Thus, 𝑇 = [∑ (𝐶𝑇𝑗 − 𝑠𝑗)𝑗∈𝐽 ]/𝑛 where J is the set of jobs processed in an 

experiment. 

 Average job matchmaking and scheduling time (O): A measure of the processing 

time incurred by executing the MRCP-RM algorithm, including the time required 

for generating and solving the OPL Model. 𝑂 = (∑ 𝑜𝑗𝑗∈𝐽 )/𝑛  where oj is the 
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matchmaking and scheduling time of job j and is measured using Java’s 

System.nanoTime()[102] method. Note that there is a distinction between the 

metric PO used in Chapter 3 and the metric O that is used in this chapter. PO 

indicates the processing overhead for an entire batch of jobs, whereas O is the 

average processing overhead per job executed in the open system. 

In the simulation experiments, only the execution of the workload on the resources and the 

arrival of jobs are simulated. The MRCP-RM algorithm and the CP Optimizer solving 

engine are executed on the PC described earlier. Thus, O is a measured value, whereas P 

and T are generated as output from the simulation run. The O-by-T ratio (O/T) is used as 

an indicator for the processing overhead of the resource management algorithm. O/T is an 

appropriate indication of the processing overhead because it puts the measured values of 

the algorithm runtimes (O) into context by considering the value of O relative to the mean 

job turnaround time (T). 

Each simulation experiment is run long enough to ensure that the system operates 

at a steady state. In addition, each experiment is repeated a sufficient number of times such 

that the confidence intervals, at a 95% confidence level, for T and O are less than ±1% and 

±5% of their respective average values for most cases. This resulted in a reasonable time 

for running the simulation experiments. The resulting accuracy of the simulation results is 

deemed to be adequate for the nature of the investigation, which focuses on examining the 

trend in the variation of a given performance metric in response to changes in the system 

and workload parameters.  
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4.4.2 Synthetic MapReduce Workload—Facebook   

The Synthetic MapReduce Workload—Facebook is generated from workload 

traces collected on a production Hadoop cluster at Facebook in October 2009 [103]. This 

production Hadoop cluster processes and analyzes event logs from the Facebook social 

network for a wide variety of different applications, including business intelligence, spam 

detection, and ad content optimization. In addition to these production jobs that run 

periodically on the cluster, the cluster also processes many different experimental jobs 

submitted by analysts and engineers working at Facebook. These experimental jobs can 

include time-consuming and compute-intensive machine learning computations or smaller 

(1-to-2 minute) ad hoc queries that are submitted via a SQL interface. For example, such 

ad hoc query based jobs can include text search jobs and aggregation jobs. A text search 

job is used to find a specific string in the supplied input data, whereas the aggregation job 

is used, for example, to compute advertisement revenue from each IP address in a set of IP 

addresses [103].  

The Synthetic MapReduce Workload—Facebook is chosen to conduct experiments 

in this research because it is based on a real-world MapReduce workload from a production 

Hadoop cluster, and it is also used by [70], which describes a resource management 

technique that has similar objectives to this research. As shown in Table 4.1, the Synthetic 

MapReduce Workload—Facebook comprises 1000 jobs and each job has a specified 

number of map tasks (𝑘𝑗
𝑚𝑝

) and a specified number of reduce tasks (𝑘𝑗
𝑟𝑑). Most of the jobs 

(68%) in the workload have 13 or fewer tasks, and 4% of the jobs are very large and have 

over 1000 tasks. The execution times of the map and reduce tasks are generated using 

LogNormal, LN(μ, σ2), distributions where μ is the mean and σ2 is the variance [70]. More 
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specifically, the execution times of the map and reduce tasks (in milliseconds) are 

generated using LN(9.9511, 1.6764) and LN(12.375, 1.6262), respectively.  Job arrivals are 

generated using a Poisson process and each job type has an equal probability of arriving 

on the system until the number of jobs that have arrived reaches its limit (see “Number of 

Jobs” column in Table 4.1).  The earliest start time of a job j (sj) is equal to its arrival time, 

and the deadline of a job j (dj) is generated as follows: dj = sj + SETj
R * U(1, 2). Recall from 

Section 3.1.1 that SETj
R is the time it takes to execute job j on R, assuming job j is the only 

job executing on R. The symbol U(1, 2) represents a uniform distribution where “1” and 

“2” are the lower-bound (inclusive) and upper-bound (inclusive) of the distribution, 

respectively. In line with [70], the system used to execute this workload consists of 64 

resources where each resource has one map task slot and one reduce task slot.  

Table 4.1. Job Information for the Synthetic MapReduce Workload—Facebook [70]. 

Job Type 𝒌𝒋
𝒎𝒑

 𝒌𝒋
𝒓𝒅 Number of Jobs 

1 1 0 380 
2 2 0 160 
3 10 3 140 
4 50 0 80 
5 100 0 60 
6 200 50 60 
7 400 0 40 
8 800 180 40 
9 2400 360 20 

10  4800 0 20 

 

4.4.3 Generic Synthetic MapReduce Workload  

Table 4.2 presents the system and workload parameters for the Generic Synthetic 

MapReduce Workload. This workload is adapted from [53] and is a workload that can 

generate jobs with a different number of tasks and different execution times. In addition, 

this workload provides the ability to systematically vary workload parameters such that 
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their effect on system performance can be investigated. The selection of parameter values 

and the distributions used to generate the jobs in this workload are based on [53] and [70]. 

In line with [70], the job arrivals are generated using a Poisson process with arrival rate, λ. 

The values of λ are chosen to subject the system to different levels of system load that leads 

to an average resource utilization on the default number of resources (refer to Table 4.2) 

ranging from low (approximately 5%) to high (approximately 80%). The attributes of each 

job j that arrives on the system are generated as follows. First, the earliest start time of job 

j (sj) can be its arrival time (atj) or a future time after atj, depending on a random variable 

rv, which follows a Bernoulli distribution with parameter p. The parameter p is the 

probability that a job j has sj greater than atj. The parameter smax is the upper-bound of the 

discrete uniform distribution (DU) used to generate the value that is added to atj for 

calculating the sj of jobs that have sj greater than atj. The number of map tasks (𝑘𝑗
𝑚𝑝

) and 

reduce tasks (𝑘𝑗
𝑟𝑑) are also generated using DU distributions as shown in Table 4.2.  

A job j’s deadline (dj) is generated as the sum of sj and the product of SETj
R and an 

execution time multiplier, em. Recall from Section 3.1.1 that SETj
R is the execution time of 

job j when it is executed at its maximum degree of parallelism on a set of resources R with 

m resources. The parameter em is used to determine the laxity (or slack time) of the job 

and is generated using a uniform distribution (U) where “1” is the lower-bound and emmax 

is the upper-bound of the distribution. Note that the ceiling function is used to round dj up 

to the nearest integer. Moreover, the execution times of the map and reduce tasks of a job 

are generated using DU distributions as shown in Table 4.2. The parameter memax is the 

upper-bound of the DU distribution used to generate the map task execution times. Note 

that the map task execution times include the time required to read the input data, and the 
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reduce task execution times include the time required to exchange data (e.g., intermediate 

keys) between the map phase and reduce phase. Lastly, the number of resources (m) that 

are used to execute the jobs in the system and the map and reduce task capacities 

(𝑐𝑟
𝑚𝑝

and 𝑐𝑟
𝑟𝑑) of each resource r is specified. The parameters 𝑐𝑟

𝑚𝑝
and 𝑐𝑟

𝑟𝑑 denote the 

number of map tasks and reduce tasks, respectively, that a resource r can run in parallel at 

a given point in time. 

 

Table 4.2. System and Workload Parameters for the Generic Synthetic MapReduce 

Workload. 

Parameter Values 
Default 
Value 

Job    

Arrival rate, λ (jobs/sec) λ = {0.001, 0.01, 0.015, 0.02} λ = 0.01 

Earliest start time, sj (sec) 

𝑠𝑗 = {
𝑎𝑡𝑗,                                   𝑟𝑣 = 0

𝑎𝑡𝑗  +  𝐷𝑈(1,   𝑠𝑚𝑎𝑥)   𝑟𝑣 = 1
 

where rv ~Bernoulli(p) 
p = {0.1, 0.5, 0.9} 
smax = {1, 5, 25} * 104 

p = 0.5 
smax = 50000 

No. of Map Tasks, 𝑘𝑗
𝑚𝑝

 𝑘𝑗
𝑚𝑝

~ DU(1, 100) - 

No. of Reduce Tasks, 𝑘𝑗
𝑟𝑑 𝑘𝑗

𝑟𝑑~ DU(1, 𝑘𝑗
𝑚𝑝

) - 

Deadline, dj (sec)  
𝑑𝑗 = ⌈𝑠𝑗  +  𝑆𝐸𝑇𝑗

𝑅  ∗  𝑒𝑚⌉ where 

em ~ U(1, emmax) and emmax = {2,  5, 10} 
emmax = 5 

Task   

Map task execution time, me  

(sec) 
me ~ DU(1, memax) 
where memax = {10, 50, 100} 

memax = 50 

Reduce task execution time, re 
(sec) 

re = ⌈(3 ∗ ∑ 𝑒𝑡)/𝑡∈𝑇𝑗
𝑚𝑝 𝑘𝑗

𝑟𝑑⌉ +  𝐷𝑈(1, 10) - 

Resource   
Number of Resources, m m = {25, 50, 100} m = 50 

Capacity 𝑐𝑟
𝑚𝑝

=  𝑐𝑟
𝑟𝑑  =  2 - 

Note: DU = discrete uniform distribution, U = uniform distribution 

 

The distributions used for the workload parameters: 𝑘𝑗
𝑚𝑝

, 𝑘𝑗
𝑟𝑑

, me, and re are 

adopted from [53], whereas the parameter dj (that is not used in [53]) is generated using a 

similar approach to [70]. Note that the related works [53] and [70] do not consider jobs that 
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have sj greater than atj (i.e., they only considered jobs with sj equal to atj). This research 

investigates jobs with sj equal to atj as well as jobs with sj greater than atj. To examine how 

the individual parameters: λ, p, smax, emmax, memax, and m affect system performance, factor-

at-a-time experiments, where one parameter is varied and the other parameters are kept at 

their default values (shown in the third column of Table 4.2), are conducted. 

4.5 Comparison with Related Work 

This section discusses the results of the simulation experiments conducted to 

compare the performance of the MRCP-RM technique with that of the MinEDF-WC 

technique [70] (recall Section 2.5.6), which has objectives similar to the MRCP-RM 

technique: matchmaking and scheduling an open stream of MapReduce jobs with 

deadlines. In order to make a valid comparison between the MRCP-RM and MinEDF-WC 

techniques, simulation using the Synthetic MapReduce Workload—Facebook (described 

in Section 4.4.2) is used to obtain the values of P and T for each technique.  The same 

system and workload parameters used in the simulation-based performance evaluation of 

the MinEDF-WC technique described in [70] are also used in the simulation experiments 

of the MRCP-RM technique. In each simulation experiment that corresponds to a specific 

arrival rate, 100 simulation runs are performed that produced an interval less than ±10% of 

the mean value of P and an interval less than ±1.5% of the mean value of T at a confidence 

level of 95%. The mean value for the respective performance metric is the average 

computed over the 100 simulation runs.  

A comparison of the MRCP-RM and MinEDF-WC techniques in terms of P and T 

are shown in Figure 4.3 and Figure 4.4, respectively. The results show that the MRCP-RM 

technique achieves a significantly lower P (up to 93% lower) and a similar T in comparison  
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Figure 4.3. MRCP-RM vs MinEDF-WC: effect of λ on P. 

 

 

Figure 4.4. MRCP-RM vs MinEDF-WC: effect of λ on T. 

 

to the P and T, respectively, achieved by the MinEDF-WC technique presented in [70]. 

Note that the jobs in the Synthetic MapReduce Workload—Facebook have stringent 

deadlines (i.e., emmax is 2). This means that jobs need to be executed as close as possible to 
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their earliest start times to meet their deadlines. The results demonstrate the superiority of 

the MRCP-RM technique when using the Synthetic MapReduce Workload—Facebook. 

4.6 Effect of System and Workload Parameters 

This section focuses on analyzing the effect of various system and workload 

parameters on the performance of the MRCP-RM technique (referred to simply as MRCP-

RM). The experiments are conducted using the Generic Synthetic MapReduce Workload 

(described in Section 4.4.3) and the workload and system parameters that are investigated 

are outlined in Table 4.2. In the graphs presented in the following sub-sections, the 

confidence intervals at a 95% confidence level, which are observed to be less than ±5% of 

the respective mean value in most cases, are shown as bars originating from the mean value. 

Note that in this section, the values of P and T are shown in the same figure (see Figure 

4.5, for example) with P displayed as a bar graph that uses the scale on the left Y-axis and 

T displayed as a sequence of points that uses the scale on the right Y-axis. 

4.6.1 Effect of Job Arrival Rate 

 As expected, P, T, and O increase with the job arrival rate (λ) as depicted in Figure 

4.5 and Figure 4.6. The increase in λ increases the rate of jobs arriving on the system, which 

in turn leads to a high contention for resources. The high contention for resources means 

that MRCP-RM is not able to schedule all the jobs to start executing at their earliest start 

times. This means that some jobs need to be delayed, which in turn leads to an increase in 

T, and it also can cause some jobs to miss their deadlines, increasing P. The reason for O 

increasing can be attributed to jobs arriving on the system more frequently causing MRCP-

RM to have more jobs to match make and schedule each time it is invoked. This in turn 

causes MRCP-RM to have to generate and solve an OPL Model with more decision 
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variables and constraints, which requires more processing time and thus an increase in O 

is observed.  

 

 

Figure 4.5. MRCP-RM: effect of λ on P and T. 

 

 

Figure 4.6. MRCP-RM: effect of λ on O. 
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Another reason for why O increases with λ is described. When λ is high, jobs arrive 

on the system more frequently, causing a situation where MRCP-RM regularly observes 

that there are multiple tasks that have been scheduled but not finished executing. This in 

turn increases the model generation and solving times because of the additional decision 

variables and constraints that need to be processed for each task in the system. At lower λ, 

this situation does not occur as often because tasks have more time to finish executing 

before new jobs arrive. Note that it is observed that O is still small compared to T, even at 

higher values of λ. For example, O/T, which is an indicator of the processing overhead, is 

observed to increase from 0.005% to 0.04% as λ increases from 0.001 to 0.02 jobs per sec. 

4.6.2 Effect of Task Execution Times 

 Increasing memax, the upper-bound of the execution time of map tasks (me), not only 

increases the average me, but it also increases the average execution time of reduce tasks 

(re). This is because of the relationship between re and me as shown in Table 4.2 . Thus, 

the overall execution time of a job that comprises both map tasks and reduce tasks increases 

as memax increases. The results presented in Figure 4.7 and Figure 4.8 show that P, T, and 

O all increase with memax. T is expected to increase with memax because as memax increases 

the required execution times of the jobs submitted to the system also increase. Furthermore, 

since jobs have high execution times, they remain in the system for a longer period of time, 

leading to a higher contention for resources and P increasing. Recall that MRCP-RM 

creates and solves a new OPL Model when jobs arrive and adds a new constraint to the 

OPL Model for each task that has started but not completed executing. In general, adding 

more decision variables and constraints increases the model generation and solving times, 

which causes O to increase. However, as captured in Figure 4.8, O is still observed to be 
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much smaller than T. O/T is observed to remain lower than 0.02% when memax is changed 

from 10 sec to 100 sec.  

 

 

Figure 4.7. MRCP-RM: effect of memax on P and T. 

 

 

Figure 4.8. MRCP-RM: effect of memax on O. 
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4.6.3 Effect of Earliest Start Time of Jobs 

Figure 4.9 and Figure 4.10 show that P, T, and O tend to decrease as smax increases. 

At higher values of smax, MRCP-RM has more flexibility in scheduling jobs because the 

execution of jobs does not overlap as often. For instance, some jobs have earliest start times 

closer to their arrival times whereas other jobs have earliest start times further ahead in the 

future. This allows jobs to be scheduled to start executing at different points in time, which 

results in a lower contention for resources. In other words, more jobs can start executing at 

their earliest start times, resulting in a lower P and T. The low contention for resources also 

contributes to O decreasing because MRCP-RM has less jobs to process at a given point in 

time.  

 

 

Figure 4.9. MRCP-RM: effect of smax on P and T. 
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and O as p increases is not as substantial compared to the decrease in P and O as smax is 

increased. This is because the range of earliest start times for the jobs in the experiments 

where p is investigated is not as large as those used in the experiments where smax is 

investigated. 

 

Figure 4.10. MRCP-RM: effect of smax on O. 

 

 

 

Figure 4.11. MRCP-RM: effect of p on P and T. 
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Figure 4.12. MRCP-RM: effect of p on O. 
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resources, some jobs cannot be executed at their earliest start times, resulting in some of 

these jobs missing their deadlines.  

 

 

Figure 4.13. MRCP-RM: effect of emmax on P and T. 
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Figure 4.14. MRCP-RM: effect of emmax on O. 
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Figure 4.15. MRCP-RM: effect of m on P and T. 

 

 

Figure 4.16. MRCP-RM: effect of m on O. 
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approximately 80% for example, to show that the MRCP-RM technique remains effective 

under high load (as indicated by the low values of P and O/T achieved in the results 

presented in Section 4.6.1 to Section 4.6.5). Recall from Section 4.4.1 that O/T is an 

indicator of the processing overhead as O/T puts the measured values of the algorithm 

runtimes (O) into context by considering the value of O relative to the mean job turnaround 

time (T). In addition to performing experiments using low arrival rates (generating a low 

system load) and a small number of resources, high arrival rates (generating a high system 

load) and a large number of resources are also used to investigate the scalability of the 

MRCP-RM technique. The results of the experiments demonstrate that P remains less than 

4% and the overhead of the algorithm is observed to be low: O remains lower than 0.57 

sec and the O/T ratio is lower than 0.09%. Regarding the memory required for solving the 

OPL Model, it is observed that for λ equal to 0.001, 0.01, 0.015, and 0.02 jobs per sec, the 

average memory usage is 169, 489, 662, and 803 MB, respectively. This value is reasonable 

for today’s servers, which typically have tens of GBs of RAM. 

Using the experimental parameters outlined in Table 4.2 the following observations 

are made with respect to O/T. For a given arrival rate (λ), as the number of resources in the 

system (m) increases, O/T is observed to decrease due to less contention for resources (e.g., 

from 0.09% to 0.01% as m increases from 25 to 100) (refer to Section 4.6.5). On the other 

hand, for a given m, as λ increases, O/T increases because of the higher contention for 

resources (e.g., from 0.005% to 0.039% as λ increases from 0.001 to 0.02 jobs per sec) 

(refer to Section 4.6.1). These results demonstrate that O/T will not continuously increase 

if both m and λ increase. In other words, for a reasonable contention for resources (e.g., for 

a resource utilization of 0.8), O/T is expected to be reasonable. Moreover, if a high value 
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of O is a concern for a given system, it is possible to configure and tune the IBM CP 

Optimizer solving engine to reduce the time spent solving the OPL Model. For example, 

one can set a time limit for finding a solution, or allow the solver to find a sub-optimal 

solution which is within a given percentage of the optimal value. 

4.7 Summary and Discussion 

This chapter describes MRCP-RM, an effective and efficient matchmaking and 

scheduling technique for processing an open stream of MapReduce jobs with SLAs on a 

computing environment with a fixed number of resources, such as a private cluster or a set 

of resources acquired a priori from a public cloud. The objective of MRCP-RM is to 

minimize the number of jobs that miss their deadlines. To accomplish this, MRCP-RM 

formulates the matchmaking and scheduling problem as an optimization problem and 

solves it using constraint programming. An in-depth performance evaluation of MRCP-

RM is conducted and a number of insights into system behaviour are gained by analyzing 

the experimental results as summarized next. 

 Comparison with MinEDF-WC technique [70]: It is observed that MRCP-RM 

achieves a lower P and has a similar T compared to MinEDF-WC. A reduction in 

P as high as 93% and on average 82% is observed. 

 Effectively controlling P: In most of the factor-at-a-time experiments conducted 

(refer to Section 4.6), MRCP-RM is observed to achieve a very low P (less than 

0.6%). However, in the experiments where jobs are susceptible to miss their 

deadlines and the contention for resources is high (e.g., when emmax is small, or 

m is small, or λ is high, or memax is high) P is still observed to be low: 3.46%, 

3.89%, 1.7%, and 1.96%, respectively.  
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 Dependence of T on resource contention: T increases most significantly when 

there is a high contention for resources (e.g., when λ is high, or m is small, or 

memax is large), resulting in some jobs not being able to start executing at their 

earliest start times. This demonstrates the relationship between T and the 

contention for resources.  

 Efficiency: In the factor-at-a-time experiments described in this chapter, MRCP-

RM is observed to have an O of less than 0.05 sec in all cases except when there 

is a high contention for resources. However, for these cases, O is still observed to 

be low: less than 0.57 sec. 

o The main factor that causes an increase in O is the time it takes for the CP 

Optimizer to generate and solve the OPL Model. In general, an OPL Model 

that has more input data (e.g., a high number of jobs, tasks, and resources) 

takes longer to solve due to the higher number of constraints and decision 

variables that need to be processed.  

 Scalability: O is observed to increase when the contention for resources is high 

(e.g., high λ). However, O/T is observed to be less than 0.09% in all the factor-

at-a-time experiments conducted, demonstrating that the matchmaking and 

scheduling overhead is small. MRCP-RM is thus observed to be scalable over the 

wide range of system and workload parameters experimented with. It is expected 

that for a reasonable range of contentions for resources, MRCP-RM can work 

efficiently and achieve a reasonable O and O/T. 

Overall, the results of the performance evaluation demonstrate that the MRCP-RM 

technique can effectively and efficiently perform matchmaking and scheduling of an open 
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stream of MapReduce jobs with SLAs, leading to a small proportion of jobs missing their 

deadlines and a low matchmaking and scheduling overhead over a wide-range of system 

and workload parameters experimented with. 

Further Improvement in Scalability: A direction for future work is the investigation 

of whether using batching: performing matchmaking and scheduling for a subset of the 

jobs (batch) that are currently in the queue, can be used to enhance the scalability of the 

MRCP-RM technique even further. It is possible that using batching can be effective when 

there is a very large number of jobs in the queue, leading to a large number of decision 

variables and constraints that require a significant amount of time for solving the OPL 

Model. However, using batching can also increase the processing overhead because 

multiple OPL Models, one for each batch, need to be generated and solved. The trade-off 

between the performance impacts of the increase in this processing overhead and the 

potential reduction in the OPL Model solving times warrants further investigation. 

Moreover, exploring how other resource allocation strategies, such as first-fit, worst-fit, 

and random fit, impact system performance when using POpt1, which currently leverages 

a best-fit resource allocation strategy and is described in Section 4.3.1, also forms an 

interesting direction for future research.  
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Chapter 5 Hadoop Constraint Programming based Resource 

Management Technique  

The strong performance of the MRCP-RM technique in simulation experiments 

(described in Section 4.5 and Section 4.6) motivates the work presented in this chapter, 

which focuses on devising a revised version of the MRCP-RM technique and implementing 

it on a real system: Hadoop [25]. Recall from Section 2.4 that Hadoop is a popular open-

source framework that implements the MapReduce programming model. In Hadoop, both 

matchmaking and scheduling are performed by an entity referred to as the Hadoop Task 

Scheduler [25]. The new technique, which is called the Hadoop Constraint Programming 

based Resource Management technique (HCP-RM), is implemented in a new scheduler for 

Hadoop named the Constraint Programming based Scheduler (abbreviated CP-Scheduler). 

In addition to describing the HCP-RM algorithm, this chapter describes the experiences 

and the challenges that are encountered in designing and implementing the CP-Scheduler 

in Hadoop 1.2.1. Note that Hadoop 1.2.1 is used because it was the more stable and more 

widely used version of Hadoop at the time this research started. However, it is possible to 

adapt this work to other versions of Hadoop. The CP-Scheduler is devised to perform 

matchmaking and scheduling of an open stream of Hadoop jobs with deadlines on a 

Hadoop cluster where the objective is to minimize the number of jobs that miss their 

deadlines. To the best of our knowledge, there is no existing research describing a CP-

based scheduler for Hadoop that can perform matchmaking and scheduling of an open 

stream of Hadoop jobs with deadlines.  

The rest of this chapter is organized as follows. Section 5.1 presents an overview 

of the CP-Scheduler and the HCP-RM algorithm. In Section 5.2, a description of how 
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matchmaking and scheduling is performed in Hadoop is provided. The focus of Section 5.3 

is on the design and implementation of the CP-Scheduler. Section 5.4 describes the HCP-

RM algorithm, including the technique devised to support data locality. In Section 5.5, the 

performance evaluation of HCP-RM, including a description of the two workloads used in 

the experiments, is provided. The results of the experiments are then presented and 

discussed in Section 5.6. The focus of Section 5.7 is on the investigation into how error in 

user-estimated execution times can affect system performance. With little existing work on 

these issues in the context of Hadoop systems, the experimental results can lead to new 

insights into system behaviour and performance. Lastly, in Section 5.8, a summary and 

discussion of the chapter is provided.  

5.1 Overview of the CP-Scheduler and the HCP-RM Algorithm 

Figure 5.1 shows a Hadoop cluster deploying the CP-Scheduler, which implements 

the HCP-RM algorithm. The Hadoop cluster comprises a single master node (NameNode 

and JobTracker) and m slave nodes (DataNodes and TaskTrackers). Recall the discussion 

of Hadoop provided in Section 2.4. Users submit Hadoop jobs to the JobTracker, which 

uses the CP-Scheduler to match make and schedule the map and reduce tasks of the jobs 

onto the TaskTrackers. More specifically, the HCP-RM algorithm of the CP-Scheduler 

uses IBM CPLEX’s Java APIs to create and solve an optimization problem that models the 

matchmaking and scheduling problem. The optimization problem is formulated using 

constraint programming and it is referred to as the CP Model (refer to Section 3.3). The 

implementation of the CP Model using CPLEX’s Optimization Programming Language 

(OPL) is called the OPL Model (recall Section 3.5.3). 
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Figure 5.1. Example of a Hadoop cluster deploying the CP-Scheduler. 

 

A flowchart that provides a high-level overview of the HCP-RM algorithm that is 

used by the CP-Scheduler is presented in Figure 5.2. The HCP-RM algorithm is invoked 

by the JobTracker each time it receives a heartbeat message from a TaskTracker (recall 

Section 2.4) to perform matchmaking and scheduling. The input required by the algorithm 

is a TaskTracker to assign tasks too. The first step is to create the input data required by 

the CP Model, which is a set of jobs to schedule, J, and a set of resources, R, on which J is 

to be executed on (step 1). Note that J includes newly arriving jobs that have not been 

scheduled as well as jobs that have been previously scheduled, but have not completed 

executing. Next, the HCP-RM algorithm checks if there are any jobs in J (step 2). If J is 

empty, meaning there are no new jobs to schedule and no jobs currently scheduled or 

executing on the system, the algorithm ends (step 3b). Otherwise, the algorithm checks to 
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see if there are any new jobs to schedule in J, or any new resources in R (step 3a). Note 

that the resources in R can change in two cases: (1) when new resources are added to R as 

a result of new TaskTrackers being added to the Hadoop cluster, or (2) when resources are 

removed from R because TaskTrackers that are part of the Hadoop cluster fail or crash. If 

there is new input data, the algorithm creates and solves a new CP Model to perform 

matchmaking and scheduling (step 4a). Checking for new input data in J and R is performed 

to prevent unnecessarily creating and solving a CP Model (which is a source of overhead) 

when a solution for the same input has already been found previously. In step 5, the solution 

of the CP Model is used to assign tasks to the TaskTrackers for execution. The algorithm 

then ends (step 6). A more detailed description of the HCP-RM algorithm is provided in 

Section 5.4. 
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Figure 5.2. Overview of the HCP-RM algorithm. 

 

5.1.1 Challenges in Designing and Implementing the CP-Scheduler 

The challenges encountered in designing and implementing the CP-Scheduler are 

summarized. The main challenge is understanding the Hadoop source code to learn the 
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intricacies of how matchmaking and scheduling is performed in Hadoop and determining 

which of the Hadoop classes need to be modified to implement a new scheduler (discussed 

in Section 5.2). Some of the other challenges in devising the CP-Scheduler include:  

 Determining how to create the input data for the OPL Model from the Hadoop 

classes (see Section 5.3.2) 

 Integrating IBM CPLEX into Hadoop’s source code (see Section 5.3.2) 

 Investigating how to handle IBM CPLEX’s lack of support for long values to 

represent timestamps (see Sections 5.3.3 and 5.4.2) 

 Devising a technique to ensure that a specific TaskTracker executes the task it is 

assigned in the solution of the CP Model (see Section 5.4) 

 Solving a problem that was discovered during preliminary testing where the 

reduce tasks for some MapReduce jobs stall and take a very long time to complete 

(discussed in Section 5.4.3) 

 Determining the Hadoop classes that need to be modified to support user-

specified job deadlines and to allow users to define the estimated task execution 

times of their jobs (described in Appendix C.I and Appendix C.II) 

5.2 Matchmaking and Scheduling in Hadoop  

This section provides a discussion of how matchmaking and scheduling is 

performed in Hadoop. Hadoop provides a pluggable scheduler framework [104] that allows 

developers to implement custom schedulers using their own scheduling logic and 

algorithms. Note that Hadoop uses the term scheduler to refer to the entity that performs 

matchmaking and scheduling. The key to implementing a custom scheduler for Hadoop is 

to extend Hadoop’s abstract class org.apache.hadoop.mapred.TaskScheduler and 
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implement the abstract method List<Task> assignTasks(TaskTracker tt). The 

assignTasks() method returns a list of tasks (including both map and reduce tasks) that 

the supplied TaskTracker should execute as soon as it receives the list. This list of tasks 

can be empty meaning that there are no new tasks to assign to the TaskTracker at the 

current time.  

The Hadoop org.apache.hadoop.mapred.JobTracker class implements the 

Hadoop JobTracker daemon (recall Section 2.4), which is responsible for matchmaking 

and scheduling the MapReduce jobs that are submitted to the system. The JobTracker class 

has a TaskScheduler private field named taskScheduler which stores the reference to the 

TaskScheduler object. The TaskScheduler object contains the logic and algorithms used 

to assign and schedule tasks on to TaskTrackers. More specifically, the JobTracker class 

invokes taskScheduler.assignTasks() each time it receives and processes a heartbeat 

message from a TaskTracker. Recall from Section 2.4 that heartbeats are the periodic status 

messages that TaskTrackers send to JobTracker. More detail on the intricacies of 

matchmaking and scheduling in Hadoop is provided next with a discussion on Hadoop’s 

default scheduler, the FIFO (first-in first-out) Scheduler. 

5.2.1 Hadoop FIFO Scheduler 

Hadoop’s default FIFO scheduler is implemented in the 

org.apache.hadoop.mapred.JobQueueTaskScheduler class (abbreviated JQTS), which 

extends Hadoop’s TaskScheduler abstract class. The JQTS class keeps jobs that are ready 

to execute in priority order and by default, this order is FIFO. There are two key classes 

used by JQTS: (1) JobQueueJobInProgressListener (abbreviated JQ-JIPL) and (2) 

EagerTaskInitializationListener (abbreviated ETIL). The JQ-JIPL class represents the 



 

 

123 

 

job queue manager, and by default, it sorts the jobs in the queue in FIFO order, but it is 

possible to implement a custom ordering strategy such as ordering jobs by non-decreasing 

order of their deadlines. JQ-JIPL extends Hadoop’s abstract class JobInProgressListener 

(abbreviated JIPL), which is a class that is used by the JobTracker class to listen for when 

a job’s state changes. The JIPL class has three key methods: jobAdded(), jobRemoved(), 

and jobUpdated(), which are invoked when JobTracker sees that a job is added, removed, 

or updated, respectively. For example, when a user submits a job to JobTracker, JQ-JIPL’s 

jobAdded() method is invoked by the JobTracker class to add the submitted job to JQ-

JIPL’s queue. 

The ETIL class prepares a submitted job for execution by initializing/creating the 

job’s tasks, which includes creating the map tasks and assigning each one a block of data, 

called a split, to process (recall Section 2.3). A thread pool with four worker threads is 

deployed by the ETIL class to initialize jobs. Similar to the JQ-JIPL class, the ETIL class 

extends the JIPL abstract class. Thus, as soon as a job is submitted to JobTracker, ETIL 

places the submitted job into its job initialization queue called jobInitQueue, which by 

default is sorted in FIFO order. The job remains in the queue until there is a worker thread 

available to initialize the job.  

5.3 Design and Implementation of the CP-Scheduler 

This section discusses the design and implementation of the CP-Scheduler. Similar 

to Hadoop’s default FIFO scheduler, the implementation of the CP-Scheduler starts with 

creating a class called CP_Scheduler, which extends Hadoop’s TaskScheduler abstract 

class. The CP_Scheduler class is placed in the org.apache.hadoop.mapred package and 

a class diagram showing its key fields and methods is presented in Figure 5.3. A discussion 
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of the JobQueueManager and JobInitializer classes used by the CP-Scheduler is 

provided next. The other fields and methods shown in Figure 5.3 are described in the 

discussion of the HCP-RM algorithm (see Section 5.4). 

 

+ CP_Scheduler()
+ assignTasks(tt : TaskTracker) : List<Task>
- generateAndSolve() : void
- createNewModelDefinition() :  void
- addConstraints(modelText:String, r:Resource_CPS,  
                               t:Task_CPS) : void
- extractSolution(keepLateTasks : boolean) : void
- createResourcesForCP() : void
- createJobsToScheduleForCP() : void
- removeTask(t:Task_CPS) : void
- identifyLocalMapTasks(j:Job_CPS) : void

- REFERENCE_TIME : long 
- jobQueueManager : JobQueueManager
- jobInitializer : JobInitializer
- oplFactory : IloOplFactory 
- settings : IloOplSettings 
- modelDef : IloOplModelDefinition 
- cpSolver : IloCP 
- oplModel : IloOplModel 

CP_Scheduler

+ CP_Scheduler()
+ assignTasks(tt : TaskTracker) : List<Task>
- generateAndSolve() : void
- createNewModelDefinition() :  void
- addConstraints(modelText:String, r:Resource_CPS,  
                               t:Task_CPS) : void
- extractSolution(keepLateTasks : boolean) : void
- createResourcesForCP() : void
- createJobsToScheduleForCP() : void
- removeTask(t:Task_CPS) : void
- identifyLocalMapTasks(j:Job_CPS) : void

- REFERENCE_TIME : long 
- jobQueueManager : JobQueueManager
- jobInitializer : JobInitializer
- oplFactory : IloOplFactory 
- settings : IloOplSettings 
- modelDef : IloOplModelDefinition 
- cpSolver : IloCP 
- oplModel : IloOplModel 

CP_Scheduler

 

Figure 5.3. Abbreviated class diagram of the CP-Scheduler. 

 

The JobQueueManager and JobInitializer classes extend Hadoop’s JIPL class 

and have similar functionality to the JQ-JIPL and ETIL classes (discussed in Section 5.2), 

respectively. However, there are some modifications that are made to the classes, as 

described next. In the JobInitializer class, the resortInitQueue() method is modified 

to sort jobs in non-decreasing order of their deadlines (i.e., priority is given to the jobs with 

an earlier deadline). Moreover, the JobQueueManager’s JobSchedulingInfoComparator 

object is also modified so that jobs with an earlier deadline will be placed at the head of 

the queue. Note that in Java, a Comparator is an interface used by Java collection objects 

to sort elements of the collection in a specified order [105]. JobSchedulingInfo is a nested 
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class [106] implemented in the JobQueueManager that assembles all the necessary job-

related information (e.g., job id and deadline) required by the JobQueueManager to perform 

its function. In Java, a nested class is a class defined within another class. Nested classes 

are typically used to group together related classes and increase encapsulation.  

The remainder of this section is organized as follows. First a discussion on the 

modifications made to the CP Model to make it work efficiently with Hadoop is presented 

in Section 5.3.1. A discussion of how IBM CPLEX is integrated in Hadoop is then provided 

in Section 5.3.2. Lastly, in Section 5.3.3, the entity classes used by the CP-Scheduler are 

described.  

5.3.1 Modifications to the CP Model 

This section discusses the modifications made to the CP Model (recall Section 3.3) 

to make it work more effectively in a Hadoop environment. First, a set of integer decision 

variables is added to the CP Model to represent the completion time of each job j in J 

(denoted CTj). In addition, a new constraint is added to the CP Model to define the value 

of CTj as follows: 

(𝐶𝑇𝑗  =  max
𝑡𝑟𝑑∈𝑇𝑗

𝑟𝑑
 (𝑎𝑡𝑟𝑑 +  𝑒𝑡𝑟𝑑))  ∀𝑗 ∈ 𝐽 

This constraint states that the completion time of a job j (CTj) should be set to the 

completion time of job j’s latest finishing reduce task.  

The second modification that is made to the CP Model is to the objective function. 

The original objective function of the CP Model only focuses on the minimization of the 

number of late jobs; however, the new objective function presented here also considers 
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minimizing the maximum turnaround time of the jobs. The equation for the new objective 

function is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ((∑ 𝑁𝑗

𝑗∈𝐽

)  +  1)  ×  𝑚𝑎𝑥𝑗∈𝐽(𝐶𝑇𝑗  − 𝑠𝑗) 

 

The first part of the objective function aims to minimize the number of late jobs, whereas 

the second part of the objective function is for minimizing the maximum turnaround time 

of the jobs. This change is made because it was found that during preliminary experiments 

tasks were not being distributed evenly among the TaskTrackers (resources) of the Hadoop 

cluster. The net effect of the modified objective function is to minimize the number of late 

jobs, while also trying to distribute the tasks evenly among the TaskTrackers (i.e., perform 

load balancing) to lower the turnaround time of the jobs. This is confirmed to be achieved 

by examining the output of preliminary experiments. Note that the reason for adding 1 to 

the sum of Nj is to ensure that the CP Optimizer solving engine still minimizes the 

maximum job turnaround time if there are no late jobs in the system (i.e., sum of Nj is equal 

to 0). 

5.3.2 Integration of IBM CPLEX with Hadoop 

This section briefly discusses how IBM CPLEX [15], which is used to solve the 

OPL Model, is integrated with Hadoop.  Note that a more detailed discussion can be found 

in Appendix C.III. To generate and solve the OPL Model, the CP-Scheduler imports IBM 

CPLEX’s Java libraries, which includes the following Java APIs [97]: ILOG Concert 

Technology, ILOG OPL, and ILOG CP. These APIs allow the CP-Scheduler to generate 

and create the OPL Model and invoke CPLEX’s CP Optimizer solving engine. More 
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specifically, the Java library packages that are used by the CP-Scheduler are named 

ilog.concert, ilog.opl, and ilog.cp.   

Two additional classes are devised for the CP-Scheduler to aid in the integration of 

CPLEX: OPLModelSource and OPLModelData. The OPLModelSource class stores the source 

code of the OPL Model. On the other hand, the OPLModelData class is used by the CP-

Scheduler to create the input data for the OPL Model. More specifically, OPLModelData, 

which extends the ilog.opl.IloCustomOplDataSource class [97], converts the 

CP_Scheduler class’ resources and jobsToSchedule lists to a format that can be used by 

the OPL Model (i.e., generates the OPL Model’s input sets: Jobs, Tasks, and Resources). 

5.3.3 Entity Classes 

Three entity classes, Job_CPS, Task_CPS, and Resource_CPS, are devised for the 

CP-Scheduler. These classes represent how the CP-Scheduler views MapReduce jobs, 

tasks, and TaskTrackers (resources), respectively, and store the necessary information 

required by the CP-Scheduler to perform matchmaking and scheduling of MapReduce jobs. 

An abbreviated class diagram showing the important fields, methods, and relationships of 

the three entity classes with the CP_Scheduler class is presented in Figure 5.4. As shown 

in the figure, the CP_Scheduler class maintains a list of jobs to schedule, called 

jobsToSchedule, and a list of resources to execute the jobs, called resources.  

The Job_CPS class contains information required by the CP-Scheduler to map jobs 

onto TaskTrackers (resources). This information is retrieved from Hadoop’s 

JobInProgress class and includes the following information about the job: id, earliest start 

time (or release time), deadline, map tasks, and reduce tasks. The JobInProgress class 

represents a MapReduce job that is being tracked by JobTracker and it stores all the 
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information for a MapReduce job including: the job’s map and reduce tasks, its state (e.g., 

running, succeeded, failed), as well as accounting information (e.g., launch time and finish 

time). The releaseTime and deadline fields of the Job_CPS class store the number of 

milliseconds elapsed from midnight, January 1, 1970 UTC, which is known as the Unix 

Epoch [107]. Since the releaseTime field is constantly updated depending on when the 

job is being scheduled (discussed more in Section 5.4), Job_CPS has an origReleaseTime 

field that stores the release time of the job when the job is first received by JobTracker.  

 

+ Resource_CPS(tts : TaskTrackerStatus)
+ addScheduledTask(t : Task_CPS) : void 
+ removeScheduledTask(t : Task_CPS) : void 
+ scheduledTaskCompleted(t : Task_CPS) : void
+ addLocalMapTask(t : Task_CPS) : void

- id : String
- numMapSlots : int
- numReduceSlots : int
- localMapTasks : List<Task_CPS>

Resource_CPS

+ Resource_CPS(tts : TaskTrackerStatus)
+ addScheduledTask(t : Task_CPS) : void 
+ removeScheduledTask(t : Task_CPS) : void 
+ scheduledTaskCompleted(t : Task_CPS) : void
+ addLocalMapTask(t : Task_CPS) : void

- id : String
- numMapSlots : int
- numReduceSlots : int
- localMapTasks : List<Task_CPS>

Resource_CPS

CP_SchedulerCP_Scheduler

+ Job_CPS(jip:JobInProgress)
+ normalizeAndConvertTimes(baseTime : 
long) : void

- id : JobID
- releaseTime : long 
- deadline : long 
- origReleaseTime : long
- isTimeNormalized : boolean 

Job_CPS

+ Job_CPS(jip:JobInProgress)
+ normalizeAndConvertTimes(baseTime : 
long) : void

- id : JobID
- releaseTime : long 
- deadline : long 
- origReleaseTime : long
- isTimeNormalized : boolean 

Job_CPS

+ Task_CPS(tip:TaskInProgress, 
parentJob:Job_CPS, execTime:int)
+ addLocalResource(r : Resource_CPS) 
: void

- id : TaskID
- executionTime : int
- isReduceTask : boolean
- numSlotsReq : int
- scheduledStartTime : int
- isExecuting : boolean
- localResources : List<Resource_CPS>

Task_CPS

+ Task_CPS(tip:TaskInProgress, 
parentJob:Job_CPS, execTime:int)
+ addLocalResource(r : Resource_CPS) 
: void

- id : TaskID
- executionTime : int
- isReduceTask : boolean
- numSlotsReq : int
- scheduledStartTime : int
- isExecuting : boolean
- localResources : List<Resource_CPS>

Task_CPS

 1..*
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Figure 5.4. Abbreviated class diagram of the CP-Scheduler’s entity classes. 
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The isTimeNormalized field indicates if the job’s releaseTime and deadline 

fields are normalized, which involves performing the following calculations:  

releaseTime = releaseTime – REFERENCE_TIME 

deadline = deadline - REFERENCE_TIME 

The REFERENCE_TIME variable is a field in the CP_Scheduler class that represents an epoch 

and stores a timestamp that is taken when the CP-Scheduler starts to map its first job. The 

releaseTime and deadline fields must be normalized because CPLEX does not support 

values of type long; only int is supported. Normalization of the releaseTime and 

deadline fields also includes converting the times from milliseconds to seconds in order 

to keep the unit of time consistent with the task execution times, which are reported in 

seconds. If the task execution times are reported using a different unit of time the 

releaseTime and deadline fields can be converted accordingly. These calculations and 

the time conversion is performed by invoking the normalizeAndConvertTimes() method. 

The Task_CPS class stores the information that the CP-Scheduler uses for 

matchmaking and scheduling the MapReduce tasks including the task’s: id, estimated 

execution time (in seconds), task type, and the number of task slots (resource capacity) 

required. All this information, except the estimated task execution times (discussed in 

Appendix C.II), is retrieved from Hadoop’s TaskInProgress class. Once a task is mapped, 

its assignedResource and scheduledStartTime fields are set to the resource that the task 

is scheduled to execute on and the time the task is to start running, respectively. The 

isExecuting field is set to true if the task is currently executing; otherwise, it is false. The 

Task_CPS class also has a parentJob field that indicates the job that the task belongs to.  

The Resource_CPS class contains TaskTracker information (retrieved from 

Hadoop’s TaskTrackerStatus class), including id (hostname), the number of map task 
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slots, and the number of reduce task slots. The tasks that are assigned to the resource are 

placed in either the schedMapTasks list or the schedRedTasks list, depending on the task 

type. Note that both these lists keep tasks sorted by non-decreasing order of their scheduled 

start times. The methods addScheduledTask() and removeScheduledTask() are used to 

add and remove tasks from the scheduled tasks lists, respectively. The last method, 

scheduledTaskCompleted(), is invoked when a task has completed its execution. 

Completed tasks are moved from the scheduled tasks lists to the completed tasks lists. Note 

that the other fields and methods shown in Figure 5.4 that have not yet been discussed, will 

be described in the upcoming sections. 

5.4 HCP-RM Algorithm 

This section describes the data-locality-aware HCP-RM algorithm (see Algorithm 

5.1), which is implemented in the CP_Scheduler class’ assignTasks() method. The 

assignTasks() method is invoked by JobTracker each time it receives a heartbeat message 

from a TaskTracker and its purpose is to assign tasks to the TaskTracker for execution. 

Since MapReduce/Hadoop applications typically process a large amount of data, frequent 

transmission of data from one machine in the Hadoop cluster to another machine in the 

cluster over the network can deteriorate system performance due to network delays and 

limited bandwidth in the cluster. Thus, it is beneficial to use a data-locality-aware system 

that can limit the data transfer between nodes as much as possible. A data-locality-aware 

system assigns tasks to execute on nodes that contain (or are close to) the input data of the 

task to eliminate (or minimize) data transmission over the network. The technique that is 

devised to support data locality is described in Section 5.4.1 and is used by the HCP-RM 

algorithm. 
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Algorithm 5.1: HCP-RM Algorithm 

Input: TaskTracker tt 

Output: list of tasks for the supplied TaskTracker to execute, named assignedTasks 

1: Get currently available map task slots and reduce task slots of tt. 

2: call createResourcesForCP() returning hasNewResources  

3: call createJobsToScheduleForCP() returning hasNewJobs 

4: if CP-Scheduler’s jobsToSchedule list is empty then return empty list 

5: if hasNewJobs = true or hasNewResources = true then 

6:  call generateAndSolve() 

7: end if 

8: res  Get Resource_ CPS object from CP-Scheduler’s resources list with the same 

id as tt. 

9: for each available map task slot in tt do  

10:  while there is a map task scheduled on res do 

11:   Task_CPS t  Get the map task with the earliest scheduled start  

     time from res. 

12:   tip  t.getTaskInProgress() 

13:   if tip is complete then 

14:    call removeTask() 

15:   else 

16:    jip  t.getParentJob().getJobInProgress() 

17:    call jip.obtainSpecificMapTask(tip)  returning mapTask 

18:    Add mapTask to assignedTasks. 

19:    break 

20:   end if 

21:  end while  

22: end for 

23: for each available reduce task slot in tt do  

24:  while there is a reduce task scheduled on res do 

25:   Task_CPS t  Get the reduce task with earliest scheduled start time 

     from res. 

26:   tip  t.getTaskInProgress() 

27:   if tip is complete then 

28:    call removeTask() 

29:   else if t.getParentJob().getMapTasks().isEmpty() then 

30:    jip  t.getParentJob().getJobInProgress() 

31:    call jip.obtainSpecificReduceTask(tip)  returning reduceTask 

32:    Add reduceTask to assignedTasks. 

33:    break 

34:   end if 

35:  end while  

36: end for 

37: return assignedTasks 
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A walkthrough of the HCP-RM algorithm is provided next. The input required by 

the algorithm is a TaskTracker to assign tasks to, and the output is a list of tasks for the 

supplied TaskTracker to execute (includes both map and reduce tasks). The first step (line 

1) is to calculate the number of currently available map task slots and reduce task slots of 

the supplied TaskTracker by subtracting the number of running tasks from the capacity of 

the resource as shown: 

availMapSlots = mapCapacity – runningMaps 

availReduceSlots = reduceCapacity – runningReduces 

The next step (lines 2-3) is to create the Resource_CPS list (called resources) and Job_CPS 

list (called jobsToSchedule), which are required as input to the OPL Model. The 

createResourcesForCP() method is invoked to create the resources list. More 

specifically, the createResourcesForCP() method uses the JobTracker’s 

activeTaskTrackers() method to retrieve a collection of TaskTrackerStatus objects, 

which are then used to create Resource_CPS objects via its constructor (refer to Figure 5.4). 

If the createResourcesForCP() method finds that the resources list has at least one new 

resource added or at least one resource has been removed, it returns true; otherwise, false 

is returned. Moreover, the jobsToSchedule list is created by invoking the 

createJobsToScheduleForCP() method, which checks the JobQueueManager’s jobQueue 

(a collection of JobInProgress objects) for new jobs that are ready to run (i.e., setup is 

complete and tasks are initialized) and creates a new Job_CPS object for each new job 

using the Job_CPS’ constructor. In addition, createJobsToScheduleForCP() invokes the 

identifyLocalMapTasks() method, which is described in detail in Section 5.4.1, to 

identify the resources that store the input data of each map task. This is required for making 
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the HCP-RM algorithm data-locality-aware. Note that the jobsToSchedule list includes 

new jobs to schedule and jobs that have been previously scheduled but have not completed 

executing. If there are new jobs added to the jobsToSchedule list, 

createJobsToScheduleForCP() returns true; otherwise, false is returned.  

The next step is to check if the CP-Scheduler’s jobsToSchedule list is empty. If 

this condition is true, then an empty task list is returned (line 4). Otherwise, the algorithm 

continues and if either the hasNewJobs or the hasNewResources flags are true, the CP-

Scheduler’s generateAndSolve() method (described in Section 5.4.2) is invoked to create 

and solve an OPL Model (see lines 5-7). These two flags are used to prevent unnecessarily 

invoking generateAndSolve(), which is a source of overhead, when a solution to the OPL 

Model for the same input data (jobsToSchedule and resources) has already been found. 

Once there is a solution to the OPL Model, either a new solution or a previously generated 

solution, the next step is to retrieve the assigned map and reduce tasks for the supplied 

TaskTracker. This is accomplished by retrieving the supplied TaskTracker’s corresponding 

Resource_CPS object from the CP-Scheduler’s resources list (line 8), which is the 

Resource_CPS object that has the same id as the supplied TaskTracker. The retrieved 

Resource_CPS object is saved in a variable named res. 

Each available map task slot of the supplied TaskTracker is then assigned a map 

task to execute if there is one available (lines 9-22). This is accomplished by performing 

the following operations. First, the map task (a Task_CPS object) with the earliest scheduled 

start time is retrieved from res and saved in a variable t (line 11). The map task t’s 

corresponding TaskInProgress (abbreviated TIP) object is then retrieved as shown in line 

12. The status of task t is then checked to see if it has completed executing using the 
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retrieved TIP object. If this is true, the CP-Scheduler’s removeTask() method is invoked 

(lines 13-14) to remove the task from the system. In addition, removeTask() also checks if 

the job’s mapTasks and reduceTasks lists are empty (i.e., checks if the job has completed 

executing). If this is true, the job’s releaseTime is set to its origReleaseTime, and the job 

is moved from the CP-Scheduler’s jobsToSchedule list to the completedJobs list. On the 

other hand, if the map task has not completed executing, the task is assigned to the supplied 

TaskTracker tt for execution (lines 15-20). This is accomplished by invoking a new 

method named obtainSpecificMapTask(TaskInProgress tip) that is implemented in 

Hadoop’s JobInProgress class. As the name suggests, given a TaskInProgress object, 

the obtainSpecificMapTask() method returns the corresponding Hadoop Task object 

(i.e., Task object that has the same id as TaskInProgress). The Task object that is returned 

is then added to the assignedTasks list. 

The same logic captured in lines 9-22 is then applied to the TaskTracker’s reduce 

task slots (see lines 23-36), except with one change to the else statement (line 15). The 

else statement is changed to an else if statement that checks if all the map tasks of the 

job have completed executing before the job’s reduce tasks are scheduled (line 29). This 

needs to be performed because of a problem discovered during preliminary testing that is 

described in Section 5.4.3. Moreover, a new obtainSpecificReduceTask() method is 

implemented in Hadoop’s JobInProgress class that returns the reduce task (Task object) 

with the same id as the supplied TIP and is used as shown in line 31. Lastly, the 

assignedTasks list, which now contains the tasks that the supplied TaskTracker should 

execute, is returned (line 37).  
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5.4.1 Technique to Support Data Locality 

This section describes the heuristic technique devised for the HCP-RM algorithm 

to support data locality. The technique increases the estimated execution time of non-local 

tasks (which are tasks that execute on a resource that does not store the input data for the 

tasks) by an estimated time taken to transfer the data from a resource containing the input 

data of the task. This allows the system to know that a task has a lower estimated execution 

time on a resource where its input data is stored locally compared to a resource that does 

not have its input data stored locally. This should therefore make it more likely that jobs 

are assigned to resources which contain their input data.  

The HCP-RM algorithm uses a method called identifyLocalMapTasks() (see 

Algorithm 5.2) to identify, for each map task in the supplied job, the resources that each 

map task can execute on locally. A resource can provide local execution if the input data 

of the task is stored locally on its disk. As described earlier, identifyLocalMapTasks() is 

invoked by the createJobsToScheduleForCP() method (line 3 of Algorithm 5.1). The 

createJobsToScheduleForCP() method invokes identifyLocalMapTasks() multiple 

times: once for each job in the jobsToSchedule list. A walkthrough of 

identifyLocalMapTasks() is provided next.  

The input required by the method is a Job_CPS object, which is an object that 

represents how the HCP-RM algorithm views a MapReduce job that has been submitted to 

the system. The method processes each of the supplied job’s map tasks (line 1), and for 

each map task t (represented by a Task_CPS object), the following operations are 

performed. First, the resources (represented by Resource_CPS objects) where t’s input data 

is located are retrieved and then saved in a list called localResources (line 2). This 
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operation is implemented by invoking the getSplitLocations() method of Hadoop’s 

TaskInProgress class, which returns the hostnames of the TaskTrackers (resources) where 

a task’s input data is stored. Next, the method iterates through each resource r in 

localResources (line 3) and performs two operations. The first operation is to add the map 

task t to resource r’s localMapTasks list (line 4), which is a list that stores all the map tasks 

that r can execute locally. The second operation is to add r to t’s localResources list (line 

5), which is a list that stores all the resources that can execute t locally. After all the map 

tasks of the input job are processed the method ends.  

 

Algorithm 5.2: CP-Scheduler’s identifyLocalMapTasks() 

Input: Job_CPS job 

Output: none 

1: for each map task t in job do 

2:  localResources  Get the resources where t’s input data is located. 

3:  for each resource r in localResources do 

4:   r.addLocalMapTask(t) 

5:   t.addLocalResource(r) 

6:  end for 

7: end for 

 

The OPL Model (recall Section 3.5.3) that is solved by the HCP-RM algorithm is 

modified to allow the execution time of a map task to be specified on a per resource basis. 

Recall that the OPL Model uses a data type called tuple for grouping together related data. 

More specifically, the OPL Model defines Job, Task, and Resource tuples (described in 

detail in Appendix A.III) to represent MapReduce jobs, MapReduce tasks, and resources 

(TaskTrackers), respectively. The OPL Model also defines a tuple called Option to 

represent the xtr decision variable, which is a binary variable used for matchmaking (recall 

Section 3.3). The variable xtr is set to 1 if task t is assigned to execute on resource r; 

otherwise, xtr is set to 0. Similar to the xtr variable, the Option tuple contains two attributes: 



 

 

137 

 

a Task t and Resource r. A set of Option tuples named Options is derived to contain all 

the possible combinations of tuples in the form <Task, Resource>. The change that is 

made to the OPL Model to allow the execution time of a map task to be specified on a per 

resource basis is removing the execution time attribute from the Task tuple and moving the 

attribute to the Option tuple. The execution time attribute for the Option tuples are read 

from a two-dimensional array called TaskExecutionTimes[Task, Resource], which 

specifies the execution time for each task t in AT on each resource r in R.  

The TaskExecutionTimes array is populated by the OPLModelData class. Recall 

from Section 5.3.2 that the OPLModelData class is used by the HCP-RM algorithm to 

convert the resources and jobsToSchedule lists to a format that the OPL Model can read 

(i.e., generates the OPL Model’s input datasets: Jobs, Tasks, and Resources). If a map task 

t can execute on a resource r where the input data is stored locally on its disk (referred to 

as local execution), the estimated execution time is equal to the execution time of the map 

task specified by the user (et). Conversely, if the map task executes on a resource where 

the input data is not stored locally (referred to as non-local execution), the estimated 

execution time is the sum of et and the time required to transfer the input data to the resource 

(called the data transmission time). Note that the HCP-RM algorithm knows whether a 

task t can execute on a resource r locally by checking the data in t’s localResources list 

or r’s localMapTasks list, which are initialized by the identifyLocalMapTasks() method 

described earlier.  

5.4.2 Generate and Solve Method 

The CP-Scheduler’s generateAndSolve() method is invoked by the HCP-RM 

algorithm to generate and solve the OPL Model (see line 6 of Algorithm 5.1). A 
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walkthrough of generateAndSolve(), presented in Algorithm 5.3, is provided next. The 

first step of the method is to check the value of the CP-Scheduler’s REFERENCE_TIME 

variable (abbreviated RT). If RT is not already initialized (i.e., RT is equal to -1), RT is set to 

the current system time, and in addition, the oplCurrentTime variable is set to 0 (lines 1-

3). Recall that RT is required to normalize the Job_CPS’ releaseTime and deadline fields 

as discussed in Section 5.3.3. If RT is already initialized (i.e., RT is not equal to -1), then 

oplCurrentTime is set to the current time minus RT and the oplCurrentTime is converted 

into seconds (lines 4-7). The oplCurrentTime variable represents the current time in the 

view of the OPL Model. IBM CPLEX does not support values of type long, and thus, the 

current time value must be referenced from an epoch, which in this case is 

REFERENCE_TIME.  

In the next steps (lines 8-12), each job (represented by a Job_CPS object) in the CP-

Scheduler’s jobsToSchedule list has its releaseTime and deadline fields normalized with 

respect to the REFERENCE_TIME and converted to seconds by invoking the Job_CPS’ 

normalizeAndConvertTimes() method (recall Section 5.3.3) (line 9). In addition, jobs that 

have a releaseTime less than the oplCurrentTime have their releaseTime updated to 

oplCurrentTime because a job cannot start executing in the past (lines 10-11). In line 13, 

a new OPL Model definition object is created by invoking the CP-Scheduler’s 

createNewModelDefinition() method, which is described in detail in Appendix C.IV. 

This method adds a new constraint to the OPL Model for each task in the system that has 

started executing but has not finished. This is needed for specifying that the task’s assigned 

resource is occupied from the interval starting from the task’s scheduled start time to its 

scheduled completion time. After a new model definition object is created, a new OPL 
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Model with input data from the CP-Scheduler’s jobsToSchedule and resources lists is 

then generated and solved using IBM CPLEX (lines 14-15).  

 

Algorithm 5.3: CP-Scheduler’s generateAndSolve()  

Input: none 

Output: none 

1: if REFERENCE_TIME = -1 then  

2:  REFERENCE_TIME  System.currentTimeMillis() 

3:  oplCurrentTime   0 

4: else 

5:  oplCurrentTime   System.currentTimeMillis() – REFERENCE_TIME 

6:  Convert oplCurrentTime to seconds. 

7: end if 

8: for each job j in CP-Scheduler’s jobsToSchedule list do 

9:  call j.normalizeAndConvertTimes (REFERENCE_TIME) 

10:   if oplCurrentTime  > j.getReleaseTime() then  

11:    j.setTempReleaseTime(oplCurrentTime) 

12: end for 

13: call createNewModelDefinition() 

14: Create a new OPL model and attach the data source containing the    

 CP-Scheduler’s jobsToSchedule and resources list. 

15: Generate and solve the OPL model. 

16: call extractSolution()  

 

 

After a solution to the OPL Model is found, the assigned resource and scheduled 

start time of each task is retrieved and saved to its corresponding Task_CPS objects’ 

assignedResource and scheduledStartTime fields, respectively, by invoking the CP-

Scheduler’s extractSolution() method (line 16). In addition, the tasks (Task_CPS 

objects) that are assigned to resource r (a Resource_CPS object) are added to r’s scheduled 

map tasks list or scheduled reduce tasks list depending on its task type. The discussion 

provided in Appendix B.I describes in more detail how the steps shown in lines 14-16 are 

performed. In addition, Appendix B.I also discusses the purpose of the CP_Scheduler 

class’ factory, settings, cpSolver, modelDef, and oplModel fields. 
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5.4.3 Stalling Problem for Reduce Tasks 

During preliminary testing, it was found that in some situations the reduce tasks of 

a job would be scheduled to execute on the system, but the reduce tasks would stall (i.e., 

would execute partially and then stop executing) and take a very long time to complete. It 

was discovered that the reason why the reduce tasks were not being executed in a timely 

manner is because by default Hadoop starts to schedule/execute reduce tasks of a job once 

a few of its map tasks have finished executing (i.e., Hadoop does not wait until all the job’s 

map tasks have completed before scheduling/executing the reduce tasks). This can be 

problematic because if not all the map tasks of the job are completed, the reduce tasks also 

cannot finish executing, and thus the reduce tasks remain idle and unnecessarily consume 

the reduce task slots of TaskTrackers. This can in turn delay the execution of the reduce 

tasks of jobs that already have their map tasks completed if there is no other available 

reduce task slots to execute on.  

 Note that it is possible for the reduce tasks of a job j to stall for a long period of 

time because the CP-Scheduler may delay the execution of job j’s map tasks in order to 

execute the map tasks of a newly arriving job with an earlier deadline. One approach to 

solve this problem is to give execution priority to all of job j’s map tasks so that they can 

execute before other map tasks. Initially, this approach was used and implemented by 

adding constraints to the OPL Model that stated that map tasks should be scheduled to 

execute at their originally scheduled times and not be rescheduled. However, further testing 

showed that this solution is not ideal when it comes to minimizing the number of late jobs 

because jobs that have an earlier deadline may have to wait to be executed, leading to these 

jobs missing their deadlines. The solution that is used to avoid these problems is to prevent 
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the CP-Scheduler from assigning reduce tasks of a job j to TaskTrackers until all of job j’s 

map tasks have completed executing (as shown in line 29 of Algorithm 5.1). This approach 

guarantees that reduce tasks can complete their execution once they are scheduled on a 

TaskTracker, and it also allows the tasks of jobs with an earlier deadline to be executed 

first. 

5.5 Performance Evaluation of the HCP-RM Technique 

A rigorous performance evaluation of the HCP-RM technique (CP-Scheduler) is 

conducted on a Hadoop cluster deployed on Amazon EC2, which is a public cloud that 

provides Infrastructure-as-a-Service, to determine its effectiveness and to obtain insights 

into system behaviour and performance. The performance of the HCP-RM technique is 

compared to that of an Earliest Deadline First Hadoop scheduler (abbreviated EDF-

Scheduler). The comparison with the EDF-Scheduler is made to investigate if the HCP-

RM technique is more effective than the well-known EDF scheduling policy when 

matchmaking and scheduling an open stream of MapReduce jobs with deadlines. The EDF-

Scheduler is implemented in Hadoop by defining a class called EDF_Scheduler in the 

package org.apache.hadoop.mapred. More specifically, the implementation of the 

EDF_Scheduler is based on the implementation of Hadoop’s default FIFO scheduler, 

JobQueueTaskScheduler (discussed in Section 5.2.1) with changes that are made to the 

JQ-JIPL and ETIL classes. In the ETIL class the resortInitQueue() method is modified 

to sort the queue in non-decreasing order of job deadlines (i.e., priority is given to the jobs 

with an earlier deadline).  Similarly, the JQ-JIPL class’ JobSchedulingInfoComparator is 

also modified to sort jobs in non-decreasing order of their deadlines.   
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The rest of this section is organized as follows. The experimental setup and the 

performance metrics used to evaluate the HCP-RM technique and the EDF-Scheduler are 

described in Section 5.5.1. Next, descriptions of the two workloads that are used in the 

experiments are provided in Section 5.5.2 and Section 5.5.3. 

5.5.1 Experimental Setup 

The experiments conducted to evaluate the performance of the HCP-RM technique 

and the EDF-Scheduler are performed on a Hadoop cluster deployed on Amazon EC2. 

Amazon EC2 allows consumers to launch virtual machines (VMs) called instances. After 

launching these instances, consumers can connect to the instance to deploy and run their 

own applications. Amazon EC2 also provides various instance types, which are pre-

configured VMs that have predetermined CPU, memory, storage, and networking capacity. 

The cost of running the instance depends on the type of instance deployed, and users are 

charged by the hour.  

The Hadoop cluster (recall Section 2.4) deployed on Amazon EC2 contains 1 

master node and 10 slave nodes with each slave node configured to have one map task slot 

and one reduce task slot each. The size of the Hadoop cluster is in line with the 

experimental platforms used by other researchers (see [71] and [72], for example). Each 

node in the cluster is an Amazon EC2 m3.medium instance, which is a fixed performance 

instance that provides a good balance of compute, memory, and network resources [108]. 

Each m3.medium instance runs Ubuntu 13.04 and is launched with a 2.5 GHz Intel Xeon 

E5-2670 v2 (Ivy Bridge) CPU and 3.75 GB of RAM.  

For both the HCP-RM technique and the EDF-Scheduler, the following 

performance metrics are used to evaluate the performance of the respective systems: 
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 Proportion of late jobs (P) (recall Section 4.4.1) 

 Average job turnaround time (T) (recall Section 4.4.1) 

 Average job matchmaking and scheduling time (O): O is measured using Java’s 

System.nanoTime() [102] method and is calculated as the total processing time 

required by the respective technique (i.e., HCP-RM technique or EDF-Scheduler) 

to perform matchmaking and scheduling in an experiment divided by the total 

number of jobs arriving on the system during the experiment.  

To generate each of the values shown in the graphs presented in Section 5.6 and 

Section 5.7, the experiments are run long enough to ensure the system reached a steady 

state. Each experiment lasted about 24 hours and a subset of the experiments was run for a 

higher length of time. No significant change is observed in the trends in variation of a 

performance metric resulting from a variation of a given workload or system parameter. 

Thus, the 24-hour long experiments are deemed adequate to evaluate the relative 

performance between the HCP-RM technique and the EDF-Scheduler. 

5.5.2 Hadoop WordCount Workload  

The Hadoop WordCount Workload comprises an open stream of Hadoop 

WordCount jobs with deadlines (recall the discussion of a WordCount job presented in 

Section 2.3). WordCount is a benchmark that is commonly used to evaluate the 

performance of a Hadoop cluster and has been used by a number of other researchers (see 

[70], [72], and [73] for example). Furthermore, WordCount is representative of a class of 

real world MapReduce jobs that focus on extracting a small amount of interesting data from 

a large dataset [109]. The Hadoop WordCount Workload has three job types:  

 small: processes 512 MB of data (8 text files of 64 MB each) 
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 medium: processes 1 GB of data (16 text files of 64 MB each) 

 large: processes 2 GB of data (32 text files of 64 MB each) 

The input data for each job type are e-books (in plain text format) that are obtained from 

Project Gutenberg (www.gutenberg.org). For each job type, the number of map tasks in 

the job is equal to the number of input files to process, and the number of reduce tasks is 

set to 9, which is in line with the recommended value stated in the Hadoop documentation 

[25]. Each map task requires processing 64MB of data, which is the default block size in 

HDFS [25]. 

A JobSubmitter is implemented using Java to submit an open stream of 

WordCount jobs at a specified arrival rate (λ) to the Hadoop cluster. In line with [70], the 

arrival of jobs to the system is generated using a Poisson process, and the values of the 

arrival rate (λ): 1/150, 1/140, 1/135, and 1/125 jobs per sec are chosen such that a moderate 

to high resource utilization between approximately 80% to 95% is generated on the Hadoop 

cluster described in Section 5.5.1. Each job type has an equal probability of being submitted 

to the system. For consistency, the same predetermined seed for the random number 

generator is used in the experiments for the HCP-RM technique and the EDF-Scheduler 

such that the same sequence of jobs with the same respective arrival times is generated. 

The other workload parameters are described next. The earliest start time of each job j (sj) 

is set to its arrival time, and the deadline of each job j is calculated as: dj = sj + SETj
max * 

em where SETj
max is the maximum execution time of the job j and em is the execution time 

multiplier. The purpose of em is to give the job some slack time, and it is generated using 

a uniform distribution within the interval [1, 3].  
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5.5.3 Hadoop Synthetic Workload 

In addition to using the Hadoop WordCount Workload that captures the impact of 

both CPU and I/O characteristics of the application on performance, a synthetic workload, 

which is referred to as the Hadoop Synthetic Workload, is also used because it is flexible 

and enables the investigation of the impact of varying a given workload parameter on 

system performance. For example, using a synthetic workload, the effect of workload 

parameters such as the execution time of the jobs, which cannot be directly and accurately 

controlled using real workloads, can be investigated. The Hadoop Synthetic Workload is a 

variation of the Generic Synthetic MapReduce Workload (described in Section 4.4.3), and 

it is used to perform experiments on a real system such that the effect of various real system 

overheads on the behaviour and performance of the system, which are difficult to reproduce 

on simulation-based analyses, can be captured. 

To perform experiments using the Hadoop Synthetic Workload, a new Hadoop 

application called Simulate Execution Time (abbreviated SimExec) is devised. The map 

and reduce tasks of SimExec jobs occupy the map/reduce task slots of the TaskTrackers 

that they are assigned to execute on by sleeping for a specified amount of time (invoking 

Java’s Thread.sleep() method [110]). The time that the tasks sleep for is used to simulate 

the amount of time required for processing. Note that while the task is sleeping, no other 

task can run on the task slot where a task has been assigned, until the task wakes up from 

its sleep and informs the JobTracker that it has completed executing. 

Table 5.1 summarizes the parameters for generating the Hadoop Synthetic 

Workload. A Poisson process is used to generate the arrival of jobs at a specified rate (λ), 

which is in line with [70]. The values of λ are chosen to subject the systems (HCP-RM and 



 

 

146 

 

the EDF-Scheduler) to moderate to high system load, leading to an average resource 

utilization of between approximately 80% to 90% on the Hadoop cluster described in 

Section 5.5.1. In these experiments the systems are not subject to a low system load 

(resulting from low arrival rates). This is because a comparison of the effectiveness of the 

resource management algorithms when the system load is low is uninteresting since a low 

load generates a low contention for resources and is observed to lead to both algorithms 

achieving a value of 0 for P. Thus, comparing the performance of the systems when the 

system load is low was deemed inappropriate in evaluating the effectiveness of the resource 

management algorithms. 

The attributes of each job j that arrives on the system are generated as follows. The 

earliest start time of a job j (sj) is set to the arrival time of the job (atj), which is in line with 

Hadoop 1.2.1’s schedulers [25]. As shown in Table 5.1, the number of map tasks (kj
mp), the 

number of reduce tasks (kj
rd), as well as the map task execution times (me) and reduce task 

execution times (re) are generated using discrete uniform (DU) distributions similar to the 

Generic Synthetic MapReduce workload. Note that for SimExec jobs, me and re represent 

the time that a map task or a reduce task occupies the map task slot or reduce task slot of a 

TaskTracker. During preliminary experiments, it was discovered that a TaskTracker 

requires approximately 5 sec for initialization before the user-defined code of the map task 

or the reduce task is executed. Thus, the amount of time that a map task of a SimExec job 

needs to sleep for is calculated as the difference between me and the task setup time. 

Similarly, the amount of time that a reduce task needs to sleep for is calculated as the 

different between re and the task setup time. The sleep time of the tasks need to be 

compensated for the task setup time so that the task occupies a task slot of a TaskTracker 
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for the time specified by me or re. Similar to the Generic Synthetic MapReduce workload, 

a job j’s deadline (dj) is calculated as the sum of sj and the product of SETj
R

 (which is the 

execution time when job j executes at its maximum degree of parallelism on R) and an 

execution time multiplier (em). The parameter em is generated using a uniform distribution 

(U) as follows: U(1, emmax) where emmax is the upper bound of em.  

Table 5.1. System and Workload Parameters for the Hadoop Synthetic Workload. 

Parameter Values 
Default 
Value 

Job    
Arrival rate, λ (jobs/sec) λ = {1/32.5, 1/30, 1/27.5} λ = 1/30 

Earliest start time, sj (sec) sj  = atj - 

No. of Map Tasks, 𝑘𝑗
𝑚𝑝

 𝑘𝑗
𝑚𝑝

 ~ DU(1, 10) - 

No. of Reduce Tasks, 𝑘𝑗
𝑟𝑑 𝑘𝑗

𝑟𝑑 ~ DU(1, 𝑘𝑗
𝑚𝑝

) - 

Deadline, dj (sec) 
𝑑𝑗 = ⌈𝑠𝑗  + 𝑆𝐸𝑇𝑗

𝑅 ∗  𝑒𝑚⌉ where  

em ~ U(1, emmax) and emmax = {20, 25, 30} 
emmax = 25 

Task   

Map task execution time, me 

(sec) 
me ~ DU(1, memax) 

where memax = {15, 20, 25} 
memax = 20 

Reduce task execution time, 

re (sec) 
re =⌈(3 ∗  ∑ 𝑒𝑡)𝑡∈𝑇

𝑗
𝑚𝑝 𝑘𝑗

𝑟𝑑⁄ ⌉ +  𝐷𝑈(1,10) - 

Note: DU = discrete uniform distribution, U = uniform distribution 

 

The distributions used to generate kj
mp, kj

rd, me, and re are adopted from [53],  

whereas dj (a parameter that is not used in [53]) is generated based on [70]. In addition, the 

use of a Poisson process to generate job arrivals is in line with [70]. The values used in the 

distributions are different from those described in Section 4.4.3 because they are adjusted 

to keep in line with the smaller number of resources used in the Hadoop cluster compared 

to that used in the simulation experiments described in Section 4.6. More specifically, the 

values for λ are chosen to generate high resource utilization; however, since there are only 

10 TaskTrackers (resources) in the Hadoop cluster, which is smaller than the 50 resources 
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used in the simulated system, memax is reduced and emmax is increased to generate a 

reasonable workload. For similar reasons, the max value of the DU distribution that is used 

for generating the number of map tasks is set to 10 instead of 100.  

Factor-at-a-time experiments, where one parameter is varied and the other 

parameters are kept at their default values, as shown in the “Default Value” column of 

Table 5.1, are conducted to study the effect of the various workload parameters. The results 

of these experiments are discussed in Section 5.6.1. 

5.6 Results of the Performance Evaluation 

This section discusses the results of the experiments conducted to compare the 

performance of the HCP-RM technique (referred to simply as HCP-RM) with that of the 

EDF-Scheduler (abbreviated EDFS) when using the Hadoop WordCount Workload (see 

Section 5.6.1) and the Hadoop Synthetic Workload (refer to Section 5.6.2). Note that in the 

figures that show the results of T and O (see Figure 5.8, for example), T is displayed as a 

bar graph that uses the scale on the left Y-axis and O is displayed as a sequence of points 

that uses the scale on the right Y-axis. 

5.6.1 Results of Experiments Using the Hadoop WordCount Workload 

Figure 5.5 and Figure 5.6 compare the performance of HCP-RM with that of EDFS 

when using the Hadoop WordCount Workload (described in Section 5.5.2). As shown in 

the figures, HCP-RM outperforms EDFS by a large margin in terms of P (up to 94% and 

on average 72%) and T (up to 65% and on average 52%). This is a result of HCP-RM being 

able to effectively interleave the execution of multiple jobs and efficiently make use of the 

system’s resources such that the number of jobs that miss their deadlines is minimized. The 

poor performance of EDFS with regards to P and T is attributed to its focus on only 
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mapping the job with the earliest deadline and not interleaving the execution of multiple 

jobs. When the jobs have long execution times, not interleaving the execution of multiple 

jobs tends to lead to more late jobs because it is possible for jobs with closer deadlines to 

arrive on the system during the execution of another job with a later deadline. Thus, the 

results demonstrate that EDFS cannot effectively handle an open stream of job arrivals, 

and it may be more effective in matchmaking and scheduling a fixed number of jobs (e.g., 

a batch workload) because all the jobs in the workload are known ahead of time.  Overall, 

the results demonstrate that HCP-RM can effectively match make and schedule an open 

stream of MapReduce jobs with deadlines. 

 

 

Figure 5.5. HCP-RM vs EDFS: effect of λ on P when using the Hadoop WordCount 

Workload. 

 

Figure 5.6 (refer to sequence of points) shows that EDFS achieves a lower O (on 

average 0.03 sec.) compared to HCP-RM (on average 9.04 sec). HCP-RM has a higher O 

because it uses a more complex matchmaking and scheduling algorithm that requires 
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generating and solving a constraint program using IBM CPLEX. Conversely, EDFS simply 

maintains a job queue that sorts jobs in non-decreasing order of their respective deadlines 

and chooses the first job in its queue to map. Thus, the O of EDFS tends to remain relatively 

stable even when λ increases. However, it is observed that HCP-RM’s O tends to increase 

with λ. The reason for this is because when λ increases, jobs arrive on the system more 

frequently, leading to a higher contention for resources. This in turn causes HCP-RM to 

have more jobs to map (and more decision variables and constraints to process) each time 

it needs to generate and solve an OPL Model. Although HCP-RM’s O is higher compared 

to that of EDFS, O/T, which is an indication of the processing overhead in relation to the 

average job turnaround time, is still very low (less than 0.64%). This means that the O of 

HCP-RM is acceptable for the given workload.  

 

 

Figure 5.6. HCP-RM vs EDFS: effect of λ on T and O when using the Hadoop 

WordCount Workload. 
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5.6.2 Results of Experiments Using the Hadoop Synthetic Workload 

The results of the experiments using the Hadoop Synthetic Workload are presented 

and discussed in this section. The effects of three workload parameters on system 

performance are investigated: job arrival rate, task execution times, and job deadline.  

5.6.2.1 Effect of Job Arrival Rate 

As shown in Figure 5.7 and Figure 5.8, for both systems, P and T increase with λ 

because at high values of λ there is a high contention for resources and not all the jobs are 

able to start executing at their earliest start times. However, it is observed that HCP-RM 

outperforms EDFS in terms of both P and T for all the values of λ experimented with. More 

specifically, HCP-RM is observed to achieve a P and O that is on average 77% lower and 

65% lower, respectively, compared to the P and O achieved by EDFS. However, the O 

(refer to the sequence of points in Figure 5.8) of HCP-RM is observed to be on average 3.4 

sec, which is much higher compared to the O achieved by EDFS (9 ms on average). As 

described in Section 5.6.1, HCP-RM’s O increases with λ due to jobs arriving on the system 

at a faster rate, which leads to the CP Optimizer having to solve an OPL Model with more 

decision variables and constraints. In comparison to EDFS, HCP-RM puts more effort into 

deciding how to map jobs onto resources to minimize P, leading to a higher O. The benefits 

of this are captured in the superior performance demonstrated by HCP-RM with its lower 

P and T, while still maintaining a small O/T (0.87% on average over all the values of λ 

experimented with). 
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Figure 5.7. HCP-RM vs EDFS: effect of λ on P when using the Hadoop Synthetic 

Workload. 

 

 

Figure 5.8. HCP-RM vs EDFS: effect of λ on T and O when using the Hadoop Synthetic 

Workload. 
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5.6.2.2 Effect of Task Execution Times 

As expected, when memax is increased, both P and T increase for both systems (refer 

to Figure 5.9 and Figure 5.10) due to jobs executing on the resources for a longer period of 

time, which in turn leads to a high contention for resources. Moreover, it is observed that 

HCP-RM outperforms EDFS in terms of both P and T when memax is equal to 20 or 25 sec. 

However, when memax is small (equal to 15 sec) EDFS achieves a slightly lower P 

compared to HCP-RM (4.0% vs 4.4%). The slightly inferior performance of HCP-RM in 

this case can be attributed to its high O having a larger impact on jobs with small execution 

times, resulting in these jobs missing their deadlines.  

 

 

Figure 5.9. HCP-RM vs EDFS: effect of memax on P when using the Hadoop Synthetic 

Workload. 
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EDFS, but the processing overhead as indicated by O/T, is still small (less than 0.8%). The 

reason for the HCP-RM’s O increasing with memax can be attributed to jobs remaining in 

the system for a longer period of time and potentially overlapping with the execution of a 

higher number of jobs. This in turn increases the OPL Model generation and solving times 

due to the higher number of constraints and decision variables that need to be processed.  

 

 

Figure 5.10. HCP-RM vs EDFS: effect of memax on T and O when using the Hadoop 

Synthetic Workload. 
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Figure 5.11. HCP-RM vs EDFS: effect of emmax on P when using the Hadoop Synthetic 

Workload. 

 

 

Figure 5.12. HCP-RM vs EDFS: effect of emmax on T and O when using the Hadoop 

Synthetic Workload. 
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more time to generate a schedule that minimizes the number of late jobs. Note that the 

higher O of the HCP-RM is tolerable for the workload experimented with, as indicated by 

the small value of O/T: on average 0.78% over all the values of emmax experimented with. 

5.7 Investigation of Error in User-estimated Execution Times 

As described in Section 2.6, previous studies on real systems have shown that user 

estimates of execution times are often error prone or inaccurate [16][17][18]. For example, 

in [77], the authors analyzed a workload trace and showed that approximately 98% of jobs 

have their execution times overestimated and 2% of jobs have their execution times 

underestimated. In this section, the results of an investigation into how the error or 

inaccuracy in the user-estimated execution times, submitted as part of the job’s SLA, can 

affect the performance of HCP-RM in terms of P, T, and O are presented and discussed.   

Note that only the performance of HCP-RM is investigated because the EDF-

Scheduler does not use user-estimated execution times in its matchmaking and scheduling 

algorithm. The system used in this investigation is the 11-node Hadoop cluster deployed 

on Amazon EC2 as described in Section 5.5.1. In addition, the workload used in this 

investigation is the Hadoop Synthetic Workload (described in Section 5.5.3) with the 

default parameter values. However, to investigate the impact of error at different levels of 

load on the system, λ is varied from 1/60 jobs per sec to 1/25 jobs per sec to generate low 

(~45%), moderate (~80), and high (~95%) system load. The Hadoop Synthetic Workload 

is used instead of the Hadoop WordCount Workload because in the synthetic workload the 

task execution times can be systematically and accurately controlled.  

The rest of this section is organized as follows. First, in Section 5.7.1, the 

description of the models used to generate error for the user-estimated execution times are 
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described. A discussion of how the error in user-estimated execution times can affect the 

laxity (or slack time) of jobs is provided in Section 5.7.2. Lastly, the results of the 

experiments conducted to investigate how error in user-estimated execution times can 

affect the performance of HCP-RM are presented in Section 5.7.3 and Section 5.7.4. 

5.7.1 Models for Generating Error in User-estimated Execution Times 

To generate the error in user-estimated task execution times, two models are used: 

(1) Constant Error Model and (2) Feitelson’s Error Model. When using the Constant Error 

Model [111], all the jobs submitted to the system have their user-estimated task execution 

times overestimated or underestimated by a constant percentage of their actual runtimes. 

More specifically, the estimated execution time of a task t (et
est) is calculated as follows: 

𝑒𝑡
𝑒𝑠𝑡  =  𝑒𝑡  ×  (1 +  𝑓) (5.1) 

 

where et is the actual runtime of task t and f is the execution time error factor. If the value 

of f is greater than 0, it means that the estimated task execution times are greater than the 

actual runtimes of the task (i.e., task execution times are overestimated). On the other hand, 

if f is less than 0, it means that the estimated task execution times are less than the actual 

runtime of the tasks (i.e., task execution times are underestimated). For example, if f is 

equal to 0.1, the estimated task execution times are overestimated by 10%. On the other 

hand, if f is equal to -0.05, the estimated task execution times are underestimated by 5%. 

Note that f cannot be less than or equal to -1; otherwise, et
est will be less than or equal to 0.  

Feitelson’s Error Model [112] is based on the analysis of real workload traces 

collected from various sources including Cornell Theory Center, Swedish Royal Institute 

of Technology, and the San Diego Supercomputer Center. The algorithm used to generate 

the estimated task execution times using Feitelson’s Error Model is summarized in 
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Algorithm 5.4. A walkthrough of the algorithm is provided next. With a probability of 

10%, the user-estimated task execution time is very accurate and is calculated as: et
est = 

0.99*et (lines 1-3). On the other hand, with a probability of 90%, et
est is not accurate (line 

4) and is generated as follows. If the supplied task execution time, et, is less than a task 

execution time threshold (et
threshold) then et

est is calculated as 10*et (see lines 5-6), meaning 

that the task execution time is highly overestimated. Otherwise, et
 is greater than or equal 

to et
threshold and et

est is calculated as et/u where u is an uniformly distributed variable from 

(0, 1] (lines 7-9). This means that the smaller the value of u, the higher the value of et
est 

that is generated, resulting in highly overestimated task execution times.  The closer that u 

is to 1, the closer et
est is to et, meaning that the estimated task execution time is more 

accurate.  

 

Algorithm 5.4: Feitelson’s Error Model 

Input: et, actual task run time (in sec) 

Output: et
est, estimated task execution time (in sec) 

1: rv  Generate a uniformly distributed random variable from [0, 1]. 

2: if rv <= 0.1 then 

3:  return 0.99 * et  

4: else 

5:  if et < et
threshold then 

6:   return 10 * et 

7:  else  

8:   u  Generate a uniformly distributed random variable from (0, 1]. 

9:   return et / u 

10:  end if 

11: end if 

 

The default value of et
threshold is 90 sec; however, for the Hadoop Synthetic 

Workload (recall Section 5.5.3) that this investigation uses, it was found that when et
threshold 

is kept at its default value, all the map tasks and a majority of reduce tasks had their 

estimated task execution times calculated using line 6:  et
est = et *10. This skewed the 
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estimated task execution times towards et *10. To make sure that the task execution times 

are not skewed, the et
threshold is set to 20 sec, which is the default value for generating the 

map task execution times (refer to Table 5.1). This allowed et
est to be calculated using line 

6 and line 9 approximately the same number of times.  

5.7.2 Laxity of Jobs in the Presence of Error in User-estimated Execution Times 

In this investigation, the deadline of each job submitted to the system is calculated 

using the respective job’s estimated task execution times, which may be inaccurate, and 

not the actual runtime of the tasks as generated by the synthetic workload generator. The 

rationale behind this decision is that a user who submits a job will generate a deadline for 

their job using the estimated task execution times that they supply. This means that if the 

deadline of a job is calculated using overestimated task execution times, the job will have 

more laxity (or slack time) compared to when there is no error in the user-estimated task 

execution times. Alternatively, if the deadline of a job is calculated using underestimated 

task execution times, the job will have less laxity compared to when there is no error in 

user-estimated task execution times. Recall from Section 3.1.1 that the laxity of a job j is 

the extra time job j has to complete its execution before its deadline and is calculated as 

follows: 𝐿𝑗 = 𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 where dj is the deadline of job j, sj is the earliest start time of 

job j, and SETj is the sample execution time of job j. 

The equations that are described next are based on the Constant Error Model and 

are helpful when analyzing and understanding the results of the experiments presented in 

Section 5.7.3. The insights gained from this discussion can also be applied to the results of 

the experiments using Feitelson’s Error Model, described in Section 5.7.4. 
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The estimated laxity of a job j (Lj
est), which is the laxity that HCP-RM expects a job 

as having when it is submitted to the system for execution, is calculated as follows:  

𝐿𝑗
𝑒𝑠𝑡  =  𝑑𝑗  −  𝑠𝑗  −  𝑆𝐸𝑇𝑗  ×  (1 +  𝑓) 

         = (𝑠𝑗  +  𝑆𝐸𝑇𝑗  ×  ( 1 +  𝑓)  ×  𝑒𝑚) − 𝑠𝑗 −  𝑆𝐸𝑇𝑗  ×  (1 +  𝑓) 

         = 𝑆𝐸𝑇𝑗  ×  (1 +  𝑓) × [𝑒𝑚 −  1] 

(5.2) 

 

where dj is the deadline of job j, sj is the earliest start time of job j, SETj is the sample 

execution time of job j (calculated without error) (see Section 3.1.1), f is the execution time 

error factor, and em is the execution time multiplier (see Section 5.5.3). As described earlier 

in this sub-section, the deadline of each job submitted to the system is calculated using the 

respective job’s estimated task execution times, which may contain error, and thus the 

deadline of a job j (dj) is calculated as sj + SETj * (1 + f) * em. If f is equal to 0, meaning 

that there is no error in task execution times, Eq. 5.2 is the same as Eq. 3.1 (described in 

Section 3.1.1).  

The actual laxity of a job j (Lj
act), which is the laxity calculated using the actual run 

time of the job (i.e., the laxity that the job has in reality), is calculated as follows:  

𝐿𝑗
𝑎𝑐𝑡  =  𝑑𝑗  −  𝑠𝑗  −  𝑆𝐸𝑇𝑗  

         = (𝑠𝑗  +  𝑆𝐸𝑇𝑗  ×  (1 +  𝑓)  ×  𝑒𝑚) −  𝑠𝑗  − 𝑆𝐸𝑇𝑗  

         = 𝑆𝐸𝑇𝑗 [(1 +  𝑓) 𝑒𝑚 −  1] 

(5.3) 

 

The main difference between Lj
act and Lj

est is that for Lj
est (see Eq. 5.2) the sample job 

execution time (SETj) is multiplied with (1 + f), whereas for Lj
act (see Eq. 5.3) the sample 

job execution time is not multiplied with (1 + f) and thus does not contain error.   

5.7.3 Results of Experiments Using the Constant Error Model 

Figure 5.13 presents the effect of f on P at different arrival rates. When the task 

execution times are underestimated (i.e., f < 0), P increases, and when the task execution 

times are overestimated (i.e., f > 0), P decreases. The reason for P decreasing as f increases 
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is due to jobs having higher values of Lj
act when f increases, which means jobs have more 

time to complete their execution before their respective deadlines (i.e., jobs have less 

stringent deadlines). The high values of P when f is less than or equal to -0.5 can be 

attributed to jobs having very small values of Lj
act (i.e., jobs have very stringent deadlines). 

Furthermore, when f is very small (e.g., f is -0.9), it is possible that jobs have deadlines that 

cannot be satisfied because they were calculated based on severely underestimated 

execution times, and thus there is not enough time for the job to finish executing before its 

deadline (e.g., the job may have an Lj
act of less than 0).  

 

 

Figure 5.13. Constant Error Model: effect of f on P. 
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more jobs miss their deadlines and P increases (refer to Figure 5.13 when f is less than 0). 

When a job misses its deadline, HCP-RM delays executing the remaining tasks of the job 

that have not started executing in favour of executing newly arriving jobs, which have not 

missed their deadlines. This is done to lower P, but also leads to an increase in T.  

 

 

Figure 5.14. Constant Error Model: effect of f on T. 
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values of Lj
est (recall Eq. 5.2). For example, when f is -0.5 the average Lj

est of all the jobs 

submitted to the system is equal to 580 sec compared to 1740 sec when f is 0.5. The higher 

values of Lj
est give HCP-RM more options to explore scheduling different combination of 

tasks to ensure that the number of late jobs is minimized, which results in O increasing. 

 

 

Figure 5.15. Constant Error Model: effect of f on O. 
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With regards to T (refer to Figure 5.17), it is observed that for all the values of λ 

experimented with, the results when using Feitelson’s Error Model are higher compared to 

the results when using the No Error case. This can be attributed to HCP-RM focusing on 

generating a schedule that minimizes P and does not consider finding a solution to 

minimize T. On the other hand, in the No Error case, HCP-RM needs to schedule jobs to 

execute closer to their earliest start times because jobs have less slack time and more 

stringent deadlines, resulting in a low T. From Figure 5.18, it is observed that the O 

measured for the No Error case is a higher compared to the O measured when using 

Feitelson’s Error Model. This can be attributed to the jobs in the No Error case having less 

laxity and more stringent deadlines, leading to HCP-RM requiring more time to generate a 

schedule to minimize the number of late jobs. 

 

 

Figure 5.16. Feitelson’s Error Model vs No Error: effect of λ on P. 

 

0

5

10

15

20

25

1/60 1/45 1/30 1/25

P
 (

%
)

λ (jobs per sec)

Feitelson's Error Model No Error



 

 

165 

 

 

Figure 5.17. Feitelson’s Error Model vs No Error: effect of λ on T. 

 

 

 

Figure 5.18. Feitelson’s Error Model vs No Error: effect of λ on O. 
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5.8 Summary and Discussion 

In this chapter, a data-locality-aware Hadoop Constraint Programming based 

Resource Management (HCP-RM) technique is presented. The HCP-RM algorithm is 

implemented in a new scheduler for Hadoop, called the CP-Scheduler. The objective of the 

CP-Scheduler (HCP-RM technique) is to minimize the number of late jobs when 

processing an open stream of Hadoop jobs with deadlines. This is accomplished by 

formulating the matchmaking and scheduling problem as an optimization problem using 

constraint programming and solving the problem using IBM CPLEX’s CP Optimizer 

solving engine. A comprehensive performance evaluation of the HCP-RM technique is 

conducted on a Hadoop cluster deployed on Amazon EC2. The results of the performance 

evaluation demonstrate the effectiveness of the HCP-RM technique in being able to 

generate a schedule that leads to a small proportion of jobs missing their deadlines. In 

addition, experiments are performed to investigate how error in user-estimated execution 

times can affect system performance. The key insights into system behaviour and the 

inferences derived are summarized next.  

 Superiority of the HCP-RM technique: The HCP-RM technique generates a 

schedule that leads to a lower or equal P (on average 60% lower) and a lower T 

(on average 59% lower) compared to the EDF-Scheduler over all the experiments 

performed. The highest performance improvement of the HCP-RM technique 

over the EDF-Scheduler tends to occur when the contention for resources is high 

(e.g., high λ, or high memax, or small emmax).  

o The EDF-Scheduler’s simple matchmaking and scheduling algorithm is not 

as effective in matchmaking and scheduling an open stream of MapReduce 
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jobs with deadlines. The EDF-Scheduler seems to be more suited for use in 

a closed system subject to batch workloads with a fixed number of jobs, 

where the set of jobs to execute are known ahead of time. 

 Efficiency of the HCP-RM technique: The efficiency of the HCP-RM technique 

is demonstrated through the results of experiments described in Section 5.6. 

Although the O achieved by the HCP-RM technique is higher compared to the O 

achieved by the EDF-Scheduler, its superiority comes from being able to generate 

a schedule that leads to a small P and a small T. In all the experiments conducted, 

the P achieved by the HCP-RM technique is significantly lower than the P 

achieved by the EDF-Scheduler, while O/T, which is an indicator of resource 

management overhead, remains below 0.92% even when the resource utilization 

is high.  

 Effect of error in execution times: The investigation of error in user-estimated 

execution times revealed that overestimation of execution times (which occurs 

more often than underestimation [16][77]) leads to a lower P, similar T, and 

slightly higher O compared to when there is no error. Conversely, 

underestimation of execution times leads to higher values of P and T, but gives 

rise to a lower O compared to the case when there is no error. Thus, it is more 

favourable for the system to have jobs with overestimated execution times 

compared to jobs with underestimated execution times. 

Overall, the results obtained from prototyping and measurements made on a 

Hadoop cluster lead to the conclusion that the HCP-RM technique is an effective and 

efficient matchmaking and scheduling technique for processing MapReduce jobs with 
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deadlines on a Hadoop cluster. The HCP-RM technique achieves a small P and T, and an 

acceptable O/T over a wide range of workload and system parameters used in the 

experiments. Moreover, when there is error in execution times, it is observed that the HCP-

RM technique maintained acceptable values of P when the execution times are slightly 

underestimated (e.g., f is equal to -0.1) or overestimated (f is greater than 0).  
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Chapter 6 Techniques for Handling Error/Inaccuracy in User-

estimated Execution Times 

The focus of this chapter is on describing techniques for handling inaccuracy or 

error in user estimates of job execution times (submitted as part of the job’s SLA). The 

objective is to improve the robustness of the MRCP-RM and HCP-RM algorithms, 

described in Chapter 4 and Chapter 5, respectively. With little existing work on the 

handling of inaccuracies in user estimates of job runtimes in the context of 

MapReduce/Hadoop systems, the proposed techniques and experimental results presented 

can lead to new insights for users and system builders and make a strong contribution to 

the state of the art. None of the techniques described in Section 2.6 that handle 

errors/inaccuracies in user-estimated job execution times concern processing an open 

stream of MapReduce jobs with SLAs. 

As described in Section 2.6, previous studies on real systems have shown that user 

estimates of job runtimes are often error prone/inaccurate and users often overestimate the 

execution times of their jobs [16][17][18]. Since the user-estimated execution times are 

used by the system to perform resource allocation and scheduling, error/inaccuracies in the 

execution times can hinder the ability of the resource management techniques from making 

effective scheduling decisions, leading to a degradation in system performance. For 

instance, an overestimated job execution time (i.e., a user requests more time than the job 

needs) causes resources to remain idle after a job completes before its estimated completion 

time, resulting in a low resource utilization. On the other hand, an underestimated job 

execution time (i.e., a user requests less time than the job needs) can cause jobs to be 

aborted prematurely due to the resource executing the job having to execute another job 
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that was already scheduled to start executing after the first job’s expected completion time. 

This may result in the first job missing its deadline. Furthermore, if aborted, this incomplete 

job leads to a lower useful utilization of the system because the system’s resources are 

being wasted executing a job that is aborted.  

Moreover, the results of the investigation into how error in user-estimated 

execution times affect the performance of the HCP-RM technique (described in Section 

5.7) showed that system performance in terms of P, T, and O is affected and the error in 

user-estimated execution times can also influence the matchmaking and scheduling 

decisions that the HCP-RM algorithm makes. For example, if a job has an actual runtime 

equal to 5 sec, but the user-estimated execution time is 10 sec (i.e., the job has an 

overestimated execution time), the resource management algorithm will only schedule the 

job to execute on a resource where there is an available time interval equal to 10 sec or 

higher. Although in reality, it is possible to schedule the job on a resource with an available 

time interval equal to 5 sec or more.  

The rest of this chapter is organized as follows. The focus of Section 6.1 is on 

describing a Prescheduling Error Handling (PSEH) technique, which attempts to correct 

the error in user-estimated execution times before the job is scheduled. In Section 6.2, a 

description of the prototyping and measurement experiments conducted to evaluate the 

effectiveness of the PSEH technique is provided.  The results of the performance evaluation 

and insights gained into system behaviour are discussed in Section 6.3.  Lastly, Section 6.4 

provides a summary and discussion of the chapter.  
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6.1 Prescheduling Error Handling Technique 

The PSEH technique uses the past history of the jobs submitted to the system to 

establish a trend for the error in the user’s estimated execution times. The objective of the 

PSEH technique is to correct the error in the user-estimated execution times to make them 

more accurate before the job is passed on to the resource management algorithm for 

scheduling. More specifically, when there are overestimated execution times, the PSEH 

technique decreases the user-estimated execution times, and when there are underestimated 

execution times, the PSEH technique increases the user-estimated execution times. The 

resource management algorithm can then use the adjusted execution times to perform 

matchmaking and scheduling. A discussion of the PSEH technique and how it is 

incorporated into the HCP-RM algorithm is presented next. Note that the PSEH technique 

can also be adapted and used by other resource management algorithms. 

The PSEH technique uses two variables: avgMapTaskErrorFactor and 

avgReduceTaskErrorFactor to keep track of how much the user-estimated map task 

execution times and the user-estimated reduce task execution times, respectively, are being 

overestimated or underestimated. Note that the term average task error factor is used to 

refer to both avgMapTaskErrorFactor and avgReduceTaskErrorFactor collectively. The 

average task error factor is initialized to 0, meaning that there is currently no error in the 

execution times in the system. If the average task error factor is greater than 0, it means 

that on average the user-estimated execution times are being overestimated. On the other 

hand, if the average task error factor is less than 0, it means that on average the user-

estimated task execution times are being underestimated. The closer the average task error 
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factor is to 0, the more accurate the user-estimated task execution times are to the actual 

runtimes of the tasks.  

The average task error factor is calculated in a new method named 

calculateTaskErrorFactor(). This method is invoked each time a task completes its 

execution and its purpose is to calculate the error factor of the task and then recalculate the 

average task error factor. The error factor of a task t (denoted ft) is calculated as follows: 

𝑓𝑡  =   
𝑒𝑡

𝑒𝑠𝑡 −  𝑒𝑡
𝑟𝑢𝑛

𝑒𝑡
𝑟𝑢𝑛  (6.1) 

where et
est is the user-estimated execution time of task t and et

run is the actual runtime of 

task t. The value of ft determines how accurate the original user-estimated execution time 

of task t is to the actual runtime of task t. If the task is a map task, the 

avgMapTaskErrorFactor is updated by including the ft of the recently completed task t in 

the calculation of the average. More specifically, the avgMapTaskErrorFactor is equal to 

the sum of the ft of all the completed map tasks divided by the total number of completed 

map tasks. On the other hand, if the task is a reduce task, the avgReduceTaskErrorFactor 

is updated in a similar manner as described for the avgMapTaskErrorFactor. It is expected 

that overtime as more jobs complete executing, the average task error factor will get more 

accurate, resulting in the adjusted task execution times being closer to the actual runtimes 

of the tasks. 

The PSEH technique also uses a method called adjustExecutionTime() to adjust 

the user-estimated task execution time and make the execution times more accurate. Each 

map task and reduce task has its execution time adjusted before it is scheduled on the 

system. The following equation is used to calculate the adjusted task execution time of a 

task t (et
adj): 
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𝑒𝑡
𝑎𝑑𝑗

=  
𝑒𝑡

𝑒𝑠𝑡

1 +  𝑓
 (6.2) 

where et
est is the user-estimated task execution time and f is the execution time error factor. 

Depending on whether the task t is a map task or a reduce task, f can either be equal to the 

avgMapTaskErrorFactor or the avgReduceTaskErrorFactor. 

6.2 Performance Evaluation of the PSEH Technique 

A performance evaluation of the PSEH technique is conducted using prototyping 

and measurement to determine its effectiveness in improving system performance when 

there is error in the user-estimated execution times. The experiments are performed on a 

Hadoop cluster deployed on Amazon EC2. More specifically, the performance of HCP-

RM that uses the PSEH technique (denoted HCP-RM-EH) is compared with the 

performance of the original version of HCP-RM. 

 The rest of this section is organized as follows. In Section 6.2.1, the experimental 

setup, including the metrics used in the performance evaluation, is described. Next, in 

Section 6.2.2, a description of the workload that is used in the experiments is provided. 

Lastly, Section 6.2.3 describes the models used to generate the error/inaccuracies in the 

user-estimated execution times. 

6.2.1 Experimental Setup 

The Hadoop cluster that is used to conduct the experiments is the same as the one 

described in Section 5.5.1. In addition, the following metrics are used in the experiments: 

 Proportion of late jobs (P) (recall Section 4.4.1) 

 Average job turnaround time (T) (recall Section 4.4.1) 
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 Average job matchmaking and scheduling time (O): O is measured using Java’s 

System.nanoTime() [102] method and is calculated as the total processing time 

required by the respective resource management algorithm (e.g., HCP-RM or 

HCP-RM-EH) to match make and schedule jobs in an experiment, divided by the 

total number of jobs arriving on the system during the experiment. 

6.2.2 System and Workload Parameters 

The workload that is used in the experiments is the Hadoop Synthetic Workload 

described in Section 5.5.3 using the default values for the workload parameters. This is the 

same workload that is used in the experiments performed to investigate the effect of error 

in user-estimated execution times on the performance of the HCP-RM technique (see 

Section 5.7). The experiments are conducted using a synthetic workload because they allow 

the execution times to be methodically and accurately controlled, allowing the 

effectiveness of the PSEH technique to be evaluated systematically. 

6.2.3 Models for Generating Error in User-estimated Execution Times 

In order to generate the error in user-estimated task execution times, three models 

are used: (1) Constant Error Model, (2) Feitelson’s Error Model, and (3) Variable Error 

Model. Recall that the Constant Error Model and Feitelson’s Error Model were already 

described in Section 5.7.1. A description of the Variable Error Model is provided next. 

The Variable Error Model is an extension of the Constant Error Model, and it is 

devised to investigate the effectiveness of the PSEH technique when not all the jobs 

submitted to the system have the same execution time error factor (f). As described in 

Section 5.7.1, when using the Constant Error Model, all the jobs submitted to the system 

have the same value of f; however, when using the Variable Error Model each job submitted 
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to the system can have a different value of f.  Algorithm 6.1 describes how the Variable 

Error Model generates f for each job submitted to the system. The input parameters required 

by the algorithm are described next. 

 poe: the probability that a job has an overestimated execution time (i.e., f is 

greater than 0). The value of poe must be in the interval [0, 1]. 

 min_ue_f and max_ue_f: the minimum value and the maximum value of the 

uniform distribution used to generate the error factor for jobs with underestimated 

execution times. The values of min_ue_f and max_ue_f must be in the interval (-

1, 0], and max_ue_f must also be greater than or equal to min_ue_f. 

 min_oe_f and max_oe_f: the minimum value and the maximum value of the 

uniform distribution used to generate the error factor for jobs with overestimated 

execution times. The values of min_oe_f and max_oe_f must be greater than or 

equal to 0, and max_oe_f must also be greater than or equal to min_oe_f. 

 

Algorithm 6.1: Variable Error Model 

Input: poe, min_ue_f, max_ue_f, min_oe_f, max_oe_f 

Output: execution time error factor, f 

1: rv  Generate a uniformly distributed random variable from [0, 1]. 

2: if rv <= poe then 

3:   f  Generate a uniformly distributed random variable from  

  [min_oe_f, max_oe_f].   

4: else 

5:  f  Generate a uniformly distributed random variable from  

  [min_ue_f, max_ue_f]. 

6: end if 

7: return f 

 

The first step of Algorithm 6.1 is to generate a uniformly distributed random value 

from the interval [0, 1] and store it in a variable named rv (line 1). If the value of rv is less 

than or equal to the value of poe, a positive execution time error factor is generated using 



 

 

176 

 

a uniform distribution within the interval [min_oe_f, max_oe_f] (lines 2-3). Otherwise, rv 

is greater than poe and a negative execution time error factor is generated using a uniform 

distribution within the interval [min_ue_f, max_ue_f] (lines 4-5). The last step is to return 

the error factor that is generated (line 7). Now that an error factor for the job has been 

generated, the estimated execution times of the job’s tasks can be calculated in a similar 

manner as the Constant Error Model (see Eq. 5.1 in Section 5.7.1). 

Relationship between User-estimated Job Execution Times and the Deadlines of 

Jobs: As shown in Table 5.1, the deadline of a job j in the Hadoop Synthetic Workload is 

calculated as follows: dj = sj + SETj
R * em where sj is the earliest start time of job j, SETj

R 

is the estimated execution time of job j when it executes at its maximum degree of 

parallelism on a set of resources R, and em is the execution time multiplier, which is used 

to determine the laxity of the job. As described in Section 5.7.2, the deadline of each job 

submitted to the system is calculated using the respective job’s estimated task execution 

times, which may contain error. The rationale behind this decision is that a user who 

submits a job will generate a deadline for his/her job using the estimated task execution 

times that he/she supplies to the system. Thus, if the job has overestimated task execution 

times, the job will have more laxity (or slack time) compared to when there is no error in 

the execution times. On the other hand, if the job has underestimated task execution times, 

the job will have less laxity (or slack time) compared to when the execution times have no 

error.  

6.3 Results of the Performance Evaluation 

This section presents and discusses the results of the experiments performed to 

evaluate the PSEH Technique. To generate each of the values shown in the graphs and 
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tables presented in this section, the experiments are run long enough to ensure the system 

reached a steady state, where each experiment lasted approximately 24 hours (similar to 

the performance evaluation described in Section 5.5.1). Note that in this section, Figure 6.5 

and Figure 6.7 display the values of T and O in the same figure, where T is displayed as a 

bar graph that uses the scale on the left Y-axis and O is displayed as a sequence of points 

that uses the scale on the right Y-axis. 

6.3.1 Constant Error Model  

Figure 6.1 and Table 6.1 present a comparison of P between the HCP-RM technique 

that uses the PSEH technique (HCP-RM-EH) and the original version of the HCP-RM 

technique when the Constant Error Model is used with different values of f and λ. Note that 

the results for HCP-RM are the same as those presented in Section 5.7.3 and are replicated 

here to compare with the results of HCP-RM-EH. For a given λ, it is observed that both 

HCP-RM-EH and HCP-RM follow a similar trend in performance: P decreases as f 

increases due to jobs having higher values of laxity captured in Lj
act (defined in Section 

5.7.2), resulting in less stringent deadlines. For all the values of λ and values of f 

experimented with, it is observed that HCP-RM-EH achieves a lower or equal P compared 

to HCP-RM. More specifically, HCP-RM-EH achieves up to an approximately 50% 

reduction in P (when λ is 1/25 jobs per sec and f is -0.5 as shown in Table 6.1) and on 

average a 29% reduction in P over all the values of f and λ experimented with. Furthermore, 

it is observed that in some cases, such as when λ is 1/30 jobs per sec and f is 2, HCP-RM-

EH achieves a P of 0 (as indicated by the missing bar corresponding to the technique in 

Figure 6.1).  
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Figure 6.1. HCP-RM vs HCP-RM-EH: effect of f on P when using the Constant Error 

Model and λ is 1/30 jobs per sec. 

 

The superior performance of HCP-RM-EH can be attributed to the ability of the 

PSEH technique to adjust the user-estimated task execution times and make them more  

accurate. This in turn allows HCP-RM-EH to make intelligent matchmaking and 

scheduling decisions that lead to a small P. Having accurate execution times is even more 

important at higher values of λ due to the high contention for resources, and thus, it is 

observed that the overall performance improvement (in terms of P) of HCP-RM-EH over 

HCP-RM increases as λ increases (see Table 6.1). Moreover, it is observed that for a given 

λ, the performance improvement of HCP-RM-EH over HCP-RM is at its highest when f is 

less than or equal to -0.5 (see Figure 6.1, for example). This is because at these low 

(negative) values of f, the job execution times are significantly underestimated when the 

schedule is prepared by HCP-RM. During runtime, the actual execution times are 

significantly longer, resulting in job completion times that are higher compared to the 
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values computed for the schedule. This leads to a higher chance of a deadline miss for 

HCP-RM. The PSEH technique used by HCP-RM-EH attempts to correct the error in job 

execution times, resulting in more accurate execution times used by HCP-RM-EH when 

the schedule is prepared, thus leading to a lower chance of deadline misses. 

 

Table 6.1. HCP-RM vs HCP-RM-EH: effect of f on P when using the Constant Error 

Model. 

f λ = 1/45 jobs per sec  λ = 1/25 jobs per sec 

 HCP-RM: 

P (%) 

 HCP-RM-EH: 

P (%) 

HCP-RM: 

P (%) 

HCP-RM-EH: 

P (%) 

-0.9 87.2 64.4 95.2 91.8 

-0.5 12.6 8 66.8 34 

-0.1 2.8 2.6 26.6 14.4 

0 2.8 2.6 19.2 11.4 

0.1 2 1.6 18 12.8 

0.5 1 1 6.8 6.8 

2 0.2 0 1.8 1.6 

 

A comparison of the values of T achieved by HCP-RM-EH and HCP-RM using the 

Constant Error Model at different values of λ and f are shown in Figure 6.2 and Table 6.2. 

The results show that HCP-RM-EH tends to achieve a lower T compared to HCP-RM. The 

highest (57%) reduction in T is observed when λ is 1/25 jobs per sec and f is -0.9. Over all 

the experiments conducted, HCP-RM achieves on average a 21% reduction in T. Once 

again, the improved performance of HCP-RM-EH can be attributed to the PSEH technique 

generating more accurate estimated task execution times, which enables more effective 

matchmaking and scheduling decisions to be made.  
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Figure 6.2. HCP-RM vs HCP-RM-EH: effect of f on T when using the Constant Error 

Model and λ is 1/30 jobs per sec. 

 

Moreover, it is also observed that for a given λ, the trend for T for the two systems 

are quite different. In the case of HCP-RM, T tends to increase as f decreases, whereas in 

the case of HCP-RM-EH, T tends to remain at approximately the same value as f changes. 

In the case of HCP-RM-EH, it is expected that T would not significantly change with f 

because for each experiment where the value of f is varied, the actual runtimes of the jobs 

in the workload that need to be processed is the same, only the user-estimated execution 

times of the jobs are different. Thus, for all the values of f and a given value of λ, HCP-

RM-EH is processing a similar workload in each experiment. On the other hand, in the 

HCP-RM experiments, the user-estimated execution times are used directly to perform 

matchmaking and scheduling, leading to HCP-RM seeing a different workload that needs 

to be processed in each experiment where f is changed. Note that the explanation for the 

trend in T for HCP-RM is described in more detail in Section 5.7.3. 
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Table 6.2. HCP-RM vs HCP-RM-EH: effect of f on T when using the Constant Error 

Model. 

f λ = 1/45 jobs per sec  λ = 1/25 jobs per sec 

 HCP-RM: 

T (sec) 

HCP-RM-EH: 

T (sec) 

HCP-RM: 

T (sec) 

HCP-RM-EH: 

T (sec) 

-0.9 294 202 1513 650 

-0.5 246 199 1249 664 

-0.1 221 198 956 670 

0 216 199 884 679 

0.1 218 200 834 681 

0.5 224 197 724 660 

2 229 196 608 717 

 

 

Figure 6.3 and Table 6.3 present a comparison of O between HCP-RM-EH and 

HCP-RM when using the Constant Error Model at different values of f and λ. Similar to 

the results of T, it is observed that the trends in O achieved by HCP-RM-EH and HCP-RM 

are different. For HCP-RM, it is observed that O tends to increase with f. Recall from 

Section 5.7.3 that this is due to the user-estimated job execution times being directly 

proportional to f. As the user-estimated job execution times increase, HCP-RM expects a 

higher contention for resources that require the solver to spend more time in finding a 

solution to the resource management problem. This leads to an increase in O. On the other 

hand, for HCP-RM-EH, it is observed that O tends to remain at approximately the same 

value as f is varied. Similar to the explanation provided for the results of T, this trend in 

performance can be attributed to the fact that in each experiment where f is varied, the 

actual runtimes of the jobs in the workload that need to be processed is the same, only the 

user-estimated execution times of the jobs are different. In addition, the PSEH technique 

is able to adjust the user-estimated execution times and make them closer to the actual 

runtimes. As a result, the overhead of the CPLEX solver is relatively insensitive to the 

value of f. The highest O is observed when f is -0.9. This is because jobs have less laxity 
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and thus are more susceptible to miss their deadlines. This in turn causes HCP-RM-EH to 

require more time to find a schedule that minimizes P.  

 

 

Figure 6.3. HCP-RM vs HCP-RM-EH: effect of f on O when using the Constant Error 

Model and λ is 1/30 jobs per sec. 

 

Table 6.3. HCP-RM vs HCP-RM-EH: effect of f on O when using the Constant Error 

Model. 

f λ = 1/45 jobs per sec  λ = 1/25 jobs per sec 

 HCP-RM: 

O (sec) 

HCP-RM-EH: 

O (sec) 

HCP-RM: 

O (sec) 

HCP-RM-EH: 

O (sec) 

-0.9 0.17 2.20 1.34 12.80 

-0.5 0.24 1.27 3.37 11.36 

-0.1 0.67 1.58 5.75 11.95 

0 0.74 1.35 8.09 10.79 

0.1 0.87 1.43 9.31 10.72 

0.5 1.65 1.07 12.60 10.42 

2 2.19 1.12 15.19 11.50 
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Another interesting observation from the results shown in Table 6.3 and Figure 6.3  

is that when f is less than 0 (i.e., execution times are underestimated), HCP-RM achieves a 

lower O compared to HCP-RM-EH. When f is less than 0, the job execution times used by 

HCP-RM are lower than their actual execution times. The PSEH technique used by HCP-

RM-EH tends to correct the underestimated job execution times, resulting in the respective 

jobs processed by HCP-RM-EH to have higher execution times compared to those handled 

by HCP-RM. As a result, since higher job execution times lead to a higher resource 

contention, the CPLEX solver in HCP-RM-EH takes a longer time to generate a schedule 

for the system in comparison to the solver in HCP-RM. On the other hand, when task 

execution times are significantly overestimated (e.g., f is greater than or equal to 0.5), HCP-

RM tends to have a higher O compared to HCP-RM-EH. This is because the solver in HCP-

RM needs to handle a higher resource contention in comparison to HCP-RM-EH that 

processes jobs with lower execution times due to the PSEH technique tending to correct 

the overestimated execution times, resulting in a lower contention for resources. This leads 

to a lower processing time for the CPLEX solver in the case of HCP-RM-EH, and thus 

HCP-RM-EH achieves a lower O compared to HCP-RM. 

6.3.2 Feitelson’s Error Model  

The results of the performance comparison between HCP-RM-EH and HCP-RM 

when using Feitelson’s Error Model (described in Section 5.7.1) at different arrival rates 

are presented in Figure 6.4 and Figure 6.5. As shown in Figure 6.4, it is observed that both 

HCP-RM-EH and HCP-RM achieve the same values of P for all the values of λ 

experimented with. This can be attributed to Feitelson’s Error Model generating highly 

overestimated task execution times, resulting in jobs having more slack time (i.e., higher 
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values of Lj
act) and lenient job deadlines. Note that the non-visible bars in Figure 6.4 when 

λ is 1/45 jobs/sec and 1/30 jobs per sec indicate that the value of P is 0 for both systems.  

 

 

Figure 6.4. HCP-RM vs HCP-RM-EH: effect of λ on P when using Feitelson’s Error 

Model. 

 

 

Figure 6.5. HCP-RM vs HCP-RM-EH: effect of λ on T and O when using Feitelson’s 

Error Model. 
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With regards to T (refer to Figure 6.5), it is observed that for a given λ, both HCP-

RM-EH and HCP-RM have comparable values with HCP-RM achieving a slightly lower 

T. This can be attributed to HCP-RM expecting that jobs have very high execution times, 

and thus focusing on executing jobs at or close to their arrival times so that the jobs do not 

miss their deadlines. On the other hand, HCP-RM-EH sees jobs that have lower execution 

times (as adjusted by the PSEH technique) and more laxity in comparison to HCP-RM. 

This allows HCP-RM-EH to quickly find a schedule that minimizes P without focusing on 

minimizing T, leading HCP-RM-EH to have a slightly higher T compared to HCP-RM. 

This reasoning is supported by observing the results of O shown in Figure 6.5 (refer to the 

sequence of points), which demonstrate that HCP-RM-EH achieves a lower O (on average 

72% lower) compared to HCP-RM for all the values of λ experimented with. HCP-RM 

expects a high contention for resources because when using Feitelson’s Error Model, it 

receives jobs with highly overestimated execution times. This in turn leads to more 

processing time being required to match make and schedule jobs and results in a higher O.  

 

6.3.3 Variable Error Model  

Figure 6.6 and Figure 6.7 present the results of the performance comparison 

between HCP-RM-EH and HCP-RM when using the Variable Error Model. The 

parameters of the Variable Error Model (defined in Section 6.2.3) are set as follows: poe = 

0.98, min_ue_f = -0.9, max_ue_f = -0.1, min_oe_f = 0, max_oe_f = 2. The value of poe is 

adopted from [77], which performed an analysis on a workload trace and found that 98% 

of jobs submitted have overestimated execution times and only 2% have underestimated 

execution times. The values of min_ue_f, max_ue_f, min_oe_f, and max_oe_f are set 
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according to the maximum and minimum values of f used in the Constant Error Model 

experiments (discussed in Section 6.3.1). 

 

 

Figure 6.6. HCP-RM vs HCP-RM-EH: effect of λ on P when using the Variable Error 

Model. 

 

 

Figure 6.7. HCP-RM vs HCP-RM-EH: effect of λ on T and O when using the Variable 

Error Model. 
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It is observed that HCP-RM-EH achieves a lower P, T, and O compared to HCP-

RM for all the values of λ experimented with. Note that the non-visible bar for HCP-RM-

EH in Figure 6.6 when λ is 1/45 jobs/sec indicates that P is 0. The performance 

improvement in terms of P, T, and O achieved by HCP-RM-EH over HCP-RM when using 

the Variable Error Model is summarized: 54% reduction in P, 3% reduction in T, and 35% 

reduction in O. The results demonstrate that the PSEH technique used by HCP-RM-EH is 

effective in not only handling workloads in which jobs have the same f as generated by the 

Constant Error Model, but is also effective in handling workloads in which jobs have 

different values of f as generated by the Variable Error Model. The superior performance 

of HCP-RM-EH can be attributed to the PSEH technique being able to adjust the user-

estimated task execution times and make them more accurate (i.e., closer to the actual task 

runtimes). This gives HCP-RM-EH more accurate information on how long jobs need to 

execute for, and thus, allows HCP-RM-EH to make more intelligent matchmaking and 

scheduling decisions that can lead to high system performance.  

6.4 Summary and Discussion 

In this chapter, techniques are presented for handling inaccuracy or error in user 

estimates of job execution times (submitted as part of the SLA for the job) to improve the 

robustness of the MRCP-RM technique (described in Chapter 4) and the HCP-RM 

technique (described in Chapter 5). The effectiveness of a matchmaking and scheduling 

algorithm that depends on the user-estimated job execution times can be diminished by 

inaccurate estimates of job runtimes. Thus, a Prescheduling Error Handling (PSEH) 

technique is devised to adjust the user-estimated execution times to make them more 

accurate before they are used by the resource management algorithms. A rigorous 
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performance evaluation of the PSEH technique is conducted on a Hadoop cluster deployed 

on Amazon EC2. Three models to generate the error in user-estimated execution times 

(Constant, Feitelson’s, and Variable) are used in the experiments. The performance of 

HCP-RM using the PSEH technique (denoted HCP-RM-EH) is compared to the 

performance of the original version of HCP-RM. A number of insights into system 

behaviour and performance are gained from analyzing the results of the experiments and 

these are summarized next. 

 Constant Error Model: In all the experiments conducted using the Constant Error 

Model (see Section 6.3.1), HCP-RM-EH is observed to achieve a lower P (up to 

50% lower and on average 29% lower) and a lower T (up to 57% lower and on 

average 21% lower) compared to HCP-RM. Furthermore, HCP-RM-EH achieves 

a P of 0 when f is 2 and λ is 1/30 jobs per sec or lower. With regards to O, it is 

observed that when the execution times are overestimated, HCP-RM-EH 

achieves a lower O compared to HCP-RM, but when the execution times are 

underestimated, the opposite is true. 

 Feitelson’s Error Model: When using Feitelson’s Error Model (see Section 

6.3.2), both HCP-RM-EH and HCP-RM achieve the same values of P of less than 

0.2% and similar values of T due to Feitelson’s Error Model generating jobs with 

significantly overestimated execution times. However, HCP-RM-EH is observed 

to achieve up to a 76% lower O (on average 72% lower) compared to the O 

achieved by HCP-RM.  

 Variable Error Model: Over all the experiments conducted using the Variable 

Error Model (see Section 6.3.3), it is observed that HCP-RM-EH achieves on 



 

 

189 

 

average a 54% lower P, a 3% lower T, and a 35% lower O compared to the values 

of P, T, and O, respectively, achieved by HCP-RM. This demonstrates the 

effectiveness of HCP-RM-EH in handling a workload comprising jobs with 

different degrees of errors in execution times.  

 Effectiveness of PSEH technique: The superior performance of HCP-RM-EH can 

be attributed to the PSEH technique being able to adjust the user-estimated task 

execution times to make them more accurate. This in turn enables HCP-RM-EH 

to make intelligent matchmaking and scheduling decisions that tends to lead to 

HCP-RM-EH achieving lower values of P, T, and O compared to HCP-RM.  

In the following sub-section, a direction for future research that focuses on devising 

a runtime error handling technique, which deals with the error in execution times after the 

job has been scheduled and has started running, is described. 

6.4.1 Runtime Error Handling Technique 

The PSEH technique described in this chapter alters the job execution times (before 

the job is scheduled on the system) based on the trend of error in user-estimated execution 

times, which is established from the past history of completed jobs. The resulting adjusted 

values of such execution times may still not be 100% accurate. Thus, there seems to be a 

scope for future research on a technique that performs further error handling after the jobs 

start running on the system. Such a technique will be targeted at handling two situations: 

(1) when the system generated execution times determined by the PSEH technique are still 

overestimated, leading to resource idle times, and (2) when the system generated execution 

times are still underestimated, preventing jobs from being able to complete executing by 

their computed end times. Handling of each of these situations is briefly discussed. 
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Handling of Overestimated Execution Times: This corresponds to the situation in 

which task t takes less than its estimated execution time (et
est) to complete. In this situation, 

the completed task t is removed from the system and the tasks scheduled on the resource r, 

on which t was running, are rescheduled so that they can start to execute earlier as long as 

their earliest start time requirements are not violated. This attempts to decrease the resource 

idle time that will result from task t completing before its expected end time.  

Handling of Underestimated Execution Times: This corresponds to the situation in 

which task t does not complete its execution after running for et
est time units. In such a 

situation, task t can be given additional execution time (referred to as a time quantum) so 

that it can continue executing immediately or at a later time. The system can start by 

assigning task t a small time quantum as long as it does not lead to new deadline misses 

for jobs. If the task still does not finish executing, further time quanta with higher durations 

can be provided if the deadline for the job containing task t is not violated. The idea is to 

utilize existing idle slots in the resource schedule and to delay executing the tasks of jobs 

that have already missed their deadlines in favour of executing tasks of jobs that have not 

missed their deadlines.  Whether using such an additional runtime error handling technique 

leads to a significant improvement in system performance is worthy of further 

investigation. 
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Chapter 7 Workflow Budget-Based Resource Management 

Technique 

The focus of this chapter is on describing the Workflow Budget-Based Resource 

Management (WFBB-RM) technique that is devised to efficiently perform matchmaking 

and scheduling for an open stream of multi-stage jobs with SLAs where each SLA 

comprises an earliest start time, an execution time, and an end-to-end deadline. Preliminary 

research on a budget-based resource allocation and scheduling technique for processing an 

open stream of MapReduce jobs with SLAs is described in [19]. In addition to MapReduce 

jobs, the WFBB-RM technique can process workflows that have different structures 

(various types of precedence relationships) and more than two phases of execution, such 

as scientific workflows found in the domain of physics and biology. The WFBB-RM 

technique decomposes (budgets) the end-to-end deadline of a job, which is submitted as 

part of the job’s SLA, into components (i.e., sub-deadlines), each of which is associated 

with a specific task in the job. The individual tasks of the job are then mapped on to the 

resources where the objective is to satisfy the job’s SLA and minimizing the number of 

jobs that miss their deadlines.  

The rest of the chapter is organized as follows. Section 7.1 provides a description 

of how the resource allocation and scheduling problem is modelled. The algorithms devised 

to budget the end-to-end deadline for multi-stage jobs are described in Section 7.2. In 

Section 7.3, the matchmaking and scheduling algorithms of the WFBB-RM technique are 

discussed. The experimental setup and description of the workloads used in the 

performance evaluation of the WFBB-RM technique are described in Section 7.4. The 

results of the experiments are presented and the insights gained into system behaviour and 
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performance are discussed in Section 7.5 and Section 7.6. Lastly, Section 7.7 provides a 

summary and discussion of the chapter.  

7.1 Problem Description and Resource Management Model  

This section describes how the problem of matchmaking and scheduling an open 

stream of multi-stage jobs with SLAs on a distributed computing environment is modelled 

(see Figure 7.1). Such an environment can correspond to a private cluster or a set of nodes 

acquired a priori from a cloud (e.g., Amazon EC2) for processing the jobs. The distributed 

environment is modelled as a set of resources, 𝑅 =  {𝑟𝑒𝑠 1, 𝑟𝑒𝑠 2, … , 𝑟𝑒𝑠 𝑚} where m is 

the number of resources in the system. Each resource r in R has a capacity (cr), which 

specifies the number of tasks that resource r can execute in parallel at any point in time. 

Note that related works have modelled resources in a similar manner (see [36], [39], and 

[41], for example). 

Resource Manager

Resource 1

CPU 1 CPU 2

Resource m

CPU 1 CPU 2

...

WFBB-RM

Job Queue

Job 3 Job 2 Job 1

Users

 

Figure 7.1. Example of a system deploying the WFBB-RM technique. 
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The system is subject to an open stream of multi-stage jobs. Each multi-stage job j 

that arrives on the system is characterized by an earliest start time (sj) and an end-to-end 

deadline (dj) by which the job j should complete executing. In addition, each job j also 

comprises a set of tasks, where each task t has an execution time (et) and can have one or 

more precedence relationships. The multi-stage job and the precedence relationships 

between its tasks can be modelled using a directed acyclic graph (DAG) (see Figure 7.2, 

for example). The nodes (vertices) of the DAG represent the tasks of the job, and the edges 

of the DAG show the precedence relationships between the tasks of the job.  

 

t1 t2 t3

t4 t5

t0

1

2

= Execution Phase
 

Figure 7.2. DAG of a sample multi-stage job. 

 

The example multi-stage job shown in Figure 7.2 is characterized by two phases of 

execution. An execution phase in a multi-stage job comprises one or more tasks that can 

only start to execute after the previous execution phase is completed, which also comprises 

a single task or set of tasks. The execution phases of a multi-stage job can only be executed 

sequentially. For example, in the sample job shown in Figure 7.2, the first phase of 

execution comprises three tasks: t1, t2, and t3. These three tasks do not have any direct 
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preceding tasks (referred to as parent tasks), which means that these tasks can start 

executing at the job’s earliest start time. However, the tasks t4 and t5, which are part of the 

second phase of execution, each have a parent task t0, as well as indirect preceding tasks 

t1, t2, and t3. The tasks t4 and t5 cannot start executing until task t0 finishes, which in turn 

cannot start executing until tasks t1, t2, and t3 finish executing. Note that some workflows 

are modelled using a DAG with special tasks, referred to as dummy tasks, whose only 

purpose is to show precedence relationships between tasks in the DAG, and thus, dummy 

tasks have an execution time equal to 0. For example, in Figure 7.2, task t0 is a dummy 

task that ensures tasks in the second phase of execution start to execute only after all the 

tasks in the first phase have completed.  

As shown in Figure 7.1, jobs that arrive on the system are placed in a job queue, 

where jobs are sorted by non-decreasing order of their deadlines (i.e., jobs that have earlier 

deadlines are placed in front of jobs with later deadlines). The resource manager uses the 

WFBB-RM technique to perform matchmaking and scheduling. More specifically, when 

the resource manager is available (i.e., not busy mapping another job) and the job queue is 

not empty, it removes the first job in the job queue to map onto the resources of the system, 

R. The requirements for mapping the jobs on to R are described next. The tasks of each job 

j can only execute after sj and after their parent tasks have completed executing. In addition, 

each task of job j should complete its execution before the deadline of the job (dj); 

otherwise, job j will miss its deadline. Note that dj is a soft deadline, meaning that although 

jobs are permitted to miss their deadlines, the desired system objective is to minimize the 

number of late jobs. At any point in time, the number of tasks that a resource r in R can 

execute in parallel must be less than or equal to its capacity, cr. A resource will execute the 
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tasks it has been assigned in the order generated by the WFBB-RM algorithm. However, a 

task that has been scheduled but has not started executing can be rescheduled or assigned 

to another resource, if required. 

7.2 Deadline Budgeting Algorithm for Workflows 

Algorithm 7.1 presents the Deadline Budgeting Algorithm for Workflows 

(abbreviated DBW), which is used by the WFBB-RM technique to decompose the end-to-

end deadline of a multi-stage job into components and to assign each task of the job a sub-

deadline. The input required by the DBW algorithm is a multi-stage job j and two integer 

parameters: setOpt to indicate the approach used to calculate the sample execution time of 

the job j (SETj) and laxDistOpt to specify how the laxity (or slack time) of the job j (Lj) is 

to be distributed among its constituent tasks. Recall the discussion of SETj and Lj provided 

in Section 3.1.1. SETj is an estimate of the execution time of job j and Lj is the extra time 

that job j has for meeting its deadline if it starts executing at its earliest start time: 𝐿𝑗 =

𝑑𝑗 − 𝑠𝑗 − 𝑆𝐸𝑇𝑗 . 

The first step of the DBW algorithm is to calculate SETj (line 1). SETj is calculated 

using the user-estimated task execution times of the job and can be calculated in one of two 

ways depending on the supplied setOpt parameter. The first approach (setOpt = 1) is to 

calculate the execution time of job j when it executes at its maximum degree of parallelism 

on the set of resources R with m resources (denoted SETj
R). Recall from the previous 

section, the definition of R, which is a set of resources that models the distributed system 

job j will execute on. The second approach (setOpt = 2) is to calculate the execution time 

of the job when it executes on R, while considering the current processing load of the 

resources (i.e., considering the other jobs already executing or scheduled on R) (denoted 
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SETj
R_PL). Next, the algorithm calculates the laxity of the job (Lj) as shown in line 2. Note 

that when Lj is calculated using SETj equal to SETj
R, the laxity of the job is referred to as 

the sample laxity (SL) because the job execution time is calculated on R without 

considering the current processing load of the resources. When Lj is calculated using SETj 

equal to SETj
R_PL, the laxity of the job is referred to as the true laxity (TL) because the job 

execution time is calculated for R while considering the current processing load of the 

resources in R. The final steps of the algorithm are to distribute the laxity of the job to each 

of its constituent tasks and to calculate a sub-deadline for each of the tasks (line 3) by 

invoking one of two algorithms devised: (1) the Proportional Distribution of Job Laxity 

Algorithm (abbreviated PD), which is described in Section 7.2.2, and (2) the Even 

Distribution of Job Laxity Algorithm (abbreviated ED), which is discussed in Section 7.2.3. 

The algorithm that is used depends on the supplied laxDistOpt input parameter. Before 

discussing the details of the PD and ED algorithms, a discussion on the laxity of tasks is 

presented first. 

 

Algorithm 7.1: Deadline Budgeting Algorithm for Workflows 

Input: job j, integer setOpt, integer laxDistOpt  

Output: none 

1: Depending on setOpt, calculate the sample execution time of job j (SETj).  

2: jobLaxity  dj – sj – SETj 

3: According to laxDistOpt, invoke the PD algorithm or the ED algorithm. 

 

7.2.1 Laxity of Tasks 

After invoking the DBW algorithm for a job j, each task t belonging to job j will 

have a sub-deadline. Therefore, the laxity of a task t, denoted LTt, can be calculated as 

follows: 

𝐿𝑇𝑡 =  𝑠𝑑𝑡  −  𝑡𝑠𝑡  − 𝑒𝑡 (7.1) 
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where sdt is the sub-deadline of task t, tst is the earliest start time of task t, and et is the 

execution time of task t. The value of tst is dependent on the precedence relationships of 

task t. For tasks that do not have any parent tasks (recall the definitions provided in Section 

7.1), tst is equal to sj (the earliest start time of the job that t belongs to). If a task t has at 

least one parent task, tst is equal to the completion time of the latest finishing parent task 

of t. The value of LTt is between a minimum task laxity value (LTt
min) and a maximum task 

laxity value (LTt
max).  

LTt
max is the maximum laxity that task t can have and is calculated as follows: 

𝐿𝑇𝑡
𝑚𝑎𝑥 =  𝑠𝑑𝑡  −  𝑒𝑝𝑠𝑡  −  𝑒𝑡 (7.2) 

 

where epst is the earliest possible start time of task t when the parent job of t is executed 

on the set of resources R (comprising m resources). The value of epst is equal to the 

completion time of the latest finishing parent task of t, given that t’s parent tasks finish 

executing at their earliest possible times (i.e., none of t’s preceding tasks (direct or indirect) 

use any of their laxities). Moreover, LTt
min is the minimum laxity that task t can have. In 

other words, LTt
min is the laxity of task t given that all of t’s parent tasks complete their 

execution at their respective sub-deadlines (i.e., every parent task of t uses all of its laxity). 

LTt
min is calculated as follows: 

𝐿𝑇𝑡
𝑚𝑖𝑛  =  𝑠𝑑𝑡  −  𝑠𝑑𝑡

𝐿𝐹𝑃𝑇  −  𝑒𝑡 (7.3) 

 

where sdt
LFPT is equal to the sub-deadline of the latest finishing parent task of t. Note that 

if a task has no parent tasks, sdt
LFPT

 is equal to sj. 
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7.2.2 Proportional Distribution of Job Laxity Algorithm 

The Proportional Distribution of Job Laxity Algorithm (abbreviated PD) distributes 

the laxity of the job to its constituent tasks according to the length of the task’s execution 

time. This means that a task with a longer execution time is assigned a larger portion of the 

job’s laxity, resulting in the task having a higher sub-deadline. The PD algorithm is shown 

in Algorithm 7.2. The input required by the algorithm includes a job j to process and an 

integer parameter, setOpt, to indicate how SETj is calculated. Recall from the discussion 

earlier that SETj can be calculated in one of two ways: setOpt = 1 corresponds to SETj
R 

and setOpt = 2 corresponds to SETj
R_PL. A walkthrough of the algorithm is provided next. 

 

Algorithm 7.2: Proportional Distribution of Job Laxity Algorithm 

Input: job j, integer setOpt 

Output: none 

1: Depending on setOpt, calculate SCTj and store the value in sct. 

2: est  j.getEarliestStartTime() 

3: jobLaxity  j.getLaxity() 

4: for each task t in job j do 

5:   cumulativeLaxity  [(t.getSCT() - est) / (sct– est)] * jobLaxity  

6:   subdeadline  t.getSCT() + cumulativeLaxity 

7:   t.setSubDeadline(subdeadline)  

8:   if t has more than one parent task then 

9:    call setParentTasksSubDeadlines(t) 

10:  end if 

11: end for 

 

The first step of Algorithm 7.2 is to calculate the sample completion time of job j 

(denoted SCTj) as: sj + SETj where sj is the earliest start time of job j (line 1). The second 

and third steps involve retrieving sj and Lj, respectively, of the supplied job j and saving 

them in local variables (lines 2-3). Next, the PD algorithm performs the following 
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operations on each task t in the job j (line 4). The first operation is to calculate the 

cumulative laxity of the task t (denoted CLt) (line 5) as follows: 

𝐶𝐿𝑡  =  
𝑆𝐶𝑇𝑡  −  𝑠𝑗

𝑆𝐶𝑇𝑗  −  𝑠𝑗
 ×  𝐿𝑗 (7.4) 

where SCTt is the sample completion time of task t. Note that the sample completion time 

of the tasks are determined during the calculation of SETj (line 1 in Algorithm 7.1). The 

cumulative laxity of a task t is the maximum laxity that task t can have (recall Section 

7.2.1). After calculating CLt, the sub-deadline of the task t (sdt) is then calculated (line 6) 

as follows: 

𝑠𝑑𝑡  =  𝑆𝐶𝑇𝑡  + 𝐶𝐿𝑡 (7.5) 

 

The sub-deadline of the task t is then set as shown in line 7. If the task t does not have more 

than one parent task, the processing of task t is complete and the algorithm moves on to 

process the next task; otherwise, the algorithm invokes the task’s 

setParentTasksSubDeadlines() method (lines 8-10). This method, whose objective is to 

set the sub-deadline of all of t’s parent tasks to the sub-deadline of the task among all of 

t’s parent tasks that has the highest sub-deadline, is described in more detail in Section 

7.2.2.1. The reason for invoking setParentTasksSubDeadlines() is because a task t 

cannot start executing until all of its parent tasks finish executing, and thus, all the parent 

tasks of task t should have the same sub-deadline. The algorithm ends after processing all 

the tasks of the job. 

7.2.2.1 Set Sub-deadlines of Parent Tasks Method  

Algorithm 7.3 presents the algorithm for setParentTasksSubDeadlines() 

(abbreviated setPTSubDL). The input required by the method is a task t to process. The first 

step is to check if the execution time of task t is equal to 0, meaning it is a dummy task 



 

 

200 

 

(line 1). Recall from Section 7.1 that a dummy task is a task whose purpose is to only 

specify precedence relationships between the tasks of a job, and thus, dummy tasks have 

an execution time equal to zero. If the task to process t is a dummy task, the sub-deadline 

of each of t’s parent tasks is set to t’s own sub-deadline, and the method ends (see lines 2 

to 5).  

Otherwise, task t has an execution time greater than 0, and the method continues as 

follows. First, the highest sub-deadline that is found among all of t’s parent tasks is saved 

in the variable highestSubDeadline (line 7). Next, each of t’s parent tasks (denoted pt) is 

processed to see if their current sub-deadline should be updated and set to the value stored 

in highestSubDeadline (lines 8-15). The sub-deadline of each pt is only updated if the 

following two conditions are true: (1) the value stored in highestSubDeadline is larger 

than pt’s current sub-deadline (line 9) and (2) there is a single direct path from pt to t, that 

is there is a direct edge from pt to t and no other path from pt to t (see lines 10-13). To 

check condition (2), a method named getListOfSucceedingTasksUnitl(), which returns 

a list of tasks from pt (including pt) that form a path to t, is used. The return value of 

getListOfSucceedingTasksUnitl() is saved in a variable called succeedingTasks (line 

10). If the number of tasks in succeedingTasks is equal to 1, it means that there is a direct 

path from pt to t, and pt’s sub-deadline is set to the value of highestSubDeadline (lines 

11-13). On the other hand, if the number of tasks in succeedingTasks is greater than 1, 

the sub-deadline of the task is not changed and the next parent task of t is processed. After 

all of task t’s parent tasks are processed, the method returns (line 15). 

An example of why condition (2) needs to be checked is shown in the DAG 

presented in Figure 7.3. The figure specifies the name of the tasks (t1 to t4) and the sub-
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deadlines of each of the tasks (sdt). Assume that the PD algorithm has already done the 

following: processed tasks t1 to t3, finished assigning a sub-deadline to t4, and just invoked 

the setPTSubDL method for t4. Since task t4 is not a dummy task, lines 1 to 6 are skipped 

and line 7 is executed, which assigns 21 to the variable highestSubDeadline because t3 

has the highest sub-deadline among all of t4’s parent tasks. If condition (2) (see lines 10-

11) is not present in the setPTSubDL algorithm, task t1’s sub-deadline would be set to 21. 

However, this would not make sense because it would cause task t1, which is a parent task 

of t2, to have a higher sub-deadline compared to t2. The reason that this situation can occur 

is because there are two paths from which task t1 can reach task t4: (1) a direct path from 

t1 to t4 and (2) a path from t1 through t2 and t3 to t4. Thus, this example of the precedence 

relationships between tasks, which has also been observed in some scientific workflows, 

demonstrates that the sub-deadline of a parent task should not be updated if there is more 

than one path from the parent task to the child task.  

 

Algorithm 7.3: WFBB-RM algorithm’s setParentTasksSubDeadline() 

Input: task t  

Output: none 

1: if t.getExecutionTime() = 0 then 

2:  for each task pt in t’s parent tasks list do 

3:   call pt.setSubDeadline(t.getSubDeadline()) 

4:  end for  

5:  return 

6: end if 

7: highestSubDeadline  Get the highest sub-deadline among all of t’s parent tasks.  

8: for each task pt in t’s parent tasks list do 

9:  if latestSubDeadline > pt.getSubDeadline() then 

10:    call getListOfSucceedingTasksUnitl(pt, t) returning succeedingTasks 

11:   if succeedingTasks.size() = 1 then 

12:    pt.setSubDeadline(highestSubDeadline) 

13:   end if 

14:  end if 

15: end for 
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t1 t2

t4 t3

sdt1=14 sdt2=19

sdt4=27 sdt3=21  

Figure 7.3. Sample DAG for illustrating the purpose of getListOfSucceedingTasksUnitl(). 

 

7.2.3 Even Distribution of Job Laxity Algorithm 

The Even Distribution of Job Laxity Algorithm (abbreviated ED) does not consider 

the length of the task’s execution time and instead distributes the laxity of the job evenly 

among the execution phases of the job. Recall from Section 7.1 that an execution phase in 

a multi-stage job comprises one or more tasks that can only start to execute after the 

previous execution phase, which also comprises a single task or set of tasks, is completed. 

The ED algorithm requires each task in a job to have an execution phase attribute, which 

is an integer (1, 2, 3, …) that indicates the phase of execution that the task belongs to.  

The ED algorithm is presented in Algorithm 7.4 and a walkthrough of the algorithm 

is provided next. The input required by the algorithm is a job j to process. The first step is 

to retrieve the laxity of the job and save the value in a local variable (line 1). Next, the 

algorithm determines the number of execution phases that the job contains (lines 2-6). This 

is accomplished by checking the execution phase attribute of each task t in job j (line 3) 

and adding task t’s execution phase to a list called executionPhases, if the task’s execution 

phase is not already in the list (lines 4-5). The executionPhases list is then sorted in non-

decreasing order (line 7). The next step of the algorithm is to calculate the amount of laxity 
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that each execution phase should be assigned (line 8). The laxity per each execution phase 

of a job j (denoted Lj
ep) is calculated as follows: 

𝐿𝑗
𝑒𝑝  =  

𝐿𝑗

𝑛𝑗
𝑒𝑝⁄  (7.6) 

where Lj is the laxity of job j and nj
ep is the number of execution phases in job j. The 

cumulative laxity for each execution phase, which is the maximum amount of laxity that 

an execution phase can have, is then calculated as shown in lines 9 to 13. More specifically, 

the cumulative laxity of each execution phase ph for a job j is calculated as follows: 

𝐶𝐿𝑗
𝑝ℎ  =  𝑝ℎ ×  𝐿𝑗

𝑒𝑝
 (7.7) 

 

where ph is an integer in the set {1, 2, 3, …, nj
ep} that represents the execution phase. A 

map data structure named cumulativeLaxities is used to store the cumulative laxity for 

each execution phase (line 9).  Note that the ED algorithm assigns each phase of execution 

the same amount of laxity (equal to Lj
ep). However, tasks that belong to an execution phase 

closer to the end of the job (i.e., an execution phase with a higher ph value) will have a 

higher maximum laxity value (equal to CLj
ph) compared to tasks that belong to an execution 

phase that is near the start of the job (i.e., an execution phase with a smaller ph value). This 

is because the tasks belonging to an execution phase with a higher ph value can use the 

unused laxity from the tasks in the preceding execution phases. 

The last phase of the algorithm (lines 14-27) uses the cumulative laxity values to 

calculate and assign a sub-deadline for each of job j’s tasks. More specifically, the 

following operations on each task t of job j are performed. First, the execution phase of the 

task t is retrieved. If task t is a dummy task (recall the definition in Section 7.1), the 

execution phase of the task is obtained by finding the parent task of t that has the latest 

sample completion time (SCTt) (see lines 15-17). Otherwise, the execution phase is 



 

 

204 

 

obtained directly from t as shown in line 18. After obtaining the execution phase of the 

task, the cumulative laxity of the task is retrieved from the cumulativeLaxities map using 

the value of the execution phase as the key (line 21). The sub-deadline of the task is then 

calculated using Eq. 7.5 (see Section 7.2.2) and assigned to the task (lines 22-23). Similar 

to the PD algorithm, the ED algorithm invokes the setPTSubDL method if the task t has 

more than 1 parent task. After all the tasks of job j are processed, the algorithm ends (line 

27). 

 

Algorithm 7.4: Even Distribution of Job Laxity Algorithm 

Input: job j  

Output: none 

1: jobLaxity  j.getLaxity() 

2: Create an empty list named executionPhases. 

3: for each task t in job j do 

4:   if executionPhases does not contain t’s execution phase then 

5:    executionPhases.add(t.getExecutionPhase()) 

6: end for 

7: Sort executionPhases in non-decreasing order. 

8: laxPerEP  jobLaxity / executionPhases.size() 

9: Create an empty map, cumulativeLaxities <execution phase, cumulative laxity>. 

10: for i = 0 to (executionPhases.size() -1) do 

11:  cl  (i + 1) * laxPerEP     

12:  cumulativeLaxitites.put(executionPhases.get(i), cl) 

13: end for 

14: for each task t in job j do 

15:  if t.getExecutionTime() <= 0 then 

16:   latestTask  t.getLatestParentTask() 

17:   ep  latestTask.getExecutionPhase() 

18:  else  

19:   ep  t. getExecutionPhase () 

20:  end if  

21:  cumulativeLaxity  cumlativeLaxities.get(ep)  

22:  subDL  t.getSCT() + cumulativeLaxity 

23:  t.setSubDeadline(subDL)  

24:  if t has more than one parent task then 

25:   call setParentTasksSubDeadline (t) 

26:  end if 

27: end for 
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7.3 WFBB-RM Matchmaking and Scheduling Algorithm  

This section describes the WFBB-RM technique’s matchmaking and scheduling 

algorithm (also referred to as the mapping algorithm), which is composed of two sub-

algorithms: (1) the Job Mapping algorithm (discussed in Section 7.3.1) and (2) the Job 

Remapping algorithm (described in Section 7.3.2). When there is a job j available to be 

mapped, the Job Mapping algorithm is invoked. If the Job Mapping algorithm is unable to 

schedule job j to complete its execution before its deadline, the Job Remapping algorithm 

is called to remap job j and a set of jobs that may have caused j to miss its deadline.  

7.3.1 Job Mapping Algorithm 

The Job Mapping algorithm is comprised of two methods: (1) mapJob() presented 

in Algorithm 7.5 and (2) mapJobHelper() described in Algorithm 7.6. Note that the 

variables shown in the algorithms that are underlined indicate that the variables are fields 

belonging to the WFBB-RM algorithm instead of being local variables. A walkthrough of 

mapJob() is provided first, followed by the description of mapJobHelper(). The input 

required by mapJob() comprises the following: a job to map j, an integer setOpt, an integer 

laxDistOpt, and an integer tsp. Note that except for the parameter tsp, which specifies 

the task scheduling policy, these are the same input parameters as used by the DBW 

algorithm (described in the previous section). The method returns true if the job j can be 

scheduled to meet its deadline; otherwise, false is returned.  

The first step of mapJob() is to invoke the DBW algorithm to decompose the end-

to-end deadline of the job j and assign each of job j’s tasks a sub-deadline (line 1). Next, 

the WFBB-RM algorithm’s rootJob field is set to j (line 2). The rootJob field stores the 

current job that is being mapped by the system. The third step is to clear the WFBB-RM 
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algorithm’s prevRemapAttempts list (line 3), which stores the various sets of jobs that a 

job remapping attempt processes. The WFBB-RM algorithm’s jobComparator field, which 

specifies how jobs that need to be remapped are sorted, is then set to the Job Deadline 

Comparator (line 4) to sort jobs by non-decreasing order of their respective deadlines. A 

more detailed discussion of the purpose of these fields, which are used by the Job 

Remapping algorithm, is provided in the next section. In line 5, the WFBB-RM algorithm’s 

taskSchedulingPolicy field, which specifies how tasks are scheduled, is initialized. Two 

task scheduling policies are devised. TSP1 schedules tasks to execute at their earliest 

possible start times, and TSP2 schedules tasks to execute at their latest possible times such 

that the tasks meet their respective sub-deadlines. The last step is to invoke Algorithm 7.6: 

mapJobHelper() (line 6).  

Algorithm 7.5: WFBB-RM algorithm’s mapJob() 

Input: job j, integer setOpt, integer laxDistOpt, integer tsp 

Output: a Boolean: true if the job j is scheduled to meet its deadline; false, otherwise. 

1: call DBW(j, setOpt, laxDistOpt) 

2: rootJob  j 

3: Clear the prevRemapAttempts list. 

4: Set jobComparator to the Job Deadline Comparator. 

5: Set taskSchedulingPolicy  tsp  

6: return mapJobHelper(j, true, true) 

 

A walkthrough of mapJobHelper(), which performs the allocation and scheduling 

of job j onto the set of resources in the system, is provided next. The input required by 

mapJobHelper() includes the following: a job j to map, a Boolean isRootJob, which is set 

to true if this is the first time job j is being mapped; otherwise, it is set to false, and a 

Boolean checkDeadline, which is set to true if the method should try to map job j to meet 

its deadline; otherwise, it is set to false and the method has to map job j on the system, but 

it does not have to schedule job j to meet its deadline. The mapJobHelper() method starts 
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by initializing the local variable isJobMapped to true (line 1). Next, all of job j’s tasks that 

need to be mapped are sorted in non-increasing order of their respective execution times 

(line 2), where ties are broken in favour of the task with the earlier sub-deadline. If the 

tasks also have the same sub-deadline, the task with the smaller task id (a unique value) is 

placed ahead of the task with the larger id.  

The method then attempts to map each of job j’s tasks (lines 3-4) by performing the 

following operations for each task t in job j. First, the earliest start time of task t is retrieved 

by invoking the task t’s getEarliestStartTime() method (line 5), which returns the time 

that task t can start to execute while considering any precedence relationships that t has. If 

getEarliestStartTime() returns -1, it means that an earliest start time for task t cannot 

be determined as yet because not all of task t’s parent tasks have been scheduled. In this 

case, mapJobHelper() stops processing task t for the moment and attempts to map the next 

task in job j. On the other hand, if an earliest start time for task t is determined (i.e., 

getEarliestStartTime() does not return -1) (line 6), mapJobHelper() continues to 

process task t, and the expected start time of t is calculated depending on the value of the 

WFBB-RM algorithm’s taskSchedulingPolicy field, which is initialized by mapJob() 

(recall Algorithm 7.5). If taskSchedulingPolicy is set to TSP1, the expected start time 

of the task is not changed from the value obtained in line 5. However, if 

taskSchedulingPolicy is set to TSP2 (line 7), the expected start time of the task is set as 

shown in line 8. The completion time of the task is then calculated based on the expected 

start time of the task as shown in line 9. 
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Algorithm 7.6: WFBB-RM algorithm’s mapJobHelper() 

Input: job j, Boolean isRootJob, Boolean checkDeadline 

Output: a Boolean: true if the job j is scheduled to meet its deadline; false, otherwise. 

1: isJobMapped  true 

2: Sort job j’s tasksToMap list in non-increasing order of the execution time of the 

task. 

3: while the tasksToMap list is not empty do  

4:  for each Task t in job j’s tasksToMap list do 

5:   startTime  t.getEarliestStartTime()   

6:   if startTime ≠ -1 then  

7:    if taskSchedulingPolicy = TSP2 then 

8:     startTime  t.getSubDeadline() – t.getExecutionTime()  

9:    endTime  startTime + t.getExecTime() 

10:    if startTime = endTime then 

11:     t.setScheduledTime(startTime, endTime) 

12:     mappedTasks.add(t) 

13:    else 

14:     Find a resource r in R that can execute t at its requested time or the  

    next best time depending on taskSchedulingPolicy. 

15:     if t cannot be mapped to meet j’s deadline and checkDeadline = true 

    then  

16:      call removePartiallyMappedJob() 

17:      isJobMappedremapJob(job, isRootJob)   

18:      goto line 28 

19:     else 

20:      Map t on r.  

21:      mappedTasks.add(t)      

22:     end if 

23:    end if 

24:   end if 

25:  end for 

26:  tasksToMap.removeAll(mappedTasks) 

27:  end while 

28: if isJobMapped = true then 

29:  mappedTasks.clear() 

30:  mappedJobs.add(j) 

31:   return true 

32: else 

33:  call mapJobHelper(job, true, false) 

34:  return false 

35: end if 
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After calculating the expected start time and completion time of task t, the method 

checks whether t has an execution time equal to 0 (i.e., if task t is a dummy task (defined 

in Section 7.1)) (line 10). If task t is a dummy task, it does not need to be scheduled on a 

resource because it has an execution time equal to 0 and only the task’s scheduled start 

time and completion time need to be set (line 11). The task t is also added to the WFBB-

RM algorithm’s mappedTasks list (line 12), which stores all the tasks that have been 

successfully mapped for job j. On the other hand, if task t has an execution time greater 

than 0 (line 13), the method attempts to find a resource r in R that can execute t at its 

expected start time. If t cannot be scheduled to execute at its expected start time, the task 

is scheduled at the next best time depending on the value of the taskSchedulingPolicy 

field (line 14). If taskSchedulingPolicy is set to TSP1, the method schedules task t at its 

next earliest possible start time on the system. On the other hand, if taskSchedulingPolicy 

is set to TSP2, the method schedules the task at its next latest possible time, while ensuring 

the task’s sub-deadline is satisfied.  

If a resource r cannot be found to complete executing task t before job j’s deadline, 

it means job j cannot be mapped to meet its deadline in the current iteration. Thus, if the 

supplied input parameter checkDeadline is set to true (line 15), mapJobHelper() attempts 

to remap job j and a set of jobs that may have caused j to miss its deadline by performing 

the following operations (lines 16-18). First, the removePartiallyMappedJob() method is 

invoked to remove each of the tasks stored in the mappedTasks list from the system (line 

16). Algorithm 7.7: remapJob() (described in more detail in Section 7.3.2) is then invoked 

and the return value is saved in a variable called isJobMapped (line 17). The next step (line 

18) is then to go to line 28 to check the value of isJobMapped. If isJobMapped is set to 
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true, meaning the job has been successfully scheduled to meet its deadline, the 

mappedTasks list is cleared (line 29), job j is added to the WFBB-RM algorithm’s 

mappedJobs list (line 30), and true is returned (line 31). Otherwise, isJobMapped is set to 

false, meaning job j cannot be scheduled to meet its deadline (line 32). This leads to 

mapJobHelper() being re-invoked but this time with the checkDeadline parameter set to 

false, which will map job j even if it misses its deadline (line 33). False is then returned 

(line 34) to indicate job j will not meet its deadline.  

If either of the conditions shown in line 15 are not true (i.e., a resource is found that 

can complete executing task t before job j’s deadline or the input parameter checkDeadline 

is false), it means that task t can be scheduled to execute on resource r (line 20) and t is 

then added to the mappedTasks list (line 21). The next task of job j is then processed by 

repeating lines 3-27. This sequence of operations continues until all of job j’s tasks are 

mapped on the system. After all of job j’s tasks have been mapped, lines 28-31 are executed 

(as described earlier), and then the method returns. 

7.3.2 Job Remapping Algorithm 

The Job Remapping algorithm is comprised of two methods: (1) remapJob() 

presented in Algorithm 7.7 and (2) remapJobHelper() outlined in Algorithm 7.8. A 

discussion of remapJob() is provided first, followed by a discussion on 

remapJobHelper(). The input parameters required by remapJob() include a job j to remap 

and a Boolean isRootJob. The isRootJob parameter is set to true if it is the first invocation 

of remapJob() for attempting to remap job j in this iteration; otherwise, isRootJob is set 

to false. If job j and the set of jobs that may have prevented job j from meeting its deadline 
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are remapped and scheduled to meet their deadlines, the method returns true; otherwise, 

false is returned.  

The first step of remapJob() is to set the WFBB-RM algorithm’s 

taskSchedulingPolicy field to TSP1 so the tasks that are remapped are scheduled to 

execute at their earliest possible start times (line 1). The second step is to invoke Algorithm 

7.8: remapJobHelper() (line 2). Recall from line 4 of Algorithm 7.5 (mapJob()) that the 

jobComparator field, which specifies how the jobs that need to be remapped are sorted, is 

initially set to the Job Deadline Comparator. The Job Deadline Comparator sorts jobs in 

non-decreasing order of their respective deadlines with ties broken in favour of the job with 

the smaller laxity (tighter deadline). If remapJobHelper() returns true, remapJob() also 

returns true (line 3). On the other hand, if remapJobHelper() returns false, remapJob() 

continues (line 4) by checking the supplied isRootJob parameter. If isRootJob is false 

(line 5), meaning that this invocation of remapJob() is not for the original attempt for 

mapping job j, the method returns false to stop this particular remapping attempt from 

continuing (line 6). Otherwise, the method continues and the WFBB-RM algorithm’s 

jobComparator field is changed to the Job Laxity Comparator (line 8) and 

remapJobHelper() is invoked again to check if remapping the jobs in a different order can 

generate a schedule in which all the jobs to remap can meet their deadlines (line 9).  

The Job Laxity Comparator sorts jobs by non-decreasing order of their respective 

normalized laxity with ties going in favour of the job with an earlier deadline. If the jobs 

have the same deadline, the job with the earlier arrival time (which is unique for each job) 

is given priority. The normalized laxity of a job j (denoted NLj) is calculated as follows: 

𝑁𝐿𝑗  =  
𝐿𝑗

𝑆𝐸𝑇𝑗
 (7.8) 
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where Lj is the laxity of job j and SETj is the sample execution time of job j (recall Section 

7.2). The reason for using NLj instead of Lj for sorting the jobs is because Lj is not always a 

good indicator of how stringent the deadline of a job is. A job can have a large laxity value, 

but still have a very tight deadline if the job has a high execution time. For example, given 

two jobs: (1) job j1 has sj1 equal to 0, dj1 equal to 6000, and SETj1 equal to 5000, and (2) 

job j2 has sj2 equal to 5500, dj2 equal to 6000, and SETj2 equal to 100. Using this information 

and the equation 𝐿𝑗  =  𝑑𝑗  −  𝑠𝑗  −  𝑆𝐸𝑇𝑗 and Eq. 7.8, the following values can be 

calculated:  Lj1 is equal to 1000, Lj2 is equal to 400, NLj1 is equal to 0.2, and NLj2 is equal to 

4. As can be observed, job j1 has a higher laxity compared to job j2 (i.e., Lj1 > Lj2); however, 

j1’s normalized laxity is much smaller compared to j2’s normalized laxity (NLj1 < NLj2), 

meaning job j1 has a more stringent deadline.  

 

Algorithm 7.7: WFBB-RM algorithm’s remapJob() 

Input: job j, Boolean isRootJob 

Output: a Boolean: true if job j and the set of jobs to remap are all scheduled to meet 

their deadlines; otherwise, false. 

1: taskSchedulingPolicy   TSP1 

2: if calling remapJobHelper(j, isRootJob) returns true then 

3:   return true 

4: else 

5:   if isRootJob = false then 

6:    return false 

7:   end if  

8:   Change jobComparator to the Job Laxity Comparator. 

9:   return remapJobHelper(j, isRootJob) 

10: end if 

 

A walkthrough of remapJobHelper() (shown in Algorithm 7.8) is provided next. 

The input parameters and output value returned by remapJobHelper() are the same as 

those described for remapJob(). The first step of the method is to retrieve a subset of the 
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jobs already scheduled on the system that may have caused job j to miss its deadline (line 

1). This includes all the jobs in the WFBB-RM algorithm’s mappedJobs list that have a 

scheduled start time or completion time within the interval [sj, dj]. Next, the supplied job j 

is added to the jobsToRemap list (line 2) and then the jobsToRemap list is sorted using the 

WFBB-RM algorithm’s jobComparator (line 3). Since it is possible to have multiple 

(nested) invocations of remapJobHelper(), lines 4-6 determine when an invocation of 

remapJobHelper() (referred to as a remapping attempt) should be rejected. More 

specifically, before a remapping attempt is started the method checks if the WFBB-RM 

algorithm’s prevRemapAttempts list, which stores the various sets of jobs that previous 

invocations of remapJobHelper() have processed, contains the same jobs (in the same 

order) as the jobsToRemap list (line 4). If this is true, the method returns false to stop the 

remapping attempt (line 5).  

On the other hand, if the remapping attempt is allowed to continue, the 

jobsToRemap list is added to the prevRemapAttempts list (line 7). Next, the method checks 

if the supplied parameter isRootJob is true (line 8), and if so, the current state of the system 

is saved to a set of variables (line 9). This involves saving the scheduled tasks of each 

resource in the system and making a copy of the WFBB-RM algorithm’s mappedJobs list. 

Furthermore, the scheduled start time and assigned resource for each task currently mapped 

on the system is saved. The reason for saving this information is because it may be changed 

during the job remapping attempt, and if the remapping attempt is not successful, the 

original state of the system has to be restored. 
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Algorithm 7.8: WFBB-RM algorithm’s remapJobHelper() 

Input: job j, Boolean isRootJob 

Output: a Boolean: true if job j and the set of jobs to remap are all scheduled to meet 

their deadlines; otherwise, false. 

1: jobsToRemap   Get subset of mapped jobs that can cause j to miss its  

     deadline. 

2: jobsToRemap.add(j) 

3: Sort jobsToRemap using the jobComparator. 

4: if prevRemapAttempts list contains the same jobs in the same order as the 

jobsToRemap list then 

5:   return false 

6: end if  

7: Add jobsToRemap to prevRemapAttempts list. 

8: if isRootJob = true then 

9:   Save current state of the system. 

10: end if 

11: Remove jobs in jobsToRemap from the system. 

12: Move jobs in jobsToRemap that have missed their deadlines to the lateJobs list. 

13: for each job j1 in jobsToRemap do 

14:   if calling mapJobHelper(j1, false, true) returns false then 

15:    if isRootJob = true then  

16:     Restore state of the system saved in line 9. 

17:    end if 

18:    return false 

19:   end if 

20: end for 

21: Remap each job j2 in lateJobs by calling mapJobHelper(j2, false, false). 

22: return true 

 

 

The next step is to remove all the jobs in jobsToRemap from the system (line 11), 

which involves removing the jobs from the WFBB-RM algorithm’s mappedJobs list and 

removing each task of each job from its assigned resource’s scheduledTasks list. This 

needs to be done so that the jobs in jobsToRemap can be remapped on the system. All jobs 

in jobsToRemap that have already missed their deadlines are then moved to a new list called 

lateJobs (line 12) so that the jobs that have not missed their deadlines can be remapped 

first. The jobs in jobsToRemap (line 13) are then remapped in the specific order as 

determined by the jobComparator (recall line 3). This is accomplished by invoking 
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Algorithm 7.6: mapJobHelper() as shown in line 14. If mapJobHelper() returns true, the 

method maps the next job in jobsToRemap. If at any point mapJobHelper() returns false 

(line 14), it means that one of the jobs in jobsToRemap cannot be scheduled to meet its 

deadline and the job remapping attempt has failed. The method then checks if isRootJob 

is true (line 15), and if so, the state of the system that is saved in line 9 is restored (line 16). 

False is then returned to indicate that the remapping attempt has failed (line 18). On the 

other hand, if all the jobs in jobsToRemap are successfully remapped to meet their 

deadlines, the next step is to perform mapping for the jobs in lateJobs (i.e., the jobs that 

have missed their deadlines). This is accomplished by invoking mapJobHelper() 

(Algorithm 7.6) with the checkDeadline input parameter set to false for each of the jobs 

in lateJobs (line 21). Lastly, a value of true is returned by the method to indicate the 

remapping attempt is successful (line 22).  

7.4 Performance Evaluation of the WFBB-RM Technique 

This section describes the simulation experiments conducted to evaluate the 

performance of the WFBB-RM technique (referred to simply as WFBB-RM). Two types 

of experiments are conducted to evaluate the effectiveness of WFBB-RM. The first type of 

experiments (see Section 7.5) are performed to investigate the effect of various system and 

workload parameters on the performance of WFBB-RM. More specifically, factor-at-a-

time experiments are conducted, where one parameter is varied and the other parameters 

are kept at their default values. The second type of experiments (see Section 7.6) are 

conducted to compare the performance of WFBB-RM with that of MRCP-RM (described 

in Chapter 4). MRCP-RM has objectives that are similar to that of WFBB-RM: minimizing 

the number of jobs that miss their deadlines when processing an open stream of multi-stage 
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jobs with SLAs, where each job’s SLA is characterized by an earliest start time, an 

execution time, and an end-to-end deadline. 

The rest of this section is organized as follows. The experimental setup and the 

metrics used in the performance evaluation are described in Section 7.4.1. Following this, 

a description of the system and workload parameters used in the factor-at-a-time 

experiments is provided in Section 7.4.2.  

7.4.1 Experimental Setup 

The experiments are executed on a PC running Windows 10 (64-bit) with an Intel 

Core i5-4670 CPU (3.40 GHz) and 16 GB of RAM.  Note that in the experiments, only the 

execution of the workload on the system is simulated. WFBB-RM and its associated 

algorithms are executed on the machine described. Similar to the previous performance 

evaluations described in this thesis, WFBB-RM is evaluated in terms of the following 

performance metrics in each simulation run: 

 Proportion of late jobs, P (recall Section 4.4.1) 

 Average job turnaround time, T (recall Section 4.4.1) 

 Average job matchmaking and scheduling time (O) is the average processing 

time required by WFBB-RM to budget a job’s deadline and match make and 

schedule a job. O is calculated as the total time required to process all the jobs 

during a simulation run divided by the total number of jobs arriving on the 

system in a simulation run.  

O is a value that is measured using Java’s System.nanoTime() [102] method, whereas P 

and T are values produced as output of the simulation. Similar to Section 4.4.1, the O-by-

T ratio (denoted O/T) is used as an indicator of the processing overhead of WFBB-RM.  
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7.4.2 System and Workload Parameters for the Factor-at-a-Time Experiments 

The workloads used in the factor-at-a-time experiments are based on real scientific 

applications (workflows) that have been described in the literature. More specifically, the 

three scientific applications that are used in the experiments, which come from various 

fields of study, are named CyberShake, LIGO, and Epigenomics. A brief discussion of each 

application that includes presenting the DAG of the workflow is provided next. A more 

detailed description of all three applications can be found in [113] and [114].  

CyberShake is a seismology application that is created by the Southern California 

Earthquake Center to predict earthquake hazards in a region. More specifically, 

CyberShake uses the Probabilistic Seismic Hazard Analysis technique to identify all 

ruptures within 200 km of the site of interest. For each rupture, CyberShake calculates 

synthetic seismograms and then extracts the peak intensity measures from each 

seismogram. The peak intensity values are then combined with the original rupture 

probabilities to generate the probabilistic seismic hazard curves. The DAG of the 

CyberShake workflow is presented in Figure 7.4. The DAG shows that there are five phases 

of execution. The first, second, and fourth execution phases each contain multiple tasks to 

execute, whereas the third and fifth execution phases each only have one task to execute.  

The Laser Interferometer Gravitational Wave Observatory (LIGO) Inspiral 

Analysis workflow is designed and used to search for and analyze gravitational waveforms 

in data collected by large-scale interferometers. An interferometer is an apparatus that uses 

the interference of waves to measure and analyze very small phenomena, such as small 

displacements (e.g., wavelength) and refractive index changes. The input data is partitioned 

into multiple blocks so that the data can be analyzed in parallel. Furthermore, the  
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Figure 7.4. DAG of a sample CyberShake application [113]. 

 

application also generates a subset of waveforms (TmpltBank tasks) from each block of 

data to further facilitate parallel processing. Figure 7.5 shows the DAG of a sample LIGO 

workflow, which has 6 phases of execution. In this sample LIGO workflow there are two 

blocks of data being processed in parallel, where each block of data has multiple waveform 

data to process (i.e., TmpltBank tasks). For example, in the sample LIGO workflow, Block 

1 comprises 4 waveforms to process and Block 2 has 3 waveforms to process. 

The Epigenomics (Genome) workflow is created by the University of Southern 

California Epigenome Center for automating several commonly used operations in genome 

sequence processing. The input of the workflow is DNA sequence data generated by the 

Illumina-Solexa Genetic Analyzer system that is partitioned into several pieces to facilitate 

parallel processing. Figure 7.6 presents the DAG of a sample Genome workflow, which is 

characterized by one or more lanes, each of which starts with the execution of a fastQSplit  
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Figure 7.5. DAG of a sample LIGO Inspiral Analysis application [113]. 

 

task. The operations that are performed on the data involve the following: removing 

unnecessary (contaminating) sequences, mapping sequences into their correct locations 

according to the reference genome, and calculating the density of a sequence at each 

position in the genome. The Genome workflow has at least 8, but can have up to 9 phases 

of execution. If there is more than one lane in the workflow, as shown in the example in 

Figure 7.6, there are two mapMerge stages. The first mapMerge stage is for merging the 

results within a particular lane (execution phase 6), and the second mapMerge stage 

(referred to as the global mapMerge stage) is for merging the results of all the lanes in the 
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workflow (execution phase 7).  On the other hand, if there is only one lane in the workflow, 

the global mapMerge stage is not needed, and thus there will only be 8 phases of execution.  
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Figure 7.6. DAG of a sample Epigenomics application [113]. 

 

Table 7.1 outlines the system and workload parameters used in the factor-at-a-time 

experiments. These experiments investigate the effect of the following parameters on 

system performance: job arrival rate, earliest start time of jobs, job deadlines, and the 
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number of resources. A walkthrough of Table 7.1 is provided next. Note that the 

distributions used to generate the parameters of the workload, including the job arrival rate, 

earliest start time of jobs, and job deadlines are adopted from the workload described in 

Section 4.4.3. The first component of the table describes the workload. For a given 

workflow type (CyberShake, LIGO, or Genome), there are three job sizes, each of which 

has an equal probability of being submitted to the system: small, medium, and large, 

comprising 30 tasks, 50 tasks, and 100 tasks, respectively. The distributions used for 

generating the execution times of the tasks for each workload are described in [113]. The 

open stream of job arrivals is generated using a Poisson process. The arrival rates used in 

the experiments of a given workload type are different since each of the workloads is 

characterized by jobs with different execution times. The average execution time of a 

CyberShake job, LIGO job, and Genome job on a single resource is equal to 1551 sec, 

13300 sec, and 160213 sec, respectively. The parameters λCS, λLG, and λGN specify the 

arrival rates used for the CyberShake, LIGO, and Genome workloads, respectively. The 

arrival rates for each workflow are chosen such that resource utilization ranging from 

moderate (~50%) to moderately-high (~70%) to high (~90%) is generated on the system 

when using the default number of resources (50 resources where each resource has a 

capacity equal to 2).  

The earliest start time of a job j (sj) can be its arrival time (atj) or at a time in the 

future after atj. A random variable x, which follows a Bernoulli distribution with parameter 

p, is defined. The parameter p is the probability that a job j has sj greater than atj. If x is 0, 

sj equals atj; otherwise, sj equals the sum of atj and a value generated from a discrete uniform 

(DU) distribution with a lower-bound equal to 1 and an upper-bound equal to a parameter 
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smax. The deadlines of the jobs are generated by multiplying SETj
R (recall Section 7.2) with 

an execution time multiplier (em) and adding the resulting value to sj. The parameter em is 

used to determine the laxity of the job and is generated using a uniform distribution (U) 

where 1 is the lower-bound and emmax is the upper-bound of the distribution.  

Table 7.1. System and Workload Parameters for the WFBB-RM Factor-at-a-Time 

Experiments. 

Parameter Values 
Default 

Value 

Workload    

Type {CyberShake, LIGO, Genome} - 

Job arrival rate (job/sec) 

λCS = {1/18, 1/22, 1/30} 

λLG = {1/150, 1/180, 1/265} 

λGN = {1/1800, 1/2290, 1/3205} 

λCS = 1/22 

λLG = 1/180 

λGN = 1/2290 

Earliest start time of jobs, sj 

(sec) 

𝑠𝑗 = {
𝑎𝑡𝑗,                               𝑥 = 0

𝑎𝑡𝑗 + 𝐷𝑈 (1, 𝑠𝑚𝑎𝑥)   𝑥 = 1
 

where atj is the arrival time of job j and 

x ~Bernoulli (p), p = 0.5, and  

smax = {1, 5, 25} * 104 

smax= 50000 

Job Deadline, dj (sec) 
𝑑𝑗 = ⌈𝑠𝑗  +  𝑆𝐸𝑇𝑗

𝑅  ∗  𝑒𝑚⌉ where 

em ~ U(1, emmax) and emmax = {2, 5, 10} 
emmax = 5 

System   

Number of Resources, m m = {40, 50, 60} m=50 

Resource Capacity cr = 2 - 

Configuration of WFBB-RM   

Laxity Distribution Algorithm {PD, ED} - 

Approach to calculate the job 

laxity 
{SL, TL} - 

Task Scheduling Policy {TSP1, TSP2} - 

Note: DU = discrete uniform distribution, U = uniform distribution 

 

The remaining components of the table describe the system used to execute the jobs 

and the configuration of WFBB-RM. The number of resources (m), which represents the 

number of nodes in the distributed environment for processing the jobs, is varied from 40 

to 50 to 60, where each resource has a capacity (cr) equal to 2. Recall from Section 7.1, cr 
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specifies the number of tasks that a resource r can execute in parallel at any given point in 

time. The configuration of WFBB-RM is defined as x-y-z where x specifies the laxity 

distribution algorithm (i.e., PD or ED, described in Section 7.2), y specifies the approach 

to calculate the laxity of the job (i.e., SL or TL, described in Section 7.2), and z specifies 

the task scheduling policy (i.e., TSP1 or TSP2, described in Section 7.3.1). In total, there 

are 8 different WFBB-RM configurations, and thus, for each workload type, the factor-at-

a-time experiments are conducted 8 times. This is performed to determine which 

configuration provides the best performance for a given workload. 

7.5 Results of the Factor-at-a-Time Experiments 

The results of the factor-at-a-time experiments are presented in this section. Each 

simulation run was executed long enough to ensure that the system was operating at a 

steady state. Furthermore, each factor-at-a-time experiment is repeated a sufficient number 

of times such that the desired trade-off between simulation run length and accuracy of 

results was achieved.  The confidence intervals for T and O in most cases are observed to 

remain less than ±5% of the respective average values at a confidence level of 95%. For P, 

the confidence intervals are observed to be in most cases less than ±10% of the average 

value. Such an accuracy of the simulation results is deemed adequate for the nature of the 

investigation, the focus of which is investigating the trend in the variation of a given 

performance metric in response to changes in the system and workload parameters and to 

compare the performance of the various WFBB-RM configurations. The values averaged 

over the simulation runs and the confidence intervals are shown in the figures and tables 

presented in this section. In the figures, the confidence intervals are shown as bars 

originating from the mean values; however, some of the bars are difficult to see since the 
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confidence intervals are small. Note that the confidence intervals are considered while 

deriving a conclusion regarding the relative performance of the respective WFBB-RM 

configurations.  

To provide clarity of presentation, only the results of the two WFBB-RM 

configurations, one using PD and the other one using ED, that demonstrated the best overall 

performance in terms of P are presented in the following sub-sections. More specifically, 

the two WFBB-RM configurations that are compared for each workload type are 

summarized:  

 PD-SL-TSP1 vs ED-SL-TSP2 for the CyberShake workload 

 PD-SL-TSP1 vs ED-SL-TSP1 for the LIGO workload 

 PD-SL-TSP1 vs ED-SL-TSP1 for the Genome workload 

The complete results of the factor-at-a-time experiments (i.e., the results of all 8 WFBB-

RM configurations for each of the three workloads) can be found in Appendix D.I to 

Appendix D.III. 

Note that in the following sub-sections, the results of the experiments using the 

CyberShake workload are shown in figures where P is displayed in its own figure and T 

and O are graphed in the same figure with T being displayed as a bar graph that uses the 

scale on the left Y-axis and O being displayed as a sequence of points that uses the scale 

on the right Y-axis. To maintain a reasonable number of figures, the results of each of the 

experiments using the LIGO and Genome workloads are shown in their own tables where 

the values of P, T, and O can be presented concisely.  
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7.5.1 Effect of Job Arrival Rate 

The impact of the job arrival rate on system performance is discussed in this section. 

The results of the experiments using the CyberShake workload are presented in Figure 7.7 

and Figure 7.8. The figures show that for PD-SL-TSP1, P, T, and O increase with λCS. 

When λCS is high, jobs arrive on the system at a faster rate, which leads to more jobs being 

present in the system at a given point in time and an increased contention for resources. 

This in turn prevents some jobs from executing at their earliest start times, resulting in T 

increasing and some jobs to miss their deadlines (which increases P). The increased 

contention for resources also causes O to increase because WFBB-RM takes more time to 

find a resource to map the tasks of the job such that the job does not miss its deadline. 

Furthermore, since jobs are more prone to miss their deadlines at high values of λCS, 

WFBB-RM’s Job Remapping algorithm, which is a source of overhead, is invoked more 

often, contributing to the increase in O.  

 

 

Figure 7.7. Effect of λCS on P when using the CyberShake workload. 
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Figure 7.8. Effect of λCS on T and O when using the CyberShake workload. 
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earlier deadline, which in turn reduces the contention for resources at certain points in time 

and leads to a lower P. Although as shown in Figure 7.8, by delaying the execution of jobs, 
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Job Remapping algorithm being invoked more often when using PD-SL-TSP1 compared 

to when using ED-SL-TSP2.  

Table 7.2 and Table 7.3 present the results of the experiments when using the LIGO 

workload and the Genome workload, respectively. Unlike the CyberShake workload, when 

using the LIGO and Genome workloads, configuring WFBB-RM to use ED with TSP2 did 

not produce a better performance in comparison to using ED with TSP1. This demonstrates 

that TSP2 is only effective for certain workflows and the average job execution time and 

the structure of the job (e.g., precedence relationships between the tasks of the job) can 

affect the performance of TSP2.  

 

Table 7.2. LIGO workload: effect of λLG on P, T, and O.  

λLG 

(jobs/sec) 
P (%) T (sec) O (sec) 

 PD-SL-
TSP1 

ED-SL-
TSP1 

PD-SL-
TSP1 

ED-SL-
TSP1 

PD-SL-
TSP1 

ED-SL-
TSP1 

1/265 
0.02 0.02 1346 1346 0.008 0.008 

±0.01 ±0.01 ±0.6 ±0.6 ±0.00 ±0.00 

1/180 
0.11 0.11 1466 1466 0.009 0.009 

±0.01 ±0.01 ±4.6 ±4.6 ±0.00 ±0.00 

1/150 
1.03 1.06 2005 2006 0.017 0.016 

±0.12 ±0.12 ±29 ±28 ±0.001 ±0.001 

 

 

As shown in the tables, the trend in performance of P, T, and O are identical to that 

of the CyberShake workload when using PD-SL-TSP1. Furthermore, the results also show 

that both PD-SL-TSP1 and ED-SL-TSP1 achieve very similar results because TSP1 

schedules tasks to start executing at their earliest possible time, regardless of their 

respective sub-deadlines. Over all the experiments performed to investigate the effect of 

the job arrival rate, the results demonstrate that WFBB-RM can achieve low values of P 
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(less than 2% even at high arrival rates) and has a low processing overhead as indicated by 

the small O (less than 0.025 sec) and small O/T (less than 0.005%). 

 

Table 7.3. Genome workload: effect of λGN on P, T, and O. 

λGN 

(jobs/sec) 
P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

1/3205 
0.01 0.01 17544 17544 0.008 0.008 

±0.00 ±0.00 ±927 ±927 ±0.000 ±0.000 

1/2290 
0.07 0.07 17963 17963 0.008 0.008 

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000 

1/1800 
1.43 1.40 52312 52472 0.048 0.051 

±0.45 ±0.44 ±12915 ±13003 ±0.015 ±0.016 

 

7.5.2 Effect of Earliest Start Time of Jobs 

The impact of the earliest start time of jobs on system performance is described in 

this section. Figure 7.9 and Figure 7.10 present the results when using the CyberShake 

workload. It is observed that for PD-SL-TSP1, P, T, and O decrease with an increase in 

smax. When smax is large, jobs have a wider range of earliest start times with some jobs 

having an earliest start time near their arrival times, while other jobs have their earliest start 

times further in the future. This leads to less contention for resources and allows more jobs 

to execute at or closer to their earliest start times, resulting in a lower P, T, and O.  Similar 

to PD-SL-TSP1, it is observed that for ED-SL-TSP2, P and O decrease as smax increases. 

However, T is observed to increase with smax. This is due to ED-SL-TSP2 scheduling tasks 

to execute at their latest possible times while ensuring the respective sub-deadlines of the 

tasks are met. When the contention for resources is low (e.g., when smax is large), ED-SL-

TSP2 can more readily schedule tasks to start executing at their latest possible start times  
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Figure 7.9. Effect of smax on P when using the CyberShake workload. 

 

 

Figure 7.10. Effect of smax on T and O when using the CyberShake workload. 
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this is accompanied by a higher T (75% higher on average) and higher O (32% higher on 

average) compared to PD-SL-TSP1. 

The results of the experiments using the LIGO workload are presented in Table 7.4. 

It is observed that for both systems, P, T, and O seem to be insensitive to smax, which is 

different from the results of PD-SL-TSP1 shown in Figure 7.9 and Figure 7.10 where P, T, 

and O are observed to decrease as smax increases. The reason for this can be attributed to 

the LIGO workload comprising jobs with higher average execution times compared to 

those of the CyberShake workload, as well as the values of smax used not significantly 

reducing the amount of jobs that have overlapping execution times (i.e., not reducing the 

contention for resources). The average job execution time (on a single resource) of the 

CyberShake workload (equal to 1551 sec) is much smaller compared to that of the LIGO 

workload (13300 sec).  

 

Table 7.4. LIGO workload: effect of smax on P, T, and O. 

smax 

(sec) 
P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

10000 
0.10 0.10 1450 1450 0.009 0.009 

±0.01 ±0.01 ±3.3 ±3.3 ±0.000 ±0.000 

50000 
0.11 0.11 1466 1466 0.009 0.009 

±0.01 ±0.01 ±4.6 ±4.6 ±0.000 ±0.000 

250000 
0.09 0.08 1441 1427 0.009 0.009 

±0.01 ±0.01 ±4.7 ±4.1 ±0.000 ±0.000 

 

Table 7.5 presents the results of the experiments using the Genome workload. It is 

observed that P and T tend to increase and O remains stable as smax increases. The increase 

in P could be attributed to the values of smax experimented with (e.g., 50000 and 250000 

sec) causing more jobs to have overlapping execution times, and thus increasing the 
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contention for resources. This did not happen when using the other two workloads because 

the Genome workload comprises jobs with very high average execution times (~160213 

sec on a single resource), which is significantly higher compared to those of the 

CyberShake and LIGO workloads. Increasing the values of smax experimented with when 

using the Genome workload is expected to generate a similar trend in performance to the 

results of the CyberShake workload. This is because there will be less chance for the 

execution of jobs to overlap with one another. 

 

Table 7.5. Genome workload: effect of smax on P, T, and O. 

smax 

(sec) 
P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

10000 
0.04 0.04 17693 17693 0.008 0.008 

±0.01 ±0.01 ±959 ±959 ±0.000 ±0.000 

50000 
0.07 0.07 17963 17963 0.008 0.008 

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000 

250000 
0.08 0.08 18171 18171 0.008 0.008 

±0.01 ±0.02 ±1049 ±1049 ±0.000 ±0.000 

 

7.5.3 Effect of Job Deadlines 

The impact of job deadlines on system performance is presented in this section. The 

results of the experiments using the CyberShake workload, as depicted in Figure 7.11 and 

Figure 7.12, show that for both systems P decreases as emmax increases. This is because at 

a higher emmax jobs have more laxity and are thus less susceptible to miss their deadlines. 

Moreover, for ED-SL-TSP2, T is observed to increase as emmax increases. This can be 

attributed to jobs not having to execute at or close to their sj to meet their deadlines when 

they have more slack time and the Job Remapping algorithm having to be executed less 

often. In addition, WFBB-RM may delay the execution of some jobs to allow a job with 
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an earlier deadline to execute first. On the other hand, when emmax is small, jobs need to 

execute closer to their earliest start times and the Job Remapping algorithm is invoked 

when a job cannot be scheduled to meet its deadline. O is thus observed to increase for 

both systems, as emmax decreases because it leads to multiple invocations of the Job 

Remapping algorithm.  

 

 

Figure 7.11. Effect of emmax on P when using the CyberShake workload. 
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Figure 7.12. Effect of emmax on T and O when using the CyberShake workload. 
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Table 7.6. LIGO workload: effect of emmax on P, T, and O. 

emmax P (%) T (sec) O (sec) 

 PD-S-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

2 
2.44 2.43 1458 1457 0.012 0.011 

±0.14 ±0.14 ±4.4 ±4.4 ±0.000 ±0.000 

5 
0.11 0.11 1466 1466 0.009 0.009 

±0.01 ±0.01 ±4.6 ±4.6 ±0.000 ±0.000 

10 
0.04 0.04 1458 1463 0.009 0.008 

±0.01 ±0.01 ±6.2 ±4.6 ±0.000 ±0.000 

  

Table 7.7. Genome workload: effect of emmax on P, T, and O. 

emmax P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

2 
0.49 0.49 17933 17933 0.009 0.009 

±0.12 ±0.12 ±1001 ±1001 ±0.000 ±0.000 

5 
0.07 0.07 17963 17963 0.008 0.008 

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000 

10 
0.03 0.03 17963 17963 0.007 0.007 

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000 

 

7.5.4 Effect of the Number of Resources 

In this section, the impact of m, the number of resources, on system performance is 

discussed. From the results of the experiments using the CyberShake workload (refer to 

Figure 7.13 and Figure 7.14), it is observed that for PD-SL-TSP1, P, T, and O decrease as 

m increases. This is because as m increases, there are more resources in the system to 

execute the jobs, leading to a lower contention for resources. The reason for the higher O 

when m is small can be attributed to the Job Mapping algorithm requiring more time to 

find a resource to map a task. When there are fewer resources in the system (small m), there 

are more tasks scheduled on each resource, leading to more time being required to find the 

ideal resource to execute a task. In addition, the high contention for resources makes jobs 
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susceptible to miss their deadlines and leads to the WFBB-RM’s Job Remapping algorithm 

being invoked more often.  

 

 

Figure 7.13. Effect of m on P when using the CyberShake workload. 

 

 

Figure 7.14. Effect of m on T and O when using the CyberShake workload. 
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For ED-SL-TSP2, P, T, and O follow a similar trend in performance as observed 

for PD-TL-TSP1, except when m is 60. When m is 60, T is slightly higher compared to the 

case when m is 50. This can be attributed to there being more resources available in the 

system when m is 60, leading to a lower contention for resources and a smaller P, and thus 

the Job Remapping Algorithm, which remaps jobs to start executing at their earliest 

possible start times, does not need to be invoked as often. This in turn allows TSP2 to 

schedule more tasks to execute at their latest possible times, while satisfying their 

respective sub-deadlines.  

When comparing the performance of PD-SL-TSP1 and ED-SL-TSP2 for the 

CyberShake workload, it is observed that overall, ED-SL-TSP2 achieves a smaller P and 

the most significant reduction in P is observed when m is 40 (see Figure 7.13). Similar to 

the results presented in the previous sections (see Figure 7.7, for example), scheduling tasks 

to execute at their latest possible time while satisfying their respective sub-deadlines (i.e., 

using TSP2) tends to give rise to a lower P but a higher T when processing the CyberShake 

workload. The lower P can be attributed to ED-SL-TSP2 effectively using the laxity of 

jobs to delay the execution of jobs with a later deadline to execute jobs with an earlier 

deadline. However, as shown in Figure 7.14, it is observed that when m is 40, PD-SL-TSP1 

achieves a higher T compared to ED-SL-TSP2. This can be attributed to PD-SL-TSP1 

delaying the execution of multiple jobs that miss their deadlines for a long period of time 

to execute jobs that have not missed their deadlines. In the case of ED-SL-TSP2, fewer 

jobs need to be delayed because when m is 40, ED-SL-TSP2 achieves a smaller P compared 

to PD-SL-TSP1 (refer to Figure 7.13). 
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The results of the experiments using the LIGO workload (see Table 7.8) and the 

Genome workload (see Table 7.9) follow a similar trend in system performance to that of 

the CyberShake workload when using PD-SL-TSP1: P decreases, T decreases, and O tends 

to decrease as m increases.  It is observed once again that both PD-SL-TSP1 and ED-SL-

TSP1 achieve similar results for both workloads. When m is 60, O is observed to be slightly 

higher compared to when m is 50. Even though, there is less contention for resources when 

m is 60, the Job Mapping algorithm may need to search through more resources to find the 

resource to schedule a task to start at its earliest possible start time. This in turn leads to a 

slight increase in O. 

 

Table 7.8. LIGO workload: effect of m on P, T, and O. 

m P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

40 
4.11 4.14 3210 3218 0.034 0.032 

±0.27 ±0.27 ±125 ±126 ±0.003 ±0.003 

50 
0.11 0.11 1466 1466 0.009 0.009 

±0.01 ±0.01 ±4.6 ±4.6 ±0.000 ±0.000 

60 
0.03 0.03 1360 1360 0.010 0.010 

±0.01 ±0.01 ±1.1 ±1.1 ±0.000 ±0.000 

 

 

Table 7.9. Genome workload: effect of m on P, T, and O. 

m P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

PD-SL-

TSP1 

ED-SL-

TSP1 

40 
1.29 1.30 52320 52106 0.032 0.035 

±0.40 ±0.42 ±13743 ±13597 ±0.011 ±0.012 

50 
0.07 0.07 17963 17963 0.008 0.008 

±0.01 ±0.01 ±1007 ±1007 ±0.000 ±0.000 

60 
0.02 0.02 17583 17583 0.009 0.009 

±0.00 ±0.00 ±935 ±935 ±0.000 ±0.000 
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7.6 Comparison of WFBB-RM and MRCP-RM 

This section discusses the results of the experiments conducted to compare the 

performance of WFBB-RM with that of MRCP-RM (described in Chapter 4). Recall that 

the MRCP-RM technique is only applicable to jobs with two phases of execution such as 

MapReduce jobs, whereas in addition to MapReduce jobs, WFBB-RM can also handle jobs 

with different structures and more than two execution phases. Thus, the workload that is 

used in this comparison is the Generic Synthetic MapReduce workload (described in 

Section 4.4.3) that is used in the experiments to evaluate the performance of MRCP-RM 

as described in Section 4.6. WFBB-RM is configured to use PD-SL-TSP1, which is 

observed to have the best performance when processing the Generic Synthetic MapReduce 

workload. Factor-at-a-time experiments are performed to investigate the effect of various 

system and workload parameters on the performance of WFBB-RM and MRCP-RM. The 

results of the experiments that show the effect of job arrival rate (λ) and the effect of the 

number of resources (m) on system performance are described in Section 7.6.1 and Section 

7.6.2, respectively.  

7.6.1 Effect of Job Arrival Rate 

Figure 7.15 and Figure 7.16 present the performance of WFBB-RM and MRCP-

RM in terms of P, T, and O as λ is varied. As shown in Figure 7.15, when λ is 0.0175 jobs 

per sec or smaller, the resource contention levels are low-to-moderate (e.g., average 

resource utilization is approximately less than 0.7), and both WFBB-RM and MRCP-RM 

have comparable values of P with MRCP-RM achieving a 6% lower P. However, when λ 

is between 0.01875 to 0.0225 jobs per sec, generating a moderate-to-high contention for 

resources (e.g., average resource utilization is approximately between 0.7 and 0.85), 
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MRCP-RM is observed to achieve up to a 22% lower (on average 11% lower) P compared 

to that achieved by WFBB-RM. At very high values of λ (e.g., 0.025 jobs per sec or higher), 

it is observed that the performance of MRCP-RM starts to deteriorate and WFBB-RM starts 

to outperform MRCP-RM. This can be attributed to the very high contention for resources 

(average resource utilization is approximately 0.95), leading to jobs queuing up on the 

system and MRCP-RM having to solve complex CP Models comprising a larger number 

of decision variables and constraints. MRCP-RM requires more time to solve these 

complex CP Models, which results in O increasing. The high O causes a delay in the 

execution of jobs and leads to jobs missing their deadlines. For all the values of λ 

experimented with, it is observed that WFBB-RM achieves a significantly lower O 

compared to MRCP-RM (on average 85% lower) (see Figure 7.16).  

 

 

Figure 7.15. WFBB-RM vs MRCP-RM: effect of λ on P. 
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Figure 7.16. WFBB-RM vs MRCP-RM: effect of λ on T and O. 

 

7.6.2 Effect of the Number of Resources 

The performance of WFBB-RM and MRCP-RM in terms of P, T, and O when the 

number of resources (m) is varied are presented in Figure 7.17 and Figure 7.18. Similar to 

the results showing the effect of λ, when there is a low-to-moderate resource contention, 

such as when m is 100 or m is 50, it is observed that WFBB-RM and MRCP-RM perform 

comparably in terms of P and T. Furthermore, when m is 25, leading to a higher contention 

for resources (as reflected in an average resource utilization of approximately 0.8), it is 

observed that MRCP-RM achieves a 29% lower P compared to that achieved by WFBB-

RM. From Figure 7.18, it is observed that MRCP-RM has a slightly higher T when m is 

25. This can be attributed to MRCP-RM delaying the execution of jobs that have already 

missed their deadlines in favour of executing newly arriving jobs that have not missed their 

deadlines.  
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Figure 7.17. WFBB-RM vs MRCP-RM: effect of m on P. 

 

 

Figure 7.18. WFBB-RM vs MRCP-RM: effect of m on T and O. 

 

Similar to the results described earlier, Figure 7.18 shows that WFBB-RM achieves 

a significantly lower O compared to MRCP-RM. Note that it is expected that generating a 

0

1

2

3

4

5

6

25 50 100

P
 (

%
)

m

WFBB-RM MRCP-RM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

100

200

300

400

500

600

700

25 50 100

O
(s

ec
)

T 
(s

ec
)

m

WFBB-RM: T MRCP-RM: T WFBB-RM: O MRCP-RM: O



 

 

242 

 

higher contention for resources (by further reducing the value of m to be less than 25, for 

example) would lead to WFBB-RM outperforming MRCP-RM as observed when λ is 

0.025 job per sec (refer to Figure 7.15). 

The results of the other factor-at-a-time experiments that show the effect of task 

execution times, the effect of earliest start time of jobs, and the effect of job deadlines can 

be found in Appendix D.IV. Note that the results of these experiments shown in the 

appendix demonstrate a relative performance achieved by WFBB-RM and MRCP-RM that 

is similar to the results described in this section. MRCP-RM tends to achieve a lower P and 

has a similar T compared to WFBB-RM. However, WFBB-RM achieves a significantly 

lower O. Over all the experiments conducted to compare MRCP-RM and WFBB-RM, it is 

observed that MRCP-RM achieves up to a 29% lower P, but WFBB-RM achieves a 77% 

lower O. However, when the contention for resources is very high, such as when λ is 0.025 

job per sec, WFBB-RM is observed to achieve a P that is 37% lower compared to the P 

achieved by MRCP-RM. 

7.7 Summary and Discussion 

This chapter describes a resource allocation and scheduling technique called 

WFBB-RM that can effectively and efficiently perform matchmaking and scheduling for 

an open stream of multi-stage jobs (workflows) with SLAs on a computing environment 

such as a private cluster or a set of resources acquired a priori from a public cloud. Each 

job arriving on the system is characterized by a SLA comprising an earliest start time, an 

execution time, and an end-to-end deadline. The WFBB-RM algorithm decomposes 

(budgets) the end-to-end deadline of a job into sub-deadlines, each of which is associated 

with a specific task in the job. The individual tasks of the job are then mapped on to the 
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resources where the objective is to satisfy the job’s deadline and minimize the number of 

late jobs in the system. An in-depth simulation-based performance evaluation is conducted 

to investigate the effectiveness of WFBB-RM. The workloads used in the experiments are 

based on real scientific workflows from various fields of study, including biology and 

physics. A number of insights into system behaviour and performance are gained by 

analyzing the experimental results and are summarized next. 

 Effect of system and workload parameters: An increase in λ, or a decrease in smax, 

or a decrease in emmax, or a decrease in m tends to lead to an increase in P due to 

the increased contention for resources. 

 WFBB-RM configuration using PD: Overall, it is observed that using TSP1 

generates lower or similar values of P, T, and O compared to TSP2. Furthermore, 

the two approaches used to calculate the laxity of the job (SL and TL) achieve 

similar performance with the SL approach achieving a slightly smaller P in most 

cases. When using PD, the results of the experiments showed that the highest 

performing WFBB-RM configuration (in terms of P) for all three workloads 

experimented with is PD-SL-TSP1. 

 WFBB-RM configuration using ED: The results demonstrate that for the 

CyberShake workload using ED-SL-TSP2 achieves the lowest P in most cases. 

However, when using the LIGO and Genome workloads, the best performance in 

terms of P is achieved by ED-SL-TSP1. When using ED, the results of the 

experiments showed that the approach used to calculate the laxity of the jobs (SL 

and TL) achieve comparable performance. 
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 PD vs ED: For the CyberShake workload, it is observed that overall ED-SL-TSP2 

outperforms PD-SL-TSP1 in terms of P but it has a slightly higher T because 

TSP2 schedules tasks to execute at their latest possible times while meeting their 

respective sub-deadlines. In the case of the LIGO and Genome workloads, both 

PD-SL-TSP1 and ED-SL-TSP1 achieve similar values of P, T, and O. This can 

be attributed to TSP1 scheduling tasks to execute at their earliest possible start 

times, regardless of their sub-deadlines. 

 Effectiveness of WFBB-RM: For the system and workload parameters 

experimented with, it is observed that WFBB-RM can achieve low values of P 

(on average 0.62%). Even when the contention for resources is high and jobs are 

more susceptible to miss their deadlines (e.g., when λ is high, or emmax is small, 

or m is small), P is less than 5% and on average 2.2% over all the experiments 

conducted.  

 Efficiency of WFBB-RM: In all the experiments performed, WFBB-RM achieved 

low values of O (less than 0.05 sec and on average 0.02 sec). Furthermore, O/T, 

an indication of the matchmaking and scheduling overhead, is also very small 

(less than 0.01%) for all the experiments conducted. 

 Comparison with MRCP-RM: A summary of observations resulting from the 

performance evaluation to compare WFBB-RM and MRCP-RM when using a 

MapReduce workload is provided. At low-to-moderate contention for resources 

(e.g., λ ≤ 0.0175 jobs per sec or m ≥ 50), WFBB-RM and MRCP-RM both achieve 

comparable performance in terms of P. When the contention for resources is 

moderately high (e.g., average resource utilization is approximately 0.8), 
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resulting in a λ of 0.02 jobs per sec or m of 25, for example, MRCP-RM 

outperforms WFBB-RM and achieves up to 29% lower P. At very high 

contention for resources (e.g., λ ≥ 0.025 jobs per sec), WFBB-RM outperforms 

MRCP-RM.  

Overall, the results of the experiments demonstrate that the objective of the research 

presented in this chapter that concerns the devising of an efficient resource allocation and 

scheduling technique for processing an open-stream of multi-stage jobs with SLAs on a 

distributed computing environment has been realized. WFBB-RM demonstrated that it can 

generate a schedule leading to a small P and T with a small O and O/T over a wide range 

of workload and system parameters experimented with. The choice of which WFBB-RM 

configuration to use is dependent on the workload to process; however, a good starting 

point is to use PD-SL-TSP1, followed by using ED-SL-TSP2. When using TSP1, the 

choice of whether to use PD or ED, and SL or TL is not crucial as all the configurations 

using TSP1 achieve similar performance. However, if TSP2 is used, it is observed that 

using ED-SL-TSP2 typically achieves better performance compared to the other 

configurations that use TSP2. 

An interesting direction for future work is the investigation of new deadline 

budgeting algorithms for distributing the laxity of a multi-stage job among the job’s 

constituent tasks that are not only based on the execution time of the tasks, but also based 

on additional attributes of the components of the DAG, which is used to model the multi-

stage job. These attributes include the number of children belonging to tasks, the height of 

a task in the DAG, and whether the task is on the critical path of the DAG. 
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Chapter 8 Summary and Conclusions  

Effective matchmaking and scheduling (resource management) techniques are 

crucial for harnessing the power of the underlying resource pool of a cloud or cluster and 

is required to attain high system performance (e.g., high job throughput and low job 

response times), satisfy QoS requirements of users as captured by SLAs, and maintain high 

resource utilization. The objective of this thesis is to devise effective resource management 

techniques for efficiently processing an open stream of multi-stage jobs (such as 

MapReduce type applications) with SLAs on a computing environment with a fixed 

number of resources, such as a private cluster or a set of resources acquired a priori from a 

public cloud. Each job submitted to the system is characterized by a SLA that includes an 

earliest start time, an execution time, and an end-to-end deadline. Multi-stage jobs require 

service from multiple system resources and are characterized by multiple phases of 

execution, where each phase of execution can comprise of one or more tasks to execute.  

This thesis presents resource management techniques for processing both 

MapReduce type jobs (characterized by two phases of execution) and workflows with 

different types of precedence relationships and more than two phases of execution, 

including scientific workflows used in the domain of physics and biology. 

MapReduce/Hadoop has emerged as a popular technique and tool for performing Big Data 

analytics that includes analyzing data for making meaningful decisions in various types of 

environments, such as enterprise and scientific applications, and cyber-physical systems 

(e.g., sensor-equipped bridges, smart buildings, and industrial machinery). A key goal of 

this thesis is to devise resource management techniques that achieve high system 

performance as reflected in a low proportion of jobs missing their deadlines, while ensuring 
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the processing overhead is low. Conclusions derived from this thesis research and a 

summary of the key contributions of this thesis are presented in the upcoming sub-sections, 

followed by a discussion on directions for future work. Overall, as captured in the 

following discussion, the objective and goal of the thesis of devising matchmaking and 

scheduling techniques for efficiently processing an open stream of multi-stage jobs with 

SLAs have been achieved.  

8.1 Resource Management Techniques for Processing a Batch of 

MapReduce Jobs with SLAs  

In Chapter 3, resource management techniques for processing a batch of 

MapReduce jobs with SLAs are presented. The techniques formulate and solve the resource 

management problem as an optimization problem using two methods: (1) mixed integer 

linear programming (MILP) and (2) constraint programming (CP). The two formulations 

are implemented and solved using various commercial-off-the-shelf and open source 

software packages, leading to three approaches being devised. For all three approaches, the 

main objective is to minimize the number of jobs that miss their deadlines. A rigorous 

simulation-based performance evaluation of the three approaches is conducted using 

several batch workloads (see Section 3.7). The following insights are derived from the 

results of the experiments: 

 Superiority of Approach 3: The results of the experiments showed that Approach 

3, which implements and solves the CP Model using IBM CPLEX, achieves the 

lowest processing time overhead (PO). However, it also generated a schedule that 

produces a slightly higher batch workload completion time (C) compared to the 
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other two approaches. In addition, Approach 3 is the only approach able to 

process the large workloads comprising over 1000 tasks (see Section 3.7.2). 

 Approach 1 and Approach 2 each have a case where they can generate a schedule 

that has the lowest C for the small workloads; however, the PO in these cases is 

much higher compared to the PO achieved by Approach 3. 

8.2 MapReduce Constraint Programming based Resource Management 

Technique  

A resource management technique based on constraint programming for processing 

an open stream of MapReduce jobs with SLAs, referred to as MRCP-RM, is presented in 

Chapter 4. MRCP-RM uses constraint programming because the results of the experiments 

described in Chapter 3 demonstrated the superiority of Approach 3, which solves the CP 

Model using IBM CPLEX, in being able to process workloads comprising over 1000 tasks, 

while incurring a low processing overhead. A number of simulation experiments are 

conducted using two synthetic MapReduce workloads to evaluate the effectiveness of the 

MRCP-RM technique. A summary of the results of these experiments is presented next. 

 Comparison with MinEDF-WC [70] (see Section 4.5): The results show that 

MRCP-RM achieves a significantly lower proportion of late jobs, P (up to 93% 

lower) and a comparable or slightly lower average job turnaround time (T).  

 Effectively controlling P: For most of the system and workload parameters 

experimented with (see Section 4.6), MRCP-RM achieves a P of less than 0.6%. 

In the scenarios where jobs are more susceptible to miss their deadlines and 

contention for resources is high, including workloads for which the execution 

time multiplier (em) is small, or number of resources in the system (m) is small, 
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or job arrival rate (λ) is high, or maximum map task execution time (memax) is 

high, P is still observed to be low: 3.46%, 3.89%, 1.7%, and 1.96%, respectively.  

 Efficiency and scalability (see Section 4.6): The average job matchmaking and 

scheduling time (O) is observed to increase when the contention for resources is 

high (e.g., high λ or m is small). However, the values of O are still observed to be 

quite low. For example, the highest O (equal to 0.57 sec) is observed when m is 

small (25), resulting in a high contention for resources. In addition, O/T, which is 

an indicator of the matchmaking and scheduling overhead, is observed to be less 

than 0.09% in all the factor-at-a-time experiments conducted, demonstrating that 

the matchmaking and scheduling overhead is small and MRCP-RM is thus 

scalable over a wide range of system and workload parameters experimented 

with. It is expected that for a reasonable contention for resources, MRCP-RM can 

work efficiently and achieve a reasonable O and O/T. 

8.3 Hadoop Constraint Programming based Resource Management 

Technique 

The focus of Chapter 5 is on describing the data-locality-aware Hadoop Constraint 

Programming based Resource Management technique, referred to as HCP-RM. HCP-RM 

adapts MRCP-RM so that it can be used on a real MapReduce system called Hadoop [25]. 

More specifically, the HCP-RM algorithm is implemented in a new scheduler for Hadoop 

called the CP-Scheduler. An in-depth prototyping and measurement based performance 

evaluation of HCP-RM (CP-Scheduler) is conducted on a Hadoop cluster deployed on 

Amazon EC2 using both a synthetic workload and a real workload. The performance of 

HCP-RM (CP-Scheduler) is compared to that of an Earliest Deadline First Hadoop 
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Scheduler (EDF-Scheduler), which is an extension of Hadoop’s default FIFO scheduler 

implemented in this research to support job deadlines. The insights into system behaviour 

and performance gained from analyzing the results of the experiments are summarized 

next.  

 Superiority of HCP-RM over the EDF-Scheduler: Over all the experiments 

conducted (see Section 5.6), HCP-RM generated a schedule that leads to a lower 

or equal P (on average 60% lower) and a lower T (on average 59% lower) 

compared to the EDF-Scheduler. This demonstrates the effectiveness of HCP-

RM.  

 Small processing overhead: The performance improvement of HCP-RM in terms 

of P and T over the EDF-Scheduler is accompanied by a higher O. However, O/T 

is still observed to be small (less than 0.92%), demonstrating the efficiency of 

HCP-RM. 

 Effect of error in execution times (see Section 5.7): The investigation of error in 

user-estimated execution times showed that overestimated execution times lead 

to a lower P, comparable T, and slightly higher O compared to the case where 

there is no error in execution times. Conversely, underestimated execution times 

lead to lower performance in terms of P and T, but gives rise to a lower O 

compared to the case where there is no error in execution times.  

8.4 Techniques for Handling Error in User-estimated Execution Times 

In Chapter 6, techniques for handling error in user-estimated execution times 

(submitted as part of the SLA of the job) are discussed. A Prescheduling Error Handling 

(PSEH) technique that adjust the user-estimated execution times of jobs to make them more 
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accurate before the jobs are mapped by the resource management algorithm is presented. 

A rigorous performance evaluation of the PSEH technique is conducted on a Hadoop 

cluster deployed on Amazon EC2. More specifically, the performance of HCP-RM-EH 

that uses the PSEH technique is compared with the performance achieved by the original 

version of HCP-RM. Three models are used to generate the error in the user-estimated 

execution times. A summary of the results of the experiments, including the insights 

gained, is described next. 

 Effectiveness of the PSEH technique: Overall, in the experiments conducted using 

the Constant Error Model (see Section 6.3.1), HCP-RM-EH is observed to 

achieve up to 50% lower P (on average 29% lower) compared to that achieved 

by HCP-RM. Furthermore, HCP-RM-EH achieves a P of 0 when f is 2 and λ is 

1/30 jobs per sec or lower.  

o In the experiments using Feitelson’s Error Model (see Section 6.3.2), both 

HCP-RM-EH and HCP-RM achieve the same values of P of less than 0.2% 

due to Feitelson’s error model generating jobs with highly overestimated 

execution times. However, HCP-RM-EH achieves a 72% lower O.  

o When using the Variable Error Model (see Section 6.3.3), the results of the 

experiments show that HCP-RM-EH achieves a 54% lower P compared to 

that achieved by HCP-RM. This demonstrates that HCP-RM-EH is still 

effective when the error in execution times is not constant.  

 The superior performance of HCP-RM-EH can be attributed to the PSEH 

technique being able to adjust the user-estimated execution times to make them 

more accurate. This enables HCP-RM-EH to make intelligent matchmaking and 
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scheduling decisions that lead to HCP-RM-EH achieving values of P that are 

lower compared to the values of P achieved by HCP-RM. 

8.5 Workflow Budget-Based Resource Management Technique 

A resource management technique, referred to as WFBB-RM, for processing an 

open stream of multi-stage jobs with SLAs is presented in Chapter 7. WFBB-RM 

decomposes (budgets) the end-to-end deadline of a job into sub-deadlines, each of which 

is associated with a specific task in the job. The individual tasks of the job are then mapped 

on to the resources where the objective is to satisfy the job’s deadline and minimize the 

number of late jobs in the system. A rigorous simulation-based performance evaluation of 

WFBB-RM using workloads based on real scientific applications (workflows) are 

conducted. A summary of the insights gained into system behaviour and performance from 

the results of the experiments is provided next.  

 Effectiveness of WFBB-RM: For the system and workload parameters 

experimented with (see Section 7.5), it is observed that WFBB-RM can achieve 

low values of P (on average 0.62%). Even when the contention for resources is 

high and jobs are more susceptible to miss their deadlines (e.g., when λ is high, 

or emmax is small, or m is small), P is less than 5% and on average 2.2% over all 

the experiments conducted.  

 Efficiency of WFBB-RM: In all the experiments performed (see Section 7.5), 

WFBB-RM achieved low values of O (less than 0.05 sec and on average 0.02 

sec). Furthermore, O/T is also very small (less than 0.01%) over all the 

experiments conducted. 
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 Comparison with MRCP-RM (see Section 7.6): With an open stream of 

MapReduce jobs, when the contention for resources is low-to-moderate (e.g., 

average resource utilization is approximately less than 0.7), WFBB-RM and 

MRCP-RM achieve comparable values of P. At moderate-to-high resource 

contention (e.g., an average resource utilization of approximately 0.7 to 0.85), 

MRCP-RM achieves up to a 29% lower P. When the contention for resources is 

very high (e.g., average resource utilization is approximately 0.95), WFBB-RM 

starts to outperform MRCP-RM in terms of P. Over all the experiments conducted 

to compare MRCP-RM and WFBB-RM, it is observed that WFBB-RM achieves 

an O that is on average 85% lower compared to the O achieved by MRCP-RM. 

8.6 Future Work 

This section describes directions for future work and research. In line with previous 

work, this thesis focuses on an important class of systems in which MapReduce jobs are 

associated with deadlines but not with explicit priorities. Extending the MRCP-RM and 

HCP-RM algorithms to handle MapReduce jobs with deadlines as well as priorities forms 

an interesting direction for future research. On such a system, the resource manager may 

improve the performance of a higher priority job at the cost of a lower priority job if needed. 

A high-level approach for achieving this is briefly described next. With a workload 

comprising jobs with priorities, the objective function of the CP Model will be changed to 

minimize ∑ (𝑁𝑗 ∗ 𝑃𝑟𝑗)𝑗∈𝐽  where Prj is the priority of job j. To lower this sum, the CPLEX 

solver will tend to favour meeting the deadlines of higher priority jobs (higher Prj) at the 

cost of missing the deadlines for low priority jobs. Moreover, as described in Section 6.4.1, 

devising a runtime error handling technique for dealing with the situation where jobs have 
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already started executing and their execution times are inaccurate, is also worthy of further 

investigation. 

An interesting direction for future research concerns the modification of the 

resource management techniques for supporting approximate (or partial) computations 

[115], where an application is permitted to generate an approximate result that is less 

accurate or of poorer (but still acceptable) quality compared to the result produced by the 

full computation, when the application cannot complete the full computation before its 

deadline. The idea is to be able to return a result before the application’s deadline instead 

of not returning any results or a result that is late. These types of applications, which can 

include numerical computation, statistical estimation, as well as video and voice 

transmission/processing applications [116], are typically characterized by a mandatory 

component and an optional component [116]. The application is considered to be 

completed if the mandatory component is completed. The optional component of the 

application enhances the quality (or accuracy) of the computation generated by the 

application and can either be fully completed, partially completed, or not executed at all. 

Ideally, both the mandatory and optional components of the application should be 

completed before the deadline of the application. 

 Another direction for future work is to adapt the resource management techniques 

to work in a distributed computing environment where the number of resources in the 

system can be dynamically increased or decreased. Moreover, the resource management 

techniques can also be adapted to distributed computing environments with heterogeneous 

resources and multi-datacentre environments. This can involve devising more advanced 

techniques for supporting data locality when processing multi-stage jobs, which includes 
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techniques for estimating the data transmission time and processing time for tasks based 

on the input data size and networking/processing capacities of the resources. Supporting 

data locality for multi-stage jobs that are characterized by multiple phases of execution 

may need to consider whether one phase of execution needs to share data with another 

phase of execution. If data needs to be shared among these two phases of execution, the 

tasks in these two phases of execution should be assigned to execute on nodes that are as 

close to each other as possible to minimize the data transmission overhead.  

The cost-performance trade-off of provisioning resources that have different levels 

of processing/network capabilities from the cloud can also be investigated. For example, a 

compute resource with a faster CPU and more memory maybe able to execute a job faster, 

but it will cost more for the user to provision the resource. Furthermore, the resource 

management techniques can also consider the trade-off between the cost associated with 

providing elasticity (or auto-scaling) as well as the cost (fine) associated with violating an 

SLA of a job (e.g., missing the deadline of the job due to scarcity of resources). Resource 

management techniques that minimize the overall cost incurred by the service provider 

form an interesting direction for future research. 



 

 

256 

 

References 

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing 

and emerging IT platforms: Vision, hype, and reality for delivering computing as 

the 5th utility”, Future Generation Computer Systems, vol. 25, no. 6, June 2009, pp. 

599-616. 

[2] L. Columbus, “Roundup Of Cloud Computing Forecasts And Market Estimates, 

2015”, Forbes, 24 Jan. 2015. [Online]. Available: 

http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-

computing-forecasts-and-market-estimates-2015/ [Accessed: February 10, 2016] 

[3] Gartner, “Gartner Says Worldwide Cloud Infrastructure-as-a-Service Spending to 

Grow 32.8 Percent in 2015”, 18 May 2015. [Online]. Available: 

http://www.gartner.com/newsroom/id/3055225 [Accessed: February 10, 2016] 

[4] R. Cohen, “Gartner Announces 2012 Magic Quadrant for Cloud Infrastructure as a 

Service”, Forbes. Available: 

http://www.forbes.com/sites/reuvencohen/2012/10/22/gartner-announces-2012-

magic-quadrant-for-cloud-infrastructure-as-a-service/ [Accessed: February 10, 

2016] 

[5] F. Gens, “IT Model in the Cloud Computing Era”, IDC Enterprise Panel, August 

2008. 

[6] S. S. Manvi and G. K. Shyam, “Resource management for Infrastructure as a 

Service (IaaS) in cloud computing: A survey”, Journal of Network and Computing 

Applications, vol. 41, October 2013, pp. 424-440. 

[7] F. Gens, “IT Cloud Services Forecast – 2008, 2012: A Key Driver of New Growth“, 

IDC Exchange, October 2008. 

[8] Amazon, “Amazon Elastic Cloud”. [Online]. Available: http://aws.amazon.com/ec2 

[Accessed: February 16, 2016]. 

[9] Microsoft, “Windows Azure”. [Online]. Available:  

http://www.windowsazure.com/en-us/ [Accessed: February 16, 2016]. 

[10] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling 

Scalable Virtual Organizations”, International Journal of Supercomputer 

Applications, vol.15, no.3, 2001, pp. 200-222.  

[11] R. Buyya, S.K. Garg, and R.N. Calheiros, “SLA-oriented resource provisioning for 

cloud computing: Challenges, architecture, and solutions”, International 

Conference on Cloud and Service Computing (CSC), Hong Kong, China, 12-14 

Dec. 2011, pp.1-10. 

http://blogs.idc.com/ie/?p=224


 

 

257 

 

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large 

clusters”, International Symposium on Operating System Design and 

Implementation (OSDI), San Francisco, CA, USA, 6-8 December 2004, pp. 137–

150. 

[13] R. Bosch and M. Trick, “Integer programming”, Search Methodologies. Springer 

US, 2005, pp. 69-95. 

[14] F. Rossi, P. Beek, and T. Walsh, “Chapter 4: Constraint Programming. Handbook 

of Knowledge Representation”, 2008, pp. 181-211. 

[15] IBM. IBM ILOG CPLEX Optimization Studio. [Online]. Available: 

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp [Accessed: February 16, 

2016]. 

[16] C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are User Runtime 

Estimates Inherently Inaccurate?”, in Job Scheduling Strategies for Parallel 

Processing, vol. 3277, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. 

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 253–263.  

[17] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-Generated 

Predictions Rather than User Runtime Estimates”, IEEE Transactions on Parallel 

and Distributed Systems, vol. 18, no. 6, 2007, pp. 789–803. 

[18] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and adjusting user runtime 

estimates to improve job scheduling on the Blue Gene/P”, IEEE International 

Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 19- 

23 April 2010, pp. 1–11. 

[19] N. Lim, S. Majumdar, and P. Ashwood-Smith, “Resource Management Techniques 

for Handling Requests with Service Level Agreements”, International Symposium 

on Performance Evaluation of Computer and Telecommunication Systems 

(SPECTS), Monterey, CA, USA, 6-10 July 2014, pp. 618 -625. 

[20] N. Lim, S. Majumdar, and P. Ashwood-Smith, “Engineering Resource Management 

Middleware for Optimizing the Performance of Clouds Processing MapReduce 

Jobs with Deadlines”, International Conference on Performance Engineering 

(ICPE), Dublin, Ireland, 24 -26 March 2014, pp.161-172.  

[21] N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming-Based 

Resource Management Technique for Processing MapReduce Jobs with SLAs on 

Clouds”, International Conference on Parallel Processing (ICPP), Minneapolis, 

MN, USA, 9-12 Sept 2014, pp. 411-421. 

[22] N. Lim, S. Majumdar, and P. Ashwood-Smith, “A Constraint Programming Based 

Hadoop Scheduler for Handling MapReduce Jobs with Deadlines on Clouds”, 

International Conference on Performance Engineering (ICPE), Austin, TX, USA, 

31 Jan – 4 Feb 2015, pp. 111-122. 



 

 

258 

 

[23] N. Lim and S. Majumdar, “Resource Management for MapReduce Jobs Performing 

Big Data Analytics”, in Big Data Management, Architecture, and Processing, K.-C. 

Li, H. Jiang, and A. Zomaya, Eds. USA: CRC Press, Taylor & Francis Group, 

August 2016 (accepted for publication). 

[24] N. Lim, S. Majumdar, and P. Ashwood-Smith, “MRCP-RM: a Technique for 

Resource Allocation and Scheduling of MapReduce Jobs with Deadlines”, IEEE 

Transactions on Parallel and Distributed Systems, October 2016 (accepted for 

publication). 

[25] The Apache Software Foundation, “Hadoop”. [Online].  Available: 

http://hadoop.apache.org [Accessed: February 16, 2016]. 

[26] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “QoS–Aware 

Clouds”, International Conference on Cloud Computing (CLOUD), Miami, Florida, 

USA, 5-10 July 2010, pp. 321-328. 

[27] P. Xiong, Y. Chi, S. Zhu, H.J. Moon, C. Pu and H. Hacigumus, “Intelligent 

management of virtualized resources for database systems in cloud environment”, 

International Conference on Data Engineering (ICDE), Hannover, Germany, 11-16 

April 2011, pp. 87-98. 

[28] Y. Yuan and W-C. Liu, “Efficient resource management for cloud computing”, 

International Conference on System Science, Engineering Design and 

Manufacturing Informatization (ICSEM), Guiyang, China, 22-23 Oct. 2011, pp. 

233-236. 

[29] C. Castillo, G.N. Rouskas, and K. Harfoush, “Resource co-allocation for large-scale 

distributed environments.” International Symposium on High performance 

distributed computing (HPDC), Munich, Germany, 11-13 June 2009, pp. 131-140.  

[30] X. Wang, H. Xie, R. Wang, Z. Du, and L. Jin, “Design and implementation of 

adaptive resource co-allocation approaches for cloud service 

environments”, International Conference on Advanced Computer Theory and 

Engineering (ICACTE), Chengdu, China, 20-22 Aug. 2010, pp. V2-484-V2-488. 

[31] R. Aoun, E.A. Doumith, and M. Gagnaire, “Resource Provisioning for Enriched 

Services in Cloud Environment”, International Conference on Cloud Computing 

Technology and Science (CloudCom), Indianapolis, USA, Nov. 30-Dec. 3 2010, pp. 

296-303. 

[32] V.C. Emeakaroha, I. Brandic, M. Maurer, and I. Breskovic, “SLA-Aware 

Application Deployment and Resource Allocation in Clouds”, International 

Conference on Computer Software and Applications Conference Workshops 

(COMPSACW), Munich, Germany, 18-21 July 2011, pp. 298-303. 



 

 

259 

 

[33] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-Based Resource Allocation 

for Multi-tier Cloud Computing Systems”, IEEE International Conference on 

Cloud Computing (CLOUD), Washington, DC, USA, 4-9 July 2011, pp. 324-331. 

[34] H. N. Van, F.D. Tran, and J.-M Menaud, “Performance and Power Management for 

Cloud Infrastructures”, International Conference on Cloud Computing (CLOUD), 

Miami, Florida, USA, 5-10 July 2010, pp. 329-336. 

[35] V. Cardellini, E. Casalicchio, F. Lo Presti, and L. Silvestri, “SLA-aware Resource 

Management for Application Service Providers in the Cloud”, International 

Symposium on Network Cloud Computing and Applications (NCCA), Toulouse, 

France, 21-23 Nov. 2011, pp. 20-27. 

[36] L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira, “Scheduling service workflows 

for cost optimization in hybrid clouds”, International Conference on Network and 

Service Management (CNSM), Niagara Falls, ON, Canada, 25-29 Oct. 2010, pp. 

394-397. 

[37] X. Meng, C. Lizhen, W. Haiyang, and B. Yanbing, “A Multiple QoS Constrained 

Scheduling Strategy of Multiple Workflows for Cloud Computing”, International 

Symposium on Parallel and Distributed Processing with Applications (ISPA), 

Chengdu and Jiuzhai Valley, China, 10-12 Aug. 2009, pp. 629-634. 

[38] S. Pandey, L. Wu, S. Guru, and R. Buyya, “A Particle Swarm Optimization-Based 

Heuristic for Scheduling Workflow Applications in Cloud Computing 

Environments”, IEEE International Conference on Advanced Information 

Networking and Applications (AINA), Perth, Australia, 20-23 April 2010, pp. 400–

407. 

[39] W-N. Chen and J. Zhang, “A set-based discrete PSO for cloud workflow scheduling 

with user-defined QoS constraints”, International Conference on Systems, Man, and 

Cybernetics (SMC), Seoul, South Korea, 14-17 Oct. 2012, pp. 773-778. 

[40] C. Szabo, and T. Kroeger, “Evolving multi-objective strategies for task allocation 

of scientific workflows on public clouds”, IEEE Congress on Evolutionary 

Computation (CEC), Brisbane, Australia, 10-15 June 2012, pp.1-8. 

[41] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema, “Cost-Driven Scheduling of 

Grid Workflows Using Partial Critical Paths”, IEEE Transactions on Parallel 

Distributed Systems, vol. 23, no. 8, 2012, pp. 1400–1414. 

[42] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema, “Deadline-constrained 

workflow scheduling algorithms for Infrastructure as a Service Clouds”, Future 

Generation Computer Systems, vol. 29, 2013, pp. 158-169. 

[43] A. McGregor, D. Bennett, S. Majumdar, B. Nandy, J.O. Melendez, M. St-Hilaire, P. 

Lau, and J. Liu, “A Cloud-Based Platform for Supporting Research Collaboration”, 



 

 

260 

 

IEEE International Conference on Cloud Computing (CLOUD), New York, NY, 

USA, 27 June – 2 July 2015, pp. 1107-1110. 

[44] J. Dittrich and J.-A. Quiane-Ruiz, “Efficient Big Data Processing in 

HadoopMapReduce”, In Proceedings of VLDB 2012/PVLDB, vol. 5, no. 12, pp. 

2014-2015 (Tutorial). 

[45] M. Collins, “Hadoop and MapReduce: Big Data Analytics”, Gartner, 14 Jan. 2011. 

[46] N. Gift, “Solve cloud-related big data problems with MapReduce”, IBM, 8 Nov. 

2010. [Online]. Available: http://www.ibm.com/developerworks/cloud/library/cl-

bigdata/ [Accessed February 12, 2016]. 

[47] S. Baker, “The Two Flavors of Google”, Bloomberg Businessweek Magazine, 12 

Dec. 2007. 

[48] T. White, “Hadoop: The Definitive Guide, 2nd Edition”, O’Reilly Media, Inc., 

Sebastopol, CA, USA, 2011. 

[49] Apache, “Hadoop Wiki”. [Online]. Available: 

http://wiki.apache.org/hadoop/PoweredBy [Accessed: February 12, 2016]. 

[50] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System”, ACM 

SIGOPS Operating Systems Review, vol. 37, no. 5, 2003, pp. 29–43. 

[51] M. Jones and M. Nelson, “Moving ahead with Hadoop YARN”, IBM.  2 July 2013. 

[Online]. Available: http://www.ibm.com/developerworks/library/bd-hadoopyarn 

[Accessed: February 20, 2016]. 

[52] The Apache Software Foundation, “Apache Hadoop YARN”. [Online]. Available: 

http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html 

[Accessed: April 5, 2016]. 

[53] H. Chang, M. Kodialam, R.R. Kompella, T.V. Lakshman, M. Lee, and S. 

Mukherjee, “Scheduling in mapreduce-like systems for fast completion time”, IEEE 

INFOCOM 2011, Shanghai, China, 10-15 April 2011, pp. 3074-3082. 

[54] A. S. Schulz, “Scheduling to Minimize Total Weighted Completion Time: 

Performance Guarantees of LP-Based Heuristics and Lower Bounds”, International 

Conference on Integer Programming and Combinatorial Optimization (IPCO), 

Vancouver, BC, Canada, 3-5 June 1996, pp. 301-315.  

[55] X. Gao, Q. Chen, Y. Chen, Q. Sun, Y. Liu, and M. Li, “A Dispatching-Rule-Based 

Task Scheduling Policy for MapReduce with Multi-type Jobs in Heterogeneous 

Environments”, ChinaGrid Annual Conference, Beijing, China, 20-23 Sept. 2012, 

pp. 17 -24. 



 

 

261 

 

[56] Z. Fadika and M. Govindaraju, “DELMA: Dynamically ELastic MapReduce 

Framework for CPU-Intensive Applications”, IEEE/ACM International Symposium 

on Cluster, Cloud and Grid Computing (CCGrid), Newport Beach, CA, USA, 23-

26 May 2011, pp. 454-463. 

[57] B. Palanisamy, A. Singh, and L. Liu, “Cost-Effective Resource Provisioning for 

MapReduce in a Cloud”, IEEE Transactions on in Parallel and Distributed 

Systems, vol.26, no.5, 1 May 2015, pp. 1265-1279. 

[58] D. Yoo and K. M. Sim, “A scheduling mechanism for multiple MapReduce jobs in 

a workflow application (position paper)”, Computing, Communications and 

Applications Conference (ComComAp), Hong Kong, China, 11-13 Jan. 2012, pp. 

405-410. 

[59] C. He, Y. Lu, and D. Swanson, “Matchmaking: A New MapReduce Scheduling 

Technique”, International Conference on Cloud Computing Technology and 

Science (CloudCom), Athens, Greece, 29 Nov. - 1 Dec. 2011, pp. 40-47. 

[60] M. Hammoud and M.F. Sakr, “Locality-Aware Reduce Task Scheduling for 

MapReduce”, International Conference on Cloud Computing Technology and 

Science (CloudCom), Athens, Greece, 29 Nov. - 1 Dec. 2011, pp. 570-576. 

[61] Z. Fadika, E. Dede, J. Hartog, and M. Govindaraju, “MARLA: MapReduce for 

Heterogeneous Clusters”, IEEE/ACM International Symposium on Cluster, Cloud 

and Grid Computing (CCGrid), Ottawa, ON, Canada, 13-16 May 2012, pp. 49-56. 

 

[62] Y. Liu, M. Li, N.K. Alham, S. Hammoud and M. Ponraj, “Load balancing in 

MapReduce environments for data intensive applications”, International 

Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shanghai, China, 

26-28 July 2011, pp. 2675-2678. 

 

[63] X. Xu and M. Tang, “A New Approach to the Cloud-based Heterogeneous 

MapReduce Placement Problem”, IEEE Transactions on in Services Computing, 

vol. PP, no.99, 15 May 2015, pp. 1-12. 

 

[64] The Apache Software Foundation, “Hadoop 1.2.1 Documentation: Fair Scheduler”. 

[Online]. Available: http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html 

[Accessed: April 10, 2016]. 

 

[65] The Apache Software Foundation, “Hadoop 1.2.1 Documentation: Capacity 

Scheduler”. [Online]. Available: 

http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html [Accessed: April 10, 

2016] 

 

[66] Z. Guo and G. Fox, “Improving MapReduce Performance in Heterogeneous 

Network Environments and Resource Utilization”, IEEE/ACM International 



 

 

262 

 

Symposium on Cluster, Cloud and Grid Computing (CCGrid), Ottawa, ON, 

Canada, 13-16 May 2012, pp. 714-716. 

 

[67] Y. Luo and B. Plale, “Hierarchical MapReduce Programming Model and 

Scheduling Algorithms”, IEEE/ACM International Symposium on Cluster, Cloud 

and Grid Computing (CCGrid), Ottawa, ON, Canada, 13-16 May 2012, pp. 769-

774.  

[68] T. Wirtz and R. Ge, “Improving MapReduce energy efficiency for computation 

intensive workloads”, International Conference on Green Computing Conference 

and Workshops (IGCC), Orlando, FL, USA, 25-28 July 2011, pp. 1-8. 

[69] D. Cavdar, L.Y. Chen, and F. Alagoz, “Green MapReduce for heterogeneous data 

centers”, IEEE Global Communications Conference (GLOBECOM), Austin, TX, 

USA, 8-12 Dec. 2014, pp.1120-1126. 

[70] A. Verma, L. Cherkasova, V.S. Kumar, and R.H. Campbell, “Deadline-based 

workload management for MapReduce environments: Pieces of the performance 

puzzle”, Network Operations and Management Symposium (NOMS), Maui, Hawaii, 

USA, 16-20 April 2012, pp. 900-905. 

[71] K. Kc and K. Anyanwu, “Scheduling Hadoop Jobs to Meet Deadlines”, 

International Conference on Cloud Computing Technology and Science 

(CloudCom), Indianapolis, IN, USA, 30 Nov. – 3 Dec. 2010, pp. 388-392. 

[72] X. Dong, Y. Wang, and H. Liao, “Scheduling Mixed Real-Time and Non-real-Time 

Applications in MapReduce Environment”, International Conference on Parallel 

and Distributed Systems (ICPADS), Tainan, Taiwan, 7-9 Dec. 2011, pp. 9-16. 

[73] M. Mattess, R.N. Calheiros, and R. Buyya, “Scaling MapReduce Applications 

Across Hybrid Clouds to Meet Soft Deadlines”, International Conference on 

Advanced Information Networking and Applications (AINA), Barcelona, Spain, 25-

28 March 2013, pp. 629-636. 

[74] E. Hwang and K. H. Kim, “Minimizing Cost of Virtual Machines for Deadline-

Constrained MapReduce Applications in the Cloud”, International Conference on 

Grid Computing (GRID), Beijing, China, 20-23 Sept. 2012, pp. 130-138. 

[75] Z.-R. Lai, C.-W. Chang, X. Liu, T.-W. Kuo, and P.-C. Hsiu, “Deadline-aware load 

balancing for MapReduce”, International Conference on Embedded and Real-Time 

Computing Systems and Applications (RTCSA), Chongqing, China, 20-22 Aug. 

2014, pp. 1-10. 

[76] C. Chen, J. Lin, and S. Kuo, “MapReduce Scheduling for Deadline-Constrained 

Jobs in Heterogeneous Cloud Computing Systems”, IEEE Transactions on Cloud 

Computing, vol. PP, no. 99, pp. 1-14. 



 

 

263 

 

[77] U. Farooq, S. Majumdar, and E. W. Parsons, “Achieving efficiency, quality of 

service and robustness in multi-organizational Grids”, Journal of Systems and 

Software, vol. 82, Jan. 2009, pp. 23–38. 

[78] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and adjusting user runtime 

estimates to improve job scheduling on the Blue Gene/P”, IEEE International 

Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 19-

23 April 2010, pp. 1–11. 

[79] P. Xiao and Z. Hu, “Relaxed resource advance reservation policy in grid 

computing”, The Journal of China Universities of Posts and Telecommunications, 

vol. 16, no. 2, April 2009, pp. 108–113.  

[80] G. Birkenheuer, A. Brinkmann, and H. Karl, “Risk aware overbooking for 

commercial grids”, International workshop on Job Scheduling Strategies for 

Parallel Processing (JSSPP), Atlanta, GA, USA, 23 April 2010, pp. 51–76.  

[81] P. Hoang, S. Majumdar, M. Zaman, P. Srivastava, and N. Goel, “Resource 

Management Techniques for Handling Uncertainties in User Estimated Job 

Execution Times”, International Symposium on Performance Evaluation of 

Computer and Telecommunication Systems (SPECTS), Monterey, CA, USA, 6-10 

July 2014, pp. 626 -633. 

[82] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-Generated 

Predictions Rather than User Runtime Estimates”, IEEE Transactions on Parallel 

and Distributed Systems, vol. 18, no. 6, 2007, pp. 789–803. 

[83] A. Matsunaga and J. Fortes, “On the Use of Machine Learning to Predict the Time 

and Resources Consumed by Applications”, IEEE/ACM International Conference 

on Cluster, Cloud and Grid Computing (CCGrid), Melbourne, Australia, 17-20 

May 2010, pp. 495 –504.  

[84] Y. Murata, R. Egawa, M. Higashida, and H. Kobayashi, “A History-Based Job 

Scheduling Mechanism for the Vector Computing Cloud”, IEEE/IPSJ International 

Symposium on Applications and the Internet (SAINT), Seoul, South Korea, 19-23 

July 2010, pp. 125 –128.  

[85] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo, “Meeting service level 

objectives of Pig programs”, International Workshop on Cloud Computing 

Platforms, New York, NY, USA, 2012, pp. 8:1–8:6. 

[86] B. Li, J. Chen, M. Yang, and E. Wang, “Impact of Extending the Runtime of 

Underestimated Jobs in Backfilling Schedulers”, International Conference on 

Computer Science and Software Engineering (CSSE), Wuhan, China, 12-14 Dec. 

2008, pp. 328–331.  



 

 

264 

 

[87] J. Polo, “Adaptive Scheduler”, [Online]. Available: 

https://issues.apache.org/jira/browse/MAPREDUCE-1380 [Accessed: February 

24, 2016]. 

[88] J.N. Hooker, “Planning and scheduling to minimize tardiness”, P. In van Beek, 

ed., Principles and Practice of Constraint Programming, vol. 3709, 2005, pp. 

314–327. 

[89] I. J. Lustig and J.-F. Puget, “Program Does Not Equal Program: Constraint 

Programming and Its Relationship to Mathematical Programming”, 

INTERFACES, vol. 31, no. 6, Nov.-Dec. 2001, pp. 29-53. 

[90] P. Refalo, “Linear formulation of constraint programming models and hybrid 

solvers”, Principles and Practice of Constraint Programming–CP 2000, Springer 

Berlin Heidelberg, 2000, pp. 369-383. 

[91] N. Beldiceanu and S. Demassey, “Global Constraint Catalog”.  [Online]. 

Available: http://sofdem.github.io/gccat/gccat/Ccumulative.html [Accessed: 

February 25, 2016]. 

[92] Lindo Systems Inc., “Lindo Systems – Optimization Software”. [Online]. 

Available: http://www.lindo.com/ [Accessed: February 25, 2016]. 

[93] NICTA, “MiniZinc and FlatZinc”. [Online]. Available: http://www.MiniZinc.org/ 

[Accessed: February 24, 2016]. 

[94] Gecode, “Generic Constraint Development Environment”. [Online]. Available:  

http://www.gecode.org/ [Accessed: February 25, 2016]. 

[95] J.M. Van den Akker, C. Hurkens, and M. Savelsbergh, “Time-indexed 

formulations for machine scheduling problems: Column generation”, INFORMS 

Journal on Computing, vol. 12, no. 2, 2000, pp. 111-124. 

[96] K. Marriott, P.J. Stuckey, L.D. Koninck, and H. Samulowitz, “An Introduction to 

MiniZinc Version 1.6”. [Online]. Available: www.minizinc.org/downloads/doc-

1.6/minizinc-tute.pdf [Accessed February 25, 2016]. 

[97] IBM Corporation, “IBM ILOG CPLEX Optimization Studio V12.5 Reference 

Manual”. [Online]. Available: 

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp [Accessed: February 

25, 2016]. 

[98] IBM Corporation, “Detailed Scheduling in IBM ILOG CPLEX Optimization 

Studio with IBM ILOG CPLEX CP Optimizer”, White Paper. IBM Corporation, 

2010. [Online]. Available: http://www.besmart.company/wp-

content/uploads/2014/11/Ilog-CPLEX.pdf [Accessed: February 25, 2016]. 



 

 

265 

 

[99] T. Dong, “Efficient modeling with the IBM ILOG OPL-CPLEX Development 

Bundles”, White Paper, December 2009. [Online]. Available: 

http://public.dhe.ibm.com/common/ssi/rep_wh/n/WSW14059USEN/WSW14059

USEN.PDF [Accessed: February 25, 2016]. 

[100] Oracle Corporation, “NetBeans IDE”, [Online]. Available: https://netbeans.org 

[Accessed: February 25, 2016]. 

[101] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for 

Experimental Design, Measurement, Simulation, and Modeling”, Wiley-

Interscience, New York, NY, April 1991, ISBN:0471503361. 

[102] Oracle Corporation, “System.nanoTime()”, Java Platform Standard Ed. 7. 

[Online]. Available: 

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime() 

[Accessed: February 24, 2016]. 

[103] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, 

“Delay scheduling: A simple technique for achieving locality and fairness in 

cluster scheduling”, EuroSys, Paris, France, 13-16 April 2010, pp. 265–278. 

[104] M. Jones, “Scheduling in Hadoop”, [Online]. Available: 

http://www.ibm.com/developerworks/library/os-hadoop-scheduling/ [Accessed: 

February 25, 2016]. 

[105] Oracle Corporation, “Interface Comparator<T>”, Java Platform Standard Ed. 7. 

[Online]. Available: 

https://docs.oracle.com/javase/7/docs/api/java/util/Comparator.html [Accessed: 

February 25, 2016]. 

[106] Oracle Corporation, “Nested Classes”, The Java Tutorials. [Online]. Available: 

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html [Accessed: 

February 25, 2016]. 

[107] The IEEE and the Open Group, “Seconds Since the Epoch”, The Open Group 

Base Specifications Issue 7, IEEE Std 1003.1, 2013. 

[108] Amazon, “Amazon EC2 Instance Types”. [Online]. Available: 

http://aws.amazon.com/ec2/instance-types/ [Accessed: February 25, 2016]. 

[109] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench benchmark 

suite: Characterization of the MapReduce-based data analysis”, IEEE 

International Conference on Data Engineering Workshops (ICDEW), Long 

Beach, CA, USA, 1-6 March 2010, pp. 41-51. 

[110] Oracle Corporation, “Thread.sleep()”, Java Platform Standard Ed. 7. [Online]. 

Available: 



 

 

266 

 

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#sleep(long) 

[Accessed: October 15, 2016]. 

[111] D. England, J. Weissman, and J. Sadagopan, “A new metric for robustness with 

application to job scheduling”, IEEE International Symposium on High 

Performance Distributed Computing (HPDC), Research Triangle Park, NC, USA, 

24-27 July 2005, pp. 135 – 143. 

[112] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and 

user runtime estimates in scheduling the IBM SP2 with backfilling”, IEEE 

Transactions on Parallel and Distributed Systems, vol. 12, no. 6, Jun. 2001, pp. 

529 –543. 

[113] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi, 

“Characterization of Scientific Workflows”, Workshop on Workflows in Support 

of Large Scale Science, Austin, TX, USA, 17 Nov 2008, pp. 1-10. 

[114] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, 

“Characterizing and Profiling Scientific Workflows”, Future Generation 

Computer Systems, vol. 29, no. 3, March 2013, pp. 682–692. 

[115] K. J. Lin, S. Natarajan, and J. W. S. Liu, “Imprecise results: utilizing partial 

computations in real-time systems”, IEEE Real-Time Systems Symposium (RTSS), 

1-3 Dec. 1987, San Jose, CA, USA, pp. 210-217. 

[116] G. L. Stavrinides and H. D. Karatza, “Scheduling real-time parallel applications in 

SaaS clouds in the presence of transient software failures”, International 

Symposium on Performance Evaluation of Computer and Telecommunication 

Systems (SPECTS), Montreal, QC, Canada, 24-27 July 2016, pp. 1-8. 

[117] Oracle Corporation, “Interface Iterator<E>”, Java Platform Standard Ed. 7. 

[Online]. Available: 

https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html [Accessed: 

February 26, 2016]. 

 

  



 

 

267 

 

Appendix A Design and Implementation of the MILP Model and 

the CP Model 

The following sub-sections (A.I to A.III) describe the design and implementation 

of the MILP Model and the CP Model using various commercial-off-the-shelf and open 

source software packages.  

A.I. MILP Model Implemented Using LINGO 

This section discusses how the MILP Model is implemented in LINGO v13.0. 

Additional information on how to use LINGO is found in [92]. The LINGO modeling 

language provides a data type called Sets that is used to model a group of related objects. 

By using Sets, constraints on the decision variables are efficiently and compactly expressed 

using a single statement. Each set can have one or more attributes associated with each 

item of the set. In the implementation of the MILP Model, sets are used to represent the 

input:  jobs set J, tasks set AT, resources set R, and time range set I. For example, the task 

set AT is implemented as follows: 

SETS: TASKS: parentJob, type, execTime, resReq; 

The parent job attribute identifies which job the task belongs to. For example, if the parent 

job attribute of a task is 2, it means that this task belongs to the job with an id equal to 2. 

The type attribute indicates whether the task is a map task (type = 0) or a reduce task (type 

= 1). The execTime and resReq attributes represent et and qt, respectively. 

A representative set of examples of how the constraints of the MILP Model (defined 

in Table 3.2) are implemented using LINGO are presented. For instance, constraint (1b) is 

implemented as follows: 
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@FOR( TASKS(t):  
 @SUM( TIME(i): 
   @SUM( RESOURCES(r): x(t,r,i) ) 

) = 1  
); 

 

The @FOR construct is used to iterate the members of a given set and can be used to generate 

constraints for each member of the set. As the name suggests, the @SUM construct is a 

looping function that calculates the sum of all the members in the given set. The variable x 

used in the LINGO model represents the x decision variable discussed in Section 3.4.  

The implementation of constraint (5b) using LINGO is presented: 

@FOR( RESOURCES(r):  
 @FOR(TIME(i): 
  @SUM( TASKS(t)| type(t) #EQ# 0: 
   @SUM( TIME(i2 |(i-execTime(t)) #LT# i2 #AND# i2 #LE# i:  
    x(t,r,i2)*resReq(t)  
   )  
  ) <= mapCapacity(r) 
 )  
); 

 

As shown, the two @SUM constructs use LINGO’s conditional qualifier operator |, which 

limits the scope of the looping function and restricts the members of the set that are 

processed. More specifically, only the members of the set that evaluate the conditional 

qualifier equation to true are processed. For example, the first @SUM construct specifies that 

only tasks with a type attribute equal to 0 (i.e., map tasks) are processed. Furthermore, the 

syntax for using logical operators is to enclose the name of the operator using hashtags (#).  

For instance, the syntax for the logical operators: =, ≤, and < are #EQ#, #LE#, and #LT#, 

respectively. 

A.II. CP Model Implemented Using MiniZinc  

This section discusses how the CP Model is implemented using MiniZinc. More 

details on how to use the MiniZinc modeling language can be found in [96]. Similar to 
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LINGO, MiniZinc also provides a mechanism to group together closely related data called 

Sets and Arrays. Using MiniZinc, the set of tasks AT is implemented as follows: 

set of int: Tasks = 1..NUM_TASKS; 
set of int: Jobs = 1..NUM_JOBS; 
array [Tasks] of Jobs: parentJob; 
array [Tasks] of 0..1: type; 
array [Tasks] of int: execTime;       
array [Tasks] of int: resourceReq;       

 

First a set of integers, called Tasks, is defined from 1 to a variable named 

NUM_TASKS, which stores the total number of tasks contained in the input set of jobs, J.  

Next, the attributes of the tasks, which are identical to the attributes described in Appendix 

A.I, are declared using arrays. The indices of the attribute arrays are specified using the set 

of integers, Tasks, that was declared previously. For example, the execTime array has its 

indices defined by the Tasks set so that each task has its own execTime attribute. The 

domain of each of the attributes, which is the range of acceptable values that an attribute 

can have, is also defined when declaring the attribute arrays by using the of keyword. For 

example, the domain of the parentJob attribute is equal to the set of integers called Jobs, 

which has a range from 1 to NUM_JOBS where NUM_JOBS is a variable that stores the number 

of jobs in the input set J. It is observed from the above example that the implementation of 

data sets in MiniZinc requires using two data types (sets and arrays), and is not as compact 

as the one used in LINGO, but it performs the same function. 

A representative set of examples of how the CP Model’s constraints (defined in 

Table 3.1) are implemented using MiniZinc is provided next. In MiniZinc, constraint (2a) 

is expressed as follows: 

constraint forall(j in Jobs) ( 
 forall(t in Tasks where parentJob[t] == j /\ type[t] == 0) ( 
    startTime[t] >= releaseTime[j]   
 )  
); 
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All the constraints in MiniZinc, start with the keyword constraint. The forall construct 

performs an identical function to LINGO’s @FOR construct, which is used to iterate the 

items of a collection. Similarly, the where keyword in the second forall statement is 

MiniZinc’s conditional qualifier operator. The /\ operator performs a logical conjunction 

(logical and) operation. 

A.III. CP Model Implemented Using IBM CPLEX 

In this section, the implementation of the CP Model using OPL, which is referred 

to as the OPL Model, is discussed. Additional information for expressing CP formulations 

using OPL can be found in [97] and [98]. Similar to the other approaches, OPL supports 

using a data type called tuple, which allows related data to be grouped together. The 

following tuples are defined to represent a job, a task, a resource, and the xtr decision 

variable, respectively:   

 Job = <id, earliestStartTime, deadline>,  

 Task = <id, parentJob, type, execTime, resReq>,  

 Resource = <id, mapCapacity, reduceCapacity>, and  

 Option = <Task, Resource>.  

For example, the Tasks set is expressed in OPL as follows: 

tuple Task { 
 key string id;   
 int parentJob;   
 int type; 
   int execTime;  
 int resReq;  
}; 
 
{ Task } Tasks = ...; 
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First, a Task tuple is defined, which is then used to specify a set of Task tuples called 

Tasks. The ellipses (…) indicate that the Tasks set will be specified as input to the model. 

The Task tuple has the same attributes as those discussed in Appendix A.I, except for an 

additional attribute called id, which is used to uniquely identify a tuple in OPL. The 

keyword key specifies which attribute is used as the unique identifier for the tuple.  

A representative set of examples of implementing the constraints of the CP Model 

(recall Table 3.1) is presented. In the OPL Model, constraint (1a) is expressed using the 

OPL-defined alternative constraint [98] as follows: 

forall (t in Tasks)  
 alternative(taskIntervals[t],  
 all(o in Options: o.task.id == t.id) xtr[o]); 

 

Similar to the forall construct used in MiniZinc, OPL’s forall construct is used to iterate 

through the elements of a specified collection. The alternative constraint is a 

synchronization constraint that requires two parameters: an interval i and a set of 

intervals S. The alternative constraint states that the interval i will only be present in the 

solution if and only if there is exactly one interval in S (denoted j) that is also present in 

the solution. Both intervals i and j are synchronized meaning that they both start and end 

at the same time. Thus, it is appropriate to use the alternative constraint to express 

constraint (1a) whose purpose is to ensure that each task is assigned to only one resource 

(recall Section 3.3). In the above example, the set S is produced by using the all construct 

invoked with a conditional qualifier (:). More specifically, S is a subset of Option tuples 

that have the same id as the task of interest, t. 

In the OPL Model, constraint (5a) is expressed as follows: 

forall (r in Resources) {  
 sum (o in Options : o.resource.id == r.id && o.task.type == 0)  
   pulse(xtr[o], o.task.resReq) <= r.mapCapacity;  
}   
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The pulse function [98] is used to generate the resource usage of a task, and it requires 

two parameters: an interval i that represents the task and a height value h to indicate the 

resource usage (i.e., capacity requirement) of the task. The pulse function generates a value 

as a function of time. More precisely, when the task is running (i.e., during the time 

between the interval’s start time and end time), the pulse function generates a value equal 

to the supplied value h to indicate the amount of resource usage of the task. At all other 

points in time, the pulse function generates a value of 0. To implement the functionality of 

CP’s cumulative constraint, the OPL Model sums all the values produced by the pulse 

function at each point in time and asserts that the sum is less than or equal to the capacity 

of the resource. As shown, the OPL implementation of constraint (5a), which enforces that 

the map task capacity of each resource r in R is not violated, uses a conditional qualifier (:) 

to ensure that only the map tasks (represented by the xtr[o] interval variable) that are 

assigned to the resource of interest (resource r) is included in the calculation. To determine 

that if an xtr[o] variable represents a map task that is scheduled on resource r, xtr[o]’s 

task.type and resource.id attributes are checked to see if they are equal to 0 and are 

equal to resource r’s id, respectively. 
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Appendix B Additional Details on the MRCP-RM Algorithm 

In this appendix, additional details of the design and implementation of the MRCP 

RM algorithm are provided. 

B.I. Creating and Solving the OPL Model Using IBM CPLEX’s Java APIs 

This section describes how IBM CPLEX’s Java APIs are used to create and solve 

an OPL Model, including how the solution of the OPL Model is extracted and saved. The 

CPLEX Java library follows a Factory design pattern [97] where objects are created by 

invoking methods from a single master object. Thus, the first step is to create an instance 

of an IloOplFactory object as follows:  

IloOplFactory factory = new IloOplFactory(); 

Next, the model source object, IloOplModelSource, is created using:  

 IloOplModelSource modelSource =  
  factory.createOplModelSourceFromString(oplModelText, modelName);  

 

where oplModelText is a string containing the source code (text) of the OPL Model and 

modelName is a string containing the user-specified name of the model. The model 

definition object can then be created:  

 IloOplModelDefinition modelDef =  
  factory.createOplModelDefinition(modelSource, settings) 

 

where modelSource is the IloOplModelSource object that was previously created and 

settings is an instance of IloOplSettings that represents the configuration and settings 

of the model. The IloOplSettings object is created as follows: 

IloOplErrorHandler errHandler = factory.createOplErrorHandler(); 
IloOplSettings settings = factory.createOplSettings(errHandler); 
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As shown, an error handler object, IloOplErrorHandler, needs to be created before 

generating the settings object. The next step is to create an instance of the CP Optimizer 

solving engine: 

IloCP cpSolver = factory.createCP() 

The OPL Model object can then be created by invoking the createOplModel() method, 

which requires passing in a model definition object and a CP Optimizer instance as follows: 

IloOplModel oplModel = factory.createOplModel(modelDef, cpSolver) 

Now that the OPL Model object is created, a data source that provides the input data for 

the model is added using:  

IloOplDataSource dataSource = new OPLModelData(factory, resources,  
        jobsToSchedule); 
oplModel.addDataSource(dataSource); 
 

OPLModelData is a user-defined class that extends CPLEX’s 

ilog.opl.IloCustomOplDataSource class [97] whose purpose is to generate the OPL 

Model’s input data: set of jobs to schedule J and set of resources R. The IloOplModel 

object can now be generated as follows: 

oplModel.generate() 

This converts the model into a form that the CP Optimizer can solve. Finally, the OPL 

Model is solved by invoking:  

cpSolver.solve() 

After a solution is found, the values of the decision variables (i.e., the assigned resource 

and scheduled start time of each scheduled task) are extracted from the solved OPL Model 

using CPLEX’s Java API OPL element interface [97]. A discussion on how this is done is 

provided next. First, the element that contains all the scheduled tasks is obtained from the 

IloOplModel object using: 
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IloTupleSet scheduledTasks =  
oplModel.getElement("ScheduledTasks").asTupleSet(); 

 

Next the scheduledTasks set, which is an instance of IloTupleSet and contains a set of 

ScheduledTask tuples, is processed to retrieve the values of the decision variables using: 

for (Iterator it = scheduledTasks.iterator(); it.hasNext(); ) 
{ 

IloTuple tuple = (IloTuple) it.next(); 
 
String taskId = tuple.getStringValue("taskID"); 
int assignedResId = tuple.getIntValue("resID"); 

 int startTime = tuple.getIntValue("start"); 
 int endTime = tuple.getIntValue("end"); 
 

... 
} 

 

The ScheduledTask tuple is used by the post-processing component of the OPL Model to 

store the values of the decision variables and is defined as follows: 

tuple ScheduledTask 
{ 
  int resID; 
  int isReduceTask; 
  int start; 
  int end; 
  string taskID;  
}; 

 

The post-processing component of the OPL Model is executed after the CP Optimizer finds 

a solution to the OPL Model, and its job is to save the values of the decision variables into 

the attributes of the ScheduledTask tuple. As shown, to iterate the scheduledTasks set, 

Java’s Iterator class [117] is used. The values of the ScheduledTask tuples are retrieved 

by using the IloTuple class’ get methods which include getIntValue() to retrieve an 

integer and getStringValue() to retrieve a string.   
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B.II. Split Single Resource Schedule Algorithm 

This section describes the Split Single Resource Schedule algorithm (see Algorithm 

B.1) that is used by the MRCP-RM technique (refer to Section 4.3.1). The input required 

by the algorithm includes the following: the single combined resource (sr), nmRes, the 

number of map resources, which are resources with a map task capacity, 𝑐𝑟
𝑚𝑝

≥ 1 in R, and 

nrRes, the number of reduce resources, which are resources that have a reduce task 

capacity, 𝑐𝑟
𝑟𝑑≥ 1), in R.  

The first phase of Algorithm B.1 (lines 1-5) moves the map tasks and reduce tasks 

from the single combined resource to a set of single capacity map resources (MR) and a 

set of single capacity reduce resources (RR), respectively. Each resource in MR has only 

one map task slot and each resource in RR has only one reduce task slot. The number of 

single capacity resources in MR and RR is equal to the total number of map task slots in R 

(totMC = ∑ 𝑐𝑟
𝑚𝑝

𝑟∈𝑅 ) and the total number of reduce task slots in R (totRC = ∑ 𝑐𝑟
𝑟𝑑

𝑟∈𝑅 ), 

respectively. The algorithm moves tasks from the single combined resource in non-

decreasing order of the respective scheduled start times of the tasks and assigns each task 

to a single capacity resource in MR or RR, depending on whether it is a map task or a reduce 

task. More specifically, each task t is assigned to the single capacity resource that is found 

in MR or RR that leaves the smallest remaining gap in the resource’s schedule. For 

example, consider a scenario in which there are two resources: r1 and r2, and a task τ3,1 

that needs to be assigned to one of these two resources from time 10 to 15. Resource r1 

already has a task τ1,1 scheduled from time 2 to 10 and r2 already has a task τ2,1scheduled 

from time 5 to 8. Task τ3,1would be assigned to r1 since the resulting gap will be 10 – 10 = 

0 compared to the gap for r2: 10 – 8 = 2.   
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Algorithm B.1: MRCP-RM algorithm’s splitSingleResourceSchedule() 

Input: single combined resource (sr), integer nmRes, and integer nrRes  

Output: a list of resources  

1: totMC  sr.getMapCapacity() 

2: totRC  sr.getReduceCapacity() 

3: Create a set of single capacity map resources, MR, comprising totMC single 

capacity map resources. 

4: Create a set of single capacity reduce resources, RR, comprising totRC single 

capacity reduce resources. 

5: Assign map tasks and reduce tasks from sr to MR and RR, respectively. 

6: minMC  totMC / nmRes ;  leftOverMC  totMC – minMC * nmRes 

7: minRC  totRC / nrRes ;  leftOverRC  totRC – minRC * nrRes 

8: id  1 

9: Create newResources list. 

10: totMC  totMC - leftOverMC 

11: totRC  totRC – leftOverRC 

12: while (totMC > 0 || totRC > 0) do 

13:  mc  (totMC > 0 ? minMC : 0) + (leftOverMC > 0 ? 1 : 0) 

14:  rc  (totRC> 0 ? minRC : 0) + (leftOverRC > 0 ? 1 : 0) 

15:  res  new Resource(id, mc, rc) 

16:  newResources.add(res) 

17:   totMC  totMC  - minMC ; totRC totRC - minRC 

18:   leftOverMC  leftOverMC – 1 ; leftOverRC  leftOverRC - 1 

19:  id  id + 1 

20: end while 

21: for each resource r in newResources do 

22:  Assign scheduled map tasks from num single capacity resources in MR, where 

 num is equal to r.getMapCapacity(). 

23:  Assign scheduled reduce tasks from num single capacity resources in RR, 

 where num is equal r.getReduceCapacity(). 

24: end for 

25: return newResources 

 

 

The second phase of Algorithm B.1 (lines 6-7) calculates the number of map task 

slots and the number of reduce task slots for each new resource that will be created to 

represent the original resources in R. Recall that the input to the algorithm includes the 

number of resources with at least one map task slot (nmRes) and the number of resources 

with at least one reduce task slot (nrRes). The total number of map task slots and the total 

number of reduce task slots is divided evenly among the resources. In line 6, the minimum 



 

 

278 

 

number of map task slots for each resource (stored in the variable minMC) and the left over 

total map task capacity (stored in the variable leftOverMC), which is the remaining number 

of map task slots to be assigned, are calculated. Similarly, in line 7 the minimum number 

of reduce task slots for each resource (stored in a variable minRC) and the left over total 

reduce task capacity (stored in a variable leftOverRC), which is the remaining number of 

reduce task slots to be assigned, are calculated.  

In the third phase of Algorithm B.1 (lines 8-20), the new resources are created. 

First, a local variable named id is initialized to 1 and a new list of resources, named 

newResources, is created (lines 8-9). The totMC and totRC variables are then updated by 

subtracting leftOverMC and leftOverRC variables, respectively, as shown in lines 10-11. 

The while loop shown in lines 12-20 is used to create the new resources for the system and 

the loop continues as long as the variables totMC or totRC are greater than 0 (i.e., there is 

still more resources to create). The map task capacity and reduce task capacity for each 

resource (stored in variables mc and rc, respectively) are then calculated as shown in lines 

13-14. If totMC is greater than 0, the new resource will have a map task capacity equal to 

minMC; otherwise, the map task capacity is equal to 0. Furthermore, if leftOverMC is 

greater than 0, the resource will get an additional map task slot. Similar calculations are 

then performed to calculate the reduce task capacity of the resource (see line 14). The next 

step is to create a new resource with an id equal to id, a map capacity equal to mc, and a 

reduce capacity equal to rc (line 15). This new resource is then added to the newResources 

list (line 16). The last step of the while loop is to update variables totMC, totRC, 

leftOverMC, leftOverRC, and id as shown in lines 17-19.  
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The last phase of Algorithm B.1 (lines 21-25) assigns tasks to each of the new 

resources created. More specifically, each resource r in newResources is assigned 

scheduled map tasks and scheduled reduce tasks from the single capacity resources in MR 

and the single capacity resources in RR: the numbers of which are equal to resource r’s 

map task capacity and reduce task capacity, respectively. The newResources list is then 

returned and the algorithm ends (line 25). 
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Appendix C Additional Details on the Design and 

Implementation of the Hadoop CP-Scheduler 

The focus of this appendix is on providing additional details of the modifications 

made to Hadoop 1.2.1 to implement the Hadoop CP-Scheduler (described in Section 5.3). 

This includes a discussion on adding support for job deadlines in Hadoop (see Appendix 

C.I) and a discussion on adding support for user-estimated task execution times (see 

Appendix C.II). In addition, details on the following are provided: (1) integrating IBM 

CPLEX with Hadoop (see Appendix C.III) and (2) a discussion of the 

createNewModelDefinition() method that is used by the HCP-RM algorithm (see 

Appendix C.IV). 

C.I. Adding Support for Job Deadlines 

This section discusses the Hadoop classes that are modified to support user-

specified job deadlines. First, in Hadoop’s org.apache.hadoop.mapred.JobInProgress 

class, a new private field, long deadline, is added to store a job’s deadline. The value 

stored in the deadline field represents the number of milliseconds elapsed from midnight, 

January 1, 1970 UTC (known as the Unix Epoch [107]). Recall from Section 5.3.3 that the 

JobInProgress class represents a MapReduce job that is being tracked by JobTracker. The 

deadline field of the JobInProgress class is initialized via its constructor by invoking 

conf.getJobDeadline() where conf is an object that is an instance of the 

org.apache.hadoop.mapred.JobConf class and getJobDeadline() is a new method 

implemented in the JobConf class whose purpose is to retrieve the job’s deadline. 
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The JobConf class represents a MapReduce job configuration file. It is an interface 

for users to specify the properties (e.g., job name and the number of map and reduce tasks) 

for their MapReduce job before submission to the Hadoop cluster. Two new methods are 

added to the JobConf class:  getJobDeadline() and setJobDeadline(long deadline). 

The method setJobDeadline(long deadline) sets a new job configuration property, 

mapred.job.deadline, to the supplied parameter. On the other hand, the 

getJobDeadline() method is used to retrieve the value assigned to the 

mapred.job.deadline property. 

The other Hadoop class that is modified to support user-specified job deadlines is 

the org.apache.hadoop.mapreduce.Job class. The Job class provides a user API, and it 

is the class that a user uses to create and submit a job to the Hadoop cluster. The Job class 

also supplies methods to allow the user to configure the job, control its execution, and 

obtain status information (e.g., state of the job). Similar to the JobConf class, the two new 

methods added to the Job class are: setJobDeadline(long deadline) and 

getJobDeadline(). These two methods in turn invoke conf.setJobDeadline(deadline) 

and conf.getJobDeadline(), respectively, where conf is an instance of a JobConf object.  

Note that conf is one of the private fields of the Job class and is initialized when a Job 

object is created. In summary, the sequence of calls for setting the deadline of a job is 

illustrated in the sequence diagram shown in Figure C.1. 
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:Job:Job :JobConf:JobConf

setJobDeadline

(deadline)

setJobDeadline

(deadline)

Note: deadline=System.currentTime()+20000

set key  mapred.job.deadline 

 to value deadline

 

Figure C.1. Sequence diagram for setting the deadline of a job in Hadoop.  

 

C.II. Adding Support for User-estimated Task Execution Times 

Similar to how support for job deadlines is added to Hadoop, support to allow users 

to specify the estimated task execution times of their submitted jobs is accomplished by 

adding two new methods: setEstimatedTaskExecutionTimes(String execTimes, int 

taskType) and getEstimatedTaskExecutionTimes(int taskType) (abbreviated setET 

and getET, respectively) to Hadoop’s Job and JobConf classes.  

The setET method accepts two parameters: a comma delimitated string of task 

execution times in seconds (e.g., “2,2,3”), and the task type (map = 0 or reduce = 1). 

Depending on the task type, the setET method assigns either the 

mapred.job.mapTaskExecTimes property or the mapred.job.reduceTaskExecTimes 

property to the supplied string, execTimes. The getET method accepts a single parameter, 

the task type (map = 0 or reduce = 1), and it returns a string array containing the values 

assigned to the corresponding property. In summary, the sequence of calls for retrieving 
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the estimated task execution times of a job is illustrated in the sequence diagram shown in 

Figure C.2. 

:Job :JobConf

getEstimated

TaskExecution

Times

(0)

getEstimatedTaskExecution

Times(0)

return value at key: 

 mapred.job.mapTaskExecTimes 

return value at key: 

 mapred.job.mapTaskExecTimes 

 

Figure C.2. Sequence diagram for retrieving the estimated task execution times of a job 

in Hadoop. 

 

C.III. Details on Integrating IBM CPLEX with Hadoop 

This section describes how IBM CPLEX is integrated with Hadoop. To import the 

required CPLEX Java libraries, IBM CPLEX v12.5 is first installed on the Ubuntu (Linux) 

machine where the CP-Scheduler is executed on. Next, the IBM CPLEX v12.5 JAR (Java 

archive) file, named oplall12.5.jar, is placed in Hadoop’s /hadoop/lib folder. In 

addition, a modification is made to Hadoop’s /hadoop/bin/hadoop script so that the 

JobTracker can locate the CPLEX libraries. More specifically, the java.library.path 

variable of the hadoop script is modified to include the folder:  

<IBM_CPEX_Install_dir>/opl/bin/x86-64_sles10_4.1 

C.IV. Create New Model Definition Method 

The createNewModelDefinition() method, which is used by the HCP-RM 

algorithm (see Section 5.4.2) is presented in Algorithm C.1. The first step is to initialize 

the variable modelSrc with a string containing the OPL Model’s source code (line 1), which 
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is obtained from the OPLModelSource class (recall Section 5.3.2). The next step is to 

process all the scheduled tasks in the system (represented by Task_CPS objects) to check 

the state of each of the tasks’ corresponding TaskInProgress object (abbreviated TIP) 

(lines 2 to 12). If a task t’s TIP is in the running state, the CP-Scheduler’s 

addConstraints() method is invoked (line 6). This method adds a new constraint to 

modelSrc to specify that the time interval from task t’s scheduled start time to its scheduled 

completion time on its assigned resource r is occupied. The purpose of the new constraint 

is to prevent the CP Optimizer solving engine from scheduling other tasks on resource r 

during t’s scheduled time, if the resource does not have the capacity to process additional 

tasks. In addition, the Task_CPS’ isExecuting field is set to true (line 7), which is passed 

on to the OPL Model (via OPLModelData class) to tell the CP Optimizer that enforcing 

constraint (2a) is not required for tasks that are already executing (recall the discussion in 

Section 4.1.1). 

 

Algorithm C.1: CP-Scheduler’s createNewModelDefinition() 

Input: none  

Output: none 

1: modelSrc  OPLModelSource.getSource() 

2: for each resource r in resources do 

3:  for each task t in r.getAllScheduledTasks() do 

4:    tip  t.getTaskInProgress() 

5:    if tip is in the running state then 

6:     call addConstraints(modelSrc, t, r) 

7:     t.setCurrentlyExecuting(true) 

8:    else if tip is in the completed state then 

9:     call removeTask(t) 

10:    end if 

11:  end for 

12: end for 

13: modelDefinition   Create new OPL model definition using the updated 

   OPL model source, modelSrc. 
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On the other hand, if the task’s TIP is in the completed state (line 8) then the CP-

Scheduler’s removeTask() method is invoked to remove the completed task from the 

system (line 9). After all the scheduled tasks in the system are processed, the final step of 

the algorithm is to create the new OPL model definition object using the updated modelSrc 

and store it in the CP_Scheduler class’ modelDefinition field (line 13).
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Appendix D Additional Results for the Performance Evaluation of the WFBB-RM Technique 

In Appendix D.I to Appendix D.III, the complete set of results of the factor-at-a-time experiments (described in Section 7.5) are 

presented. This includes the results of all 8 WFBB-RM configurations for each of the three workloads (CyberShake, LIGO, and 

Genome). Note that for the sake of completeness, the results described in Section 7.5 are also included in the tables presented in this 

appendix. Furthermore, in Appendix D.IV, additional results for the experiments conducted to compare the performance of WFBB-RM 

with that of MRCP-RM are presented.   

D.I. CyberShake Workload 

The results of the factor-at-a-time experiments conducted using the CyberShake workload are presented in this section. More 

specifically, the results of the experiments using the PD-based WFBB-RM configurations and the ED-based WFBB-RM configurations 

are shown in Appendix D.I.I and Appendix D.I.II, respectively. 

D.I.I Results of Experiments Using the PD-based WFBB-RM Configurations 

Table D.1, Table D.2, Table D.3, and Table D.4 present the effect of job arrival rate, effect of earliest start time of jobs, effect 

of job deadlines, and effect of the number of resources, respectively, when using the PD-based WFBB-RM configurations. 
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Table D.1. CyberShake workload: effect of λCS on P, T, and O when using the PD-based WFBB-RM configurations. 

λCS 

(jobs/sec) 
P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

1/30 
0.002 0.002 0.574 0.547 248.27 248.27 580.23 580.30 0.010 0.010 0.016 0.018 

±0.001 ±0.001 ±0.034 ±0.034 ±0.48 ±0.48 ±1.14 ±1.09 ±0.000 ±0.000 ±0.000 ±0.000 

1/22 
0.195 0.195 1.075 1.211 293.99 293.99 566.12 568.68 0.016 0.016 0.019 0.022 

±0.042 ±0.042 ±0.061 ±0.064 ±2.25 ±2.25 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000 

1/18 
1.824 1.824 2.487 2.832 404.99 404.99 575.80 581.43 0.045 0.045 0.025 0.030 

±0.127 ±0.127 ±0.121 ±0.135 ±9.00 ±9.00 ±2.51 ±2.72 ±0.004 ±0.004 ±0.001 ±0.002 

 

Table D.2. CyberShake workload: effect of emmax on P, T, and O when using the PD-based WFBB-RM configurations. 

emmax P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

2 
4.173 4.173 7.520 7.899 266.23 266.23 321.72 323.13 0.029 0.029 0.029 0.031 

±0.112 ±0.112 ±0.140 ±0.148 ±1.14 ±1.14 ±0.60 ±0.65 ±0.001 ±0.001 ±0.000 ±0.001 

5 
0.207 0.207 1.075 1.211 294.52 294.52 566.12 568.68 0.016 0.016 0.019 0.022 

±0.060 ±0.060 ±0.061 ±0.064 ±3.03 ±3.03 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000 

10 
0.000 0.000 0.107 0.115 301.60 301.60 941.27 947.05 0.012 0.012 0.020 0.024 

±0.001 ±0.001 ±0.014 ±0.017 ±1.71 ±1.71 ±1.88 ±1.91 ±0.000 ±0.000 ±0.000 ±0.000 
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Table D.3. CyberShake workload: effect of smax on P, T, and O when using the PD-based WFBB-RM configurations. 

smax (sec) P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

10000 
0.514 0.514 1.948 2.250 357.15 357.15 547.67 552.78 0.022 0.022 0.024 0.027 

±0.062 ±0.062 ±0.089 ±0.100 ±2.72 ±2.72 ±0.96 ±0.96 ±0.001 ±0.001 ±0.000 ±0.000 

50000 
0.207 0.207 1.075 1.211 294.52 294.52 566.12 568.68 0.016 0.016 0.019 0.022 

±0.060 ±0.060 ±0.061 ±0.064 ±3.03 ±3.03 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000 

250000 
0.000 0.000 0.328 0.308 231.85 231.85 619.55 619.11 0.008 0.008 0.013 0.015 

±0.000 ±0.000 ±0.024 ±0.023 ±0.23 ±0.23 ±1.02 ±1.01 ±0.000 ±0.000 ±0.000 ±0.000 

 

Table D.4. CyberShake workload: effect of m on P, T, and O when using the PD-based WFBB-RM configurations. 

m P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

40 
4.367 4.367 5.122 5.633 706.42 706.42 614.08 625.32 0.088 0.088 0.029 0.034 

±0.162 ±0.162 ±0.155 ±0.156 ±23.82 ±23.82 ±7.46 ±8.24 ±0.008 ±0.008 ±0.002 ±0.003 

50 
0.207 0.207 1.075 1.211 294.52 294.52 566.12 568.68 0.016 0.016 0.019 0.022 

±0.060 ±0.060 ±0.061 ±0.064 ±3.03 ±3.03 ±0.95 ±0.95 ±0.001 ±0.001 ±0.000 ±0.000 

60 
0.002 0.002 0.649 0.615 249.29 249.29 587.68 587.71 0.012 0.012 0.020 0.022 

±0.002 ±0.002 ±0.031 ±0.031 ±0.66 ±0.66 ±1.05 ±1.02 ±0.000 ±0.000 ±0.000 ±0.000 
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D.I.II Results of Experiments Using the ED-based WFBB-RM Configurations 

Table D.5, Table D.6, Table D.7, and Table D.8 present the effect of job arrival rate, effect of earliest start time of jobs, effect 

of job deadlines, and effect of the number of resources, respectively, when using the ED-based WFBB-RM configurations. 

 

Table D.5. CyberShake workload: effect of λCS on P, T, and O when using the ED-based WFBB-RM configurations. 

λCS 

(jobs/sec) 
P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

1/30 
0.002 0.002 0.028 0.035 248.27 248.27 491.37 499.00 0.010 0.010 0.016 0.018 

±0.001 ±0.001 ±0.007 ±0.008 ±0.48 ±0.48 ±1.37 ±1.00 ±0.000 ±0.000 ±0.000 ±0.000 

1/22 
0.195 0.195 0.131 0.193 293.99 293.99 466.35 482.00 0.016 0.016 0.019 0.022 

±0.042 ±0.042 ±0.022 ±0.027 ±2.25 ±2.25 ±1.14 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000 

1/18 
1.824 1.824 0.957 1.176 404.99 404.99 474.52 496.00 0.045 0.045 0.025 0.030 

±0.127 ±0.127 ±0.110 ±0.104 ±9.00 ±9.00 ±2.75 ±3.00 ±0.004 ±0.004 ±0.001 ±0.002 
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Table D.6. CyberShake workload: effect of emmax on P, T, and O when using the ED-based WFBB-RM configurations. 

emmax P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

2 
4.173 4.173 4.986 5.428 266.23 266.23 298.85 302.00 0.029 0.029 0.029 0.031 

±0.112 ±0.112 ±0.155 ±0.155 ±1.14 ±1.14 ±0.73 ±1.00 ±0.001 ±0.001 ±0.000 ±0.001 

5 
0.207 0.207 0.141 0.193 294.52 294.52 467.50 482.00 0.016 0.016 0.020 0.022 

±0.060 ±0.060 ±0.035 ±0.027 ±3.03 ±3.03 ±1.70 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000 

10 
0.000 0.000 0.016 0.010 301.60 301.60 771.36 787.00 0.012 0.012 0.020 0.024 

±0.001 ±0.001 ±0.005 ±0.003 ±1.71 ±1.71 ±2.78 ±3.00 ±0.000 ±0.000 ±0.000 ±0.000 

 

Table D.7. CyberShake workload: effect of smax on P, T, and O when using the ED-based WFBB-RM configurations. 

smax (sec) P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

10000 
0.514 0.514 0.317 0.460 357.15 357.15 428.10 455.00 0.022 0.022 0.024 0.027 

±0.062 ±0.062 ±0.037 ±0.049 ±2.72 ±2.72 ±0.99 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000 

50000 
0.207 0.207 0.141 0.193 294.52 294.52 467.50 482.00 0.016 0.016 0.020 0.022 

±0.060 ±0.060 ±0.035 ±0.027 ±3.03 ±3.03 ±1.70 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000 

250000 
0.000 0.000 0.014 0.018 231.85 231.85 570.89 573.00 0.008 0.008 0.013 0.015 

±0.000 ±0.000 ±0.005 ±0.005 ±0.23 ±0.23 ±1.60 ±1.00 ±0.000 ±0.000 ±0.000 ±0.000 
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Table D.8. CyberShake workload: effect of m on P, T, and O when using the ED-based WFBB-RM configurations. 

m P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

40 
4.367 4.367 3.454 3.662 706.42 706.42 533.58 550.00 0.088 0.088 0.029 0.034 

±0.162 ±0.162 ±0.203 ±0.174 ±23.82 ±23.82 ±8.82 ±8.00 ±0.008 ±0.008 ±0.002 ±0.003 

50 
0.207 0.207 0.141 0.193 294.52 294.52 467.50 482.00 0.016 0.016 0.020 0.022 

±0.060 ±0.060 ±0.035 ±0.027 ±3.03 ±3.03 ±1.70 ±1.00 ±0.001 ±0.001 ±0.000 ±0.000 

60 
0.002 0.002 0.017 0.022 249.29 249.29 493.26 502.00 0.012 0.012 0.020 0.022 

±0.002 ±0.002 ±0.005 ±0.006 ±0.66 ±0.66 ±1.40 ±1.00 ±0.000 ±0.000 ±0.000 ±0.000 

 

D.II. LIGO Workload 

This section presents the results of the factor-at-a-time experiments conducted using the LIGO workload. More specifically, the 

results of the experiments using the PD-based WFBB-RM configurations and the ED-based WFBB-RM configurations are shown in 

Appendix D.II.I and Appendix D.II.II, respectively. 

D.II.I  Results of Experiments Using the PD-based WFBB-RM Configurations 

Table D.9, Table D.10, Table D.11, and Table D.12 present the effect of job arrival rate, effect of earliest start time of jobs, effect 

of job deadlines, and effect of the number of resources, respectively, when using the PD-based WFBB-RM configurations. 
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Table D.9. LIGO workload: effect of λLG on P, T, and O when using the PD-based WFBB-RM configurations. 

λLG 

(jobs/sec) 
P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

1/265 
0.018 0.018 0.418 0.362 1345.90 1345.89 3680.43 3697.90 0.008 0.007 0.014 0.014 

±0.005 ±0.005 ±0.059 ±0.024 ±0.64 ±0.64 ±16.53 ±8.33 ±0.000 ±0.000 ±0.001 ±0.000 

1/180 
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021 

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000 

1/150 
1.027 1.047 5.347 5.959 2005.44 2003.05 3588.80 3651.29 0.017 0.015 0.040 0.041 

±0.118 ±0.114 ±0.195 ±0.242 ±28.66 ±27.76 ±25.84 ±26.15 ±0.001 ±0.001 ±0.002 ±0.002 

 

Table D.10. LIGO workload: effect of emmax on P, T, and O when using the PD-based WFBB-RM configurations. 

emmax P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

2 
2.439 2.459 11.179 11.333 1457.51 1457.51 1987.27 1992.71 0.012 0.011 0.020 0.021 

±0.139 ±0.140 ±0.188 ±0.213 ±4.44 ±4.43 ±4.66 ±4.71 ±0.000 ±0.000 ±0.000 ±0.000 

5 
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021 

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000 

10 
0.041 0.042 0.197 0.180 1458.44 1463.48 5212.01 5243.74 0.009 0.008 0.023 0.027 

±0.011 ±0.008 ±0.021 ±0.018 ±6.18 ±4.62 ±19.41 ±16.92 ±0.000 ±0.000 ±0.000 ±0.000 



293 

 

 

 

Table D.11. LIGO workload: effect of smax on P, T, and O when using the PD-based WFBB-RM configurations. 

smax (sec) P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

10000 
0.099 0.101 1.395 1.305 1450.10 1450.17 3257.78 3278.96 0.009 0.008 0.020 0.020 

±0.012 ±0.012 ±0.077 ±0.077 ±3.34 ±3.35 ±8.26 ±8.89 ±0.000 ±0.000 ±0.000 ±0.000 

50000 
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021 

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000 

250000 
0.092 0.081 1.147 1.109 1440.81 1427.49 3448.23 3464.41 0.010 0.008 0.018 0.018 

±0.012 ±0.011 ±0.076 ±0.077 ±4.73 ±4.20 ±8.57 ±7.99 ±0.000 ±0.000 ±0.000 ±0.000 

 

Table D.12. LIGO workload: effect of m on P, T, and O when using the PD-based WFBB-RM configurations. 

m P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

40 
4.113 4.136 7.862 8.124 3210.01 3210.49 4680.11 4769.01 0.034 0.033 0.062 0.062 

±0.266 ±0.285 ±0.229 ±0.254 ±124.66 ±125.21 ±119.89 ±125.60 ±0.003 ±0.005 ±0.004 ±0.004 

50 
0.107 0.105 1.536 1.444 1466.41 1466.49 3309.03 3326.39 0.009 0.008 0.021 0.021 

±0.014 ±0.013 ±0.092 ±0.096 ±4.56 ±4.58 ±8.24 ±8.56 ±0.000 ±0.000 ±0.001 ±0.000 

60 
0.028 0.028 0.621 0.582 1360.27 1360.27 3509.39 3519.75 0.010 0.009 0.019 0.019 

±0.006 ±0.006 ±0.040 ±0.039 ±1.13 ±1.13 ±8.43 ±8.53 ±0.000 ±0.000 ±0.000 ±0.000 
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D.II.II Results of Experiments Using the ED-based WFBB-RM Configurations 

Table D.13, Table D.14, Table D.15, and Table D.16 present the effect of job arrival rate, effect of earliest start time of jobs, 

effect of job deadlines, and effect of the number of resources, respectively, when using the ED-based WFBB-RM configurations. 

 

Table D.13. LIGO workload: effect of λLG on P, T, and O when using the ED-based WFBB-RM configurations. 

λLG 

(jobs/sec) 
P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

1/265 
0.018 0.018 0.108 0.104 1345.90 1345.90 3673.14 3662.84 0.008 0.007 0.013 0.014 

±0.005 ±0.005 ±0.019 ±0.015 ±0.64 ±0.64 ±10.26 ±7.09 ±0.000 ±0.000 ±0.000 ±0.000 

1/180 
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021 

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000 

1/150 
1.057 0.989 5.423 5.146 2005.59 2004.65 3647.43 3612.06 0.016 0.015 0.040 0.041 

±0.122 ±0.113 ±0.341 ±0.235 ±28.09 ±28.02 ±50.91 ±28.17 ±0.001 ±0.001 ±0.002 ±0.002 
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Table D.14. LIGO workload: effect of emmax on P, T, and O when using the ED-based WFBB-RM configurations. 

emmax P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

2 
2.434 2.436 9.838 10.006 1457.46 1457.71 1966.23 1979.70 0.011 0.010 0.020 0.021 

±0.142 ±0.141 ±0.272 ±0.189 ±4.42 ±4.44 ±6.10 ±4.58 ±0.000 ±0.000 ±0.000 ±0.000 

5 
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021 

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000 

10 
0.043 0.044 0.063 0.082 1463.46 1463.44 5258.83 5242.99 0.008 0.008 0.023 0.024 

±0.008 ±0.008 ±0.013 ±0.011 ±4.61 ±4.62 ±21.26 ±14.51 ±0.000 ±0.000 ±0.000 ±0.000 

 

Table D.15. LIGO workload: effect of smax on P, T, and O when using the ED-based WFBB-RM configurations. 

smax (sec) P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

10000 
0.103 0.102 0.518 0.629 1450.17 1450.16 2987.98 3227.28 0.009 0.008 0.020 0.020 

±0.012 ±0.012 ±0.064 ±0.054 ±3.35 ±3.35 ±8.02 ±6.62 ±0.000 ±0.000 ±0.000 ±0.000 

50000 
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021 

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000 

250000 
0.080 0.082 0.699 0.602 1427.32 1427.44 3421.39 3420.67 0.009 0.008 0.018 0.170 

±0.010 ±0.011 ±0.065 ±0.062 ±4.14 ±4.16 ±7.05 ±7.27 ±0.000 ±0.000 ±0.000 ±0.000 
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Table D.16. LIGO workload: effect of m on P, T, and O when using the ED-based WFBB-RM configurations. 

m P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

40 
4.144 4.093 7.901 8.006 3217.69 3214.09 4901.42 4769.89 0.032 0.031 0.062 0.061 

±0.269 ±0.268 ±0.227 ±0.240 ±125.83 ±127.07 ±127.63 ±123.16 ±0.003 ±0.004 ±0.004 ±0.040 

50 
0.107 0.108 0.916 0.802 1466.33 1466.58 3277.91 3279.22 0.009 0.008 0.019 0.021 

±0.014 ±0.015 ±0.113 ±0.067 ±4.56 ±4.60 ±10.38 ±6.77 ±0.000 ±0.000 ±0.000 ±0.000 

60 
0.028 0.028 0.179 0.160 1360.27 1360.27 3461.67 3462.32 0.010 0.009 0.019 0.020 

±0.006 ±0.006 ±0.019 ±0.018 ±1.13 ±1.13 ±7.81 ±7.60 ±0.000 ±0.000 ±0.000 ±0.000 

 

D.III. Genome Workload 

The results of the factor-at-a-time experiments conducted using the Genome workload are presented in this section. More 

specifically, the results of the experiments using the PD-based WFBB-RM configurations and the ED-based WFBB-RM configurations 

are shown in Appendix D.III.I and Appendix D.III.II, respectively. 

D.III.I Results of Experiments Using the PD-based WFBB-RM Configurations 

Table D.17, Table D.18, Table D.19, and Table D.20 present the effect of job arrival rate, effect of earliest start time of jobs, 

effect of job deadlines, and effect of the number of resources, respectively, when using the PD-based WFBB-RM configurations. 
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Table D.17. Genome workload: effect of λGN on P, T, and O when using the PD-based WFBB-RM configurations. 

λGN 

(jobs/sec) 
P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

1/3205 
0.013 0.013 0.122 0.124 17544 17544 48911 48969 0.008 0.008 0.010 0.010 

±0.004 ±0.004 ±0.022 ±0.024 ±927 ±927 ±2234 ±2242 ±0.000 ±0.000 ±0.000 ±0.000 

1/2290 
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011 

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001 

1/1800 
1.432 1.408 2.600 2.918 52312 52198 80318 80645 0.048 0.048 0.044 0.045 

±0.451 ±0.452 ±0.567 ±0.605 ±12915 ±12897 ±14218 ±14207 ±0.015 ±0.015 ±0.019 ±0.020 

 

Table D.18. Genome workload: effect of emmax on P, T, and O when using the PD-based WFBB-RM configurations. 

emmax P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

2 
0.490 0.489 7.792 8.108 17933 17933 26325 26437 0.008 0.008 0.011 0.011 

±0.123 ±0.123 ±1.342 ±1.421 ±1001 ±1001 ±1446 ±1465 ±0.000 ±0.000 ±0.001 ±0.001 

5 
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011 

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001 

10 
0.028 0.028 0.081 0.097 17963 17963 74866 75009 0.007 0.007 0.013 0.013 

±0.006 ±0.006 ±0.013 ±0.015 ±1007 ±1007 ±2616 ±2646 ±0.000 ±0.000 ±0.001 ±0.001 
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Table D.19. Genome workload: effect of smax on P, T, and O when using the PD-based WFBB-RM configurations. 

smax (sec) P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

10000 
0.037 0.037 0.431 0.574 17693 17693 45729 46052 0.007 0.007 0.012 0.011 

±0.009 ±0.009 ±0.084 ±0.114 ±959 ±959 ±1942 ±1994 ±0.000 ±0.000 ±0.001 ±0.001 

50000 
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011 

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001 

250000 
0.080 0.080 0.592 0.687 18171 18172 45962 46194 0.007 0.007 0.012 0.011 

±0.015 ±0.015 ±0.125 ±0.153 ±1049 ±1049 ±2009 ±2046 ±0.000 ±0.000 ±0.001 ±0.001 

 

Table D.20. Genome workload: effect of m on P, T, and O when using the PD-based WFBB-RM configurations. 

m P (%) T (sec) O (sec) 

 PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

PD-SL-

TSP1 

PD-TL-

TSP1 

PD-SL-

TSP2 

PD-TL-

TSP2 

40 
1.286 1.322 2.461 2.741 52320 52266 79537 79726 0.032 0.032 0.031 0.032 

±0.403 ±0.417 ±0.510 ±0.544 ±13743 ±13692 ±14854 ±14708 ±0.011 ±0.011 ±0.014 ±0.015 

50 
0.066 0.066 0.487 0.614 17963 17963 45666 45934 0.008 0.008 0.011 0.011 

±0.013 ±0.013 ±0.095 ±0.119 ±1007 ±1007 ±1958 ±2000 ±0.000 ±0.000 ±0.001 ±0.001 

60 
0.016 0.016 0.166 0.186 17583 17583 47591 47682 0.009 0.009 0.012 0.012 

±0.004 ±0.004 ±0.029 ±0.034 ±935 ±935 ±2080 ±2095 ±0.000 ±0.000 ±0.000 ±0.000 
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D.III.II Results of Experiments Using the ED-based WFBB-RM Configurations 

Table D.21, Table D.22, Table D.23, and Table D.24 present the effect of job arrival rate, effect of earliest start time of jobs, 

effect of job deadlines, and effect of the number of resources, respectively, when using the ED-based WFBB-RM configurations. 

 

Table D.21. Genome workload: effect of λGN on P, T, and O when using the ED-based WFBB-RM configurations. 

λGN 

(jobs/sec) 
P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

1/3205 
0.013 0.013 0.052 0.059 17544 17544 48358 48462 0.008 0.008 0.010 0.009 

±0.004 ±0.004 ±0.010 ±0.012 ±927 ±927 ±2155 ±2170 ±0.000 ±0.000 ±0.000 ±0.000 

1/2290 
0.066 0.066 0.188 0.232 17963 17963 44082 44471 0.008 0.008 0.012 0.011 

±0.013 ±0.013 ±0.039 ±0.045 ±1007 ±1007 ±1744 ±1795 ±0.000 ±0.000 ±0.001 ±0.000 

1/1800 
1.395 1.477 2.195 2.309 52472 52134 78558 78476 0.041 0.041 0.045 0.043 

±0.442 ±0.470 ±0.577 ±0.586 ±13003 ±12926 ±14192 ±14011 ±0.016 ±0.021 ±0.019 ±0.019 
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Table D.22. Genome workload: effect of emmax on P, T, and O when using the ED-based WFBB-RM configurations. 

emmax P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

2 
0.489 0.492 6.405 6.645 17933 17933 26088 26257 0.008 0.008 0.011 0.011 

±0.123 ±0.125 ±1.193 ±1.285 ±1001 ±1001 ±1408 ±1438 ±0.000 ±0.000 ±0.001 ±0.001 

5 
0.066 0.066 0.188 0.188 17963 17963 44082 44082 0.008 0.008 0.012 0.012 

±0.013 ±0.013 ±0.039 ±0.039 ±1007 ±1007 ±1744 ±1744 ±0.000 ±0.000 ±0.001 ±0.001 

10 
0.028 0.028 0.050 0.064 17963 17963 72259 72922 0.008 0.008 0.014 0.014 

±0.006 ±0.006 ±0.008 ±0.010 ±1007 ±1007 ±2303 ±2383 ±0.000 ±0.000 ±0.001 ±0.001 

 

Table D.23. Genome workload: effect of smax on P, T, and O when using the ED-based WFBB-RM configurations. 

smax (sec) P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

10000 
0.037 0.037 0.170 0.216 17693 17693 44181 44524 0.008 0.008 0.011 0.011 

±0.009 ±0.009 ±0.037 ±0.044 ±959 ±959 ±1729 ±1777 ±0.000 ±0.000 ±0.001 ±0.001 

50000 
0.066 0.066 0.188 0.188 17963 17963 44082 44082 0.008 0.008 0.012 0.012 

±0.013 ±0.013 ±0.039 ±0.039 ±1007 ±1007 ±1744 ±1744 ±0.000 ±0.000 ±0.001 ±0.001 

250000 
0.080 0.080 0.290 0.302 18171 18172 44399 44749 0.008 0.008 0.012 0.012 

±0.015 ±0.015 ±0.082 ±0.075 ±1049 ±1049 ±1806 ±1850 ±0.000 ±0.000 ±0.001 ±0.001 
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Table D.24. Genome workload: effect of m on P, T, and O when using the ED-based WFBB-RM configurations. 

m P (%) T (sec) O (sec) 

 ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

ED-SL-

TSP1 

ED-TL-

TSP1 

ED-SL-

TSP2 

ED-TL-

TSP2 

40 
1.305 1.310 2.147 2.220 52106 52128 78411 78278 0.035 0.028 0.031 0.032 

±0.417 ±0.414 ±0.517 ±0.517 ±13597 ±13629 ±14887 ±14615 ±0.012 ±0.015 ±0.014 ±0.014 

50 
0.066 0.066 0.188 0.188 17963 17963 44082 44082 0.008 0.008 0.012 0.012 

±0.013 ±0.013 ±0.039 ±0.039 ±1007 ±1007 ±1744 ±1744 ±0.000 ±0.000 ±0.001 ±0.001 

60 
0.016 0.016 0.057 0.065 17583 17583 46641 46784 0.010 0.010 0.012 0.012 

±0.004 ±0.004 ±0.011 ±0.012 ±935 ±935 ±1937 ±1958 ±0.000 ±0.000 ±0.000 ±0.000 
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D.IV. Comparison of WFBB-RM and MRCP-RM 

This section presents the additional results of the factor-at-a-time experiments 

conducted to compare the performances of WFBB-RM and MRCP-RM when processing 

an open stream of MapReduce jobs with SLAs (refer to Section 7.6).  

D.IV.I Effect of Task Execution Times 

Figure D.1 and Figure D.2 present the performance of WFBB-RM and MRCP-RM 

in terms of P, T, and O when memax is varied. 

 

 

Figure D.1. WFBB-RM vs MRCP-RM: effect of memax on P. 
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Figure D.2. WFBB-RM vs MRCP-RM: effect of memax on T and O. 

 

D.IV.II Effect of Earliest Start Time of Jobs 

The performance of WFBB-RM and MRCP-RM in terms of P, T, and O when smax 

is varied is presented in Figure D.3 and Figure D.4. 

 

 

Figure D.3. WFBB-RM vs MRCP-RM: effect of smax on P. 
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Figure D.4. WFBB-RM vs MRCP-RM: effect of smax on T and O. 

 

D.IV.III Effect of Job Deadlines 

Figure D.5 and Figure D.6 present the performance of WFBB-RM and MRCP-RM 

in terms of P, T, and O when emmax is varied. 

 

 

Figure D.5. WFBB-RM vs MRCP-RM: effect of emmax on P. 
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Figure D.6. WFBB-RM vs MRCP-RM: effect of emmax on T and O. 
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