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Introduction

Main Idea: Investment decision can be treated as the exercising
of an option.

Firm has option to invest.
Need not exercise the option now — can wait for more
information.
If investment is irreversible (sunk cost), there is an opportunity
cost of investing now rather than waiting.
Opportunity cost (value of option) can be very large.
The greater the uncertainty, the greater the value of the firm’s
options to invest, and the greater the incentive to keep these
options open.

Note that value of a firm is value of its capital in place plus the
value of its growth options.
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Introduction (Continued)

Any decision involving sunk costs can be viewed this way:

Opening a copper mine.
Closing a copper mine.
Building an oil tanker.
Mothballing an oil tanker.
Reactivating a mothballed tanker.
Scrapping a tanker.
Installing scrubbers on coal-burning power plant.
Signing a long-term fuel contract.
Undertaking an R&D program.
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Introduction (Continued)

Why look at investment decisions this way? What’s wrong with
the standard NPV rule?

With uncertainty and irreversibility, NPV rule is often wrong —
very wrong. Option theory gives better answers.
Can value important “real” options, such as value of land,
offshore oil reserves, or patent that provides an option to invest.
Can determine value of flexibility. For example:

Flexibility from delaying electric power plant construction.
Flexibility from installing small turbine units instead of building
a large coal-fired plant.
Flexibility from buying tradeable emission allowances instead of
installing scrubbers.
Value of more flexible contract provisions.

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS — PART I August, 2008 4 / 44



Introduction (Continued)

Option theory emphasizes uncertainty and treats it correctly.
(NPV rule often doesn’t.) Helps to focus attention on nature of
uncertainty and its implications.

Managers ask: “What will happen (to oil prices, to electricity
demand, to interest rates,...)?” Usually, this is the wrong
question. The right question is: “What could happen (to oil
prices, to...), and what would it imply?”

Managers often underestimate or ignore the extent of
uncertainty and its implications.

Option theory forces managers to address uncertainty.
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Planned Sunk-Cost Investment

Traditional NPV and its limitations.

Logic of option-theoretic approach.

Some simple two-period examples.

Investing in a widget factory.
Investing in a power plant: scale vs. flexibility.

Projects as perpetual call options. Some basic results and their
interpretation.

Pros and cons of using option-theoretic approach.

Example: Investments in oil reserves

Undeveloped oil reserves as call options.
Modelling the price of oil.
Basic results.

Other examples and applications.
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Simple NPV Criterion for Project Evaluation

Net Present Value (NPV) = Present value of inflows – present
value of outflows.

Invest if NPV > 0.

For example:

NPV = −I0−
I1

1 + r1
− I2

(1 + r2)2
+

NCF3

(1 + r3)3
+ ...+

NCF10

(1 + r10)10

where:

It is expected investment expenditure in year t.
NCFt is expected net cash flow from project in year t.
rt is discount rate in year t.

For the time being, we will keep the discount rate constant for
simplicity.
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Limitations of Discounted Cash Flow Analysis

Assumes fixed scenario for outlays and operations. Ignores
“option value.”

Examples:

Option to delay project
Option to stop before completion
Option to abandon after completion
Option to temporarily stop producing

How important are these options? Often very important.
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Example: NPV With Simple Option

Project “X” — Not clear it can be a commercial success.

Two phases:

Phase 1 (Pilot production and test marketing) — Takes 1 year,
costs $125,000.
Phase 2 (Implementation) — Do this only if Phase 1 indicates
success. Build $1 million plant which generates after-tax cash
flows of $250,000 per year forever.
Risk: Only a 50 percent chance that Phase 1 will be successful.

Standard Approach: Risky project; use 25% discount rate,
applied to expected values:

NPV = −125− 500

1.25
+

∞

∑
t=2

125

(1.25)t
= −125

Project seems uneconomical. What’s wrong?
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NPV With Simple Option (Continued)

Components of project have very different risk characteristics,
and should not be combined. Phase 1 will resolve most of the
risk. If Phase 1 fails, there is no risk — project is certain to be
worthless.

Success → NPV = −1000 + ∑∞
t=1

250
(1.1)t = 1500

1
2 ↗

1
2 ↘

Failure → NPV = 0
Project has expected payoff of .5(1500) + .5(0) = $750, after 1
year and investment of $125. Using a 30 percent discount rate:

NPV = −125 +
750

1.3
= 452

Now project looks worthwhile. Point: Be careful when “options”
— contingent decisions — are involved.
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Another Example with Option

Consider building a widget factory that will produce one widget
per year forever. Price of a widget now is $100, but next year it
will go up or down by 50%, and then remain fixed:

t = 0 t = 1 t = 2 · · ·

P1 = $150 → P2 = $150 →
1
2 ↗

P0 = $100
1
2 ↘

P1 = $50 → P2 = $50 →

Cost of factory is $800, and it only takes a week to build. Is this
a good investment? Should we invest now, or wait one year and
see whether the price goes up or down?

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS — PART I August, 2008 11 / 44



Another Example with Option (Continued)

Suppose we invest now.

NPV = −800 +
∞

∑
t=0

100

(1.1)t
= −800 + 1, 100 = $300

So NPV rule says we should invest now.

But suppose we wait one year and then invest only if the price
goes up:

NPV = (.5)

[
−800

1.1
+

∞

∑
t=1

150

(1.1)t

]
=

425

1.1
= $386

Clearly waiting is better than investing now.

Value of being able to wait is $386− $300 = $86.
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Another Example (Continued)

Another way to value flexibility: How high an investment cost I
would we accept to have a flexible investment opportunity rather
than a “now or never” one?

Answer: Find I that makes the NPV of the project when we wait
equal to the NPV when I = $800 and we invest now, i.e., equal
to $300. Substituting I for the 800 and $300 for the $386 in
equation for NPV above:

NPV = (.5)

[
−I

1.1
+

∞

∑
t=1

150

(1.1)t

]
= $300

Solving for I yields I = $990.

So opportunity to build factory now and only now at cost of
$800 has same value as opportunity to build the factory now or
next year at cost of $990.
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Analogy to Financial Options

Let’s solve this simple problem again, but this time using option
pricing.
Next year if the price rises to $150, we exercise our option by
paying $800 and receive an asset which will be worth

V1 = $1, 650 =
∞

∑
t=0

150

(1.1)t

If the price falls to $50, this asset will be worth only $550, and
so we will not exercise the option.

Let F0 = value today of investment opportunity.

Let F1 = its value next year
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Analogy to Financial Options (continued)

If the price rises to $150, then

F1 =
∞

∑
t=0

150

(1.1)t
− 800 = $850

If the price falls to $50, the option to invest will go unexercised,
so that F1 = 0. Thus we know all possible values for F1. The
problem is to find F0, the value of the option today.

To solve this problem, create a portfolio that has two
components: the investment opportunity itself, and a certain
number of widgets. Pick this number of widgets so that the
portfolio is risk-free.
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Analogy to Financial Options (continued)

Consider a portfolio in which one holds the investment
opportunity, and sells short n widgets.

The value of this portfolio today is

φ0 = F0 − nP0 = F0 − 100n.

Value next year, φ1 = F1 − nP1, depends on P1.

If P1 = 150 so that F1 = 850, φ1 = 850− 150n.

If P1 = 50 so that F1 = 0, φ1 = −50n.

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS — PART I August, 2008 16 / 44



Analogy to Financial Options (continued)

Now, choose n so that the portfolio is risk-free; i.e., so that φ1 is
independent of what happens to price. To do this, just set:

850− 150n = −50n,

or n = 8.5. With n chosen this way, φ1 = −425, whether the
price goes up or down.

We now calculate the return from holding this portfolio. That
return is the capital gain, φ1 − φ0, minus any payments that
must be made to hold the short position.

Since the expected rate of capital gain on a widget is zero (the
expected price next year is $100, the same as this year’s price),
no rational investor would hold a long position unless he or she
could expect to earn at least 10 percent.
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Analogy to Financial Options (continued)

Hence selling widgets short will require a payment of .1P0 = $10
per widget per year. Our portfolio has a short position of 8.5
widgets, so it will have to pay out a total of $85. The return
from holding this portfolio over the year is thus:

φ1 − φ0 − 85 = φ1 − (F0 − nP0)− 85

= −425− F0 + 850− 85 = 340− F0.

This return is risk-free, so it must equal the risk-free rate, 10
percent, times the initial portfolio value, φ0 = F0 − nP0:

340− F0 = .1(F0 − 850).

Thus F0 = $386. This is the value of the opportunity to build
the factory now or next year.
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Changes in the Initial Price

Again fix cost of investment, I , at $800, but vary initial price, P0.
Whatever P0 is, P1 = 1.5P0 or P1 = 0.5P0, with equal probability.

t = 0 t = 1 t = 2 · · ·

P1 = 1.5P0 → P2 = 1.5P →
1
2 ↗

P0
1
2 ↘

P1 = 0.5P0 → P2 = 0.5P0 →

To value option, set up risk-free portfolio as before. Value of portfolio
today is

φ0 = F0 − nP0

Value of a widget factory next year is

V1 =
∞

∑
t=0

P1/(1.1)t = 11P1
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Changes in the Initial Price (continued)

We only invest if V1 exceeds $800, so value of option next year is

F1 = max[0, 11P1 − 800]

Then value of portfolio next year if price goes up is

φ1 = 16.5P0 − 800− 1.5nP0

Value if price goes down is

φ1 = −0.5nP0

Equating these two φ1’s gives value of n that makes portfolio
risk free:

n = 16.5− 800/P0

With n chosen this way, φ1 = −8.25P0 + 400 whether price
goes up or down.
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Changes in the Initial Price (continued)

Calculate return on portfolio, remembering that short position
requires payment of 0.1nP0 = 1.65P0 − 80. The return is
6.60P0 − F0 − 320. Since the return is risk free, it must equal
.1φ0 = .1F0 − 1.65P0 + 80. Solving for F0 gives value of option:

F0 = 7.5P0 − 363.5

We calculated value of option assuming we would only invest if
price goes up next year. But if P0 is low enough, we would never
invest, and if P0 is high enough, it may be better to invest now.

Below what price would we never invest? From equation for F0,
we see F0 = 0 when 7.5P0 = 363.5, or P0 = $48.50

For what values of P0 should we invest now rather than wait?
Invest now if current value of factory, V0, exceeds total cost,
$800 + F0. This is the case if P0 > $124.50.
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Changes in the Initial Price (continued)

The figure below shows the value of option to invest as a
function of initial price.
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Extension to Three Periods

We assumed there is no uncertainty over price after the first
year. Suppose price can again go up or down by 50% for one
more period.
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Extension to Three Periods (continued)

We can calculate option value in same way. Option value shown
in figure.
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Scale Versus Flexibility

A utility faces a constant demand growth of 100 Megawatts
(MW) per year. It must add to capacity, but how? It has two
alternatives:

Can build a 200 MW coal fired plant (enough for two years’
additional demand) at a capital cost of $180 million (Plant A),
or a 100 MW oil fired plant at cost of $100 million (Plant B).

At current coal and oil prices, cost of operating Plant A is $19
million per year for each 100 MW, and cost of Plant B is $20
million per year.

Discount rate is 10 percent/year, and each plant lasts forever.
So if fuel prices remain constant, Plant A is the preferred choice.
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Scale Versus Flexibility (continued)

Figure: Choosing Among Electric Power Plants
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Scale Versus Flexibility (continued)

Fuel prices are unlikely to remain constant. Suppose price of
coal will remain fixed, but price of oil will either rise or fall next
year, with equal probability, and then remain constant. If it rises,
operating cost for Plant B will rise to $30 million/year, but if it
falls, operating cost will fall to $10 million/year.

Choice is now more complicated. Plant A’s capital and
operating costs are lower, but Plant B affords more flexibility. If
the price of oil falls, utility will not be stuck with the extra 100
MW of coal burning capacity in the second year.
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Scale Versus Flexibility (continued)

Suppose we commit the full 200 MW to either coal
or oil:

With coal, present value of cost is:

PVA = 180 +
∞

∑
t=0

19

(1.1)t
+

∞

∑
t=1

19

(1.1)t
= $579

Note that 180 is capital cost for the full 200 MW, and 19 is the
annual operating cost for each 100 MW, the first of which begins
now and the second next year.

With oil, expected operating cost is $20 million/year, so present
value of cost is:

PVB = 100 +
100

1.1
+

∞

∑
t=0

20

(1.1)t
+

∞

∑
t=1

20

(1.1)t
= $611

Thus it seems that Plant A (coal) is best.
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Scale Versus Flexibility (continued)

This ignores flexibility of smaller oil fired plant. Suppose we install 100 MW
oil plant now, but then if oil price goes up, install 200 MW of coal fired
capacity, rather than another oil plant. This gives total of 300 MW, so to
make comparison, net out PV of cost of additional 100 MW, which is
utilized starting in two years:

PVF = 100 +
∞

∑
t=0

20

(1.1)t
+ 1

2

[
100

1.1
+

∞

∑
t=1

10

(1.1)t

]

+ 1
2

[
180

1.1
− 90

(1.1)2
+

∞

∑
t=1

19

(1.1)t

]
= $555 .

First term in brackets is PV of costs for second 100 MW oil plant (built if
oil price goes down). Second term in brackets is PV of costs of first 100
MW of a 200 MW coal plant.
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Scale Versus Flexibility (continued)

This present value is $555 million, so building the smaller
oil-fired plant and retaining flexibility is best.

To value this flexibility, ask how much lower capital cost of Plant
A would have to be to make it the preferred choice.

Let IA be capital cost of Plant A. So PV of costs of building and
running A is:

IA +
∞

∑
t=0

19

(1.1)t
+

∞

∑
t=1

19

(1.1)t
= IA + 399 .

The PV of cost of providing the 200 MW of power by installing
Plant B now and then next year installing either Plant A or B
(depending on price of oil) is:
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Scale Versus Flexibility (continued)

100 +
∞

∑
t=0

20

(1.1)t
+ 1

2

[
100

1.1
+

∞

∑
t=1

10

(1.1)t

]

+ 1
2

[
IA
1.1

− .5IA
(1.1)2

+
∞

∑
t=1

19

(1.1)t

]

= 320 + 1
2 (90.9 + 100) + 1

2 (.496IA + 190)

= 510.5 + .248IA .

To find capital cost that makes us indifferent between these choices,
equate these PVs and solve for IA:

IA + 399 = 510.5 + .248IA ,

or, I ∗A = $148.3 million.
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Scale Versus Flexibility (continued)

Conclusion: Scale economies must be large (so that the cost of
200 MW coal plant was less than 75 percent of the cost of two
100 MW oil plants) to make giving up the flexibility of the
smaller plant economical.

Here, only uncertainty was over fuel prices. Could also find value
of flexibility when there is uncertainty over:

Demand growth.

Future capital costs (e.g., because of uncertainty over future
environmental regulations).

Interest rates.
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Cost and Revenue Uncertainty

You must decide whether to make initial $15 million investment in R&D.
Later, if you continue, more money will be invested in a production facility.

Three possibilities for cost of production, each with probability 1
3 :

Low ($30 million)
Medium ($60 million)
High ($120 million)

Two possibilities for revenue (each with probability 1
2 ):

Low ($50 million)
High ($110 million)

Should you invest the $15 million?

NPV = −$15 + 1
2 (50) + 1

2 (110)− 1
3 (30)−

1
3 (60)− 1

3 (120)
= −$5 million

NPV is negative, so it seems you should not invest.
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Cost and Revenue Uncertainty (continued)

But suppose $15 million R&D reveals cost of production.
Assume (for now) expected revenue of $80 million. Hence
proceed with production only if cost is low or medium:

Low Cost: Π = 80− 30 = $50 million

Medium Cost: Π = 80− 60 = $20 million

NPV1 = −$15 + 1
3(0) + 1

3(50) + 1
3(20)

= $8.33 million

So investment in R&D is justified — it creates an option.
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Cost and Revenue Uncertainty (continued)

Suppose you can postpone production until you learn whether
revenue is low or high. Then better to wait: If revenue is low,
don’t produce unless cost is low. Now:

NPV2 = −$15 + 1
3(0) + 1

3

[
1
2(50) + 1

2(110)− 30
]

+(1
3)(1

2)(110− 60)

= $10 million
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Discount Rates for Risky R&D

Suppose you want to value the following sorts of projects:

Development and testing of a new drug.
Development of a data compression method which may or may
not work, and may or may not have a market.
Development of a low power microprocessor for laptops and
PDAs (e.g., Transmeta).
Early-stage oil and gas exploration in a new and uncharted area.

In each case, high risk of failure. Unlikely you will end up with a
commercially successful product.

If you do succeed, high payoff.

Risk of success or failure is diversifiable. No systematic risk until
sales of commercial product (should you succeed).

What discount rate should you use when deciding whether to
begin the project? What is the correct ”beta” for the project?
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Leverage Effect

Project is like a compound option: each stage, if successful,
gives you an option to do the next stage. Creates leverage.

Suppose risk-free rate is rf = 5% and market risk premium is
rm − rf = 5%. Suppose that if project is successful, resulting
net revenue has β = 1, so discount rate is
rNR = rf + 1(rm − rf ) = 10%.

Assume R&D risk is completely diversifiable, so discount rate for
cost of R&D is rf = 5%.

NPV of project is PVNR − PVC , so PVNR = PVC + NPV

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS — PART I August, 2008 37 / 44



Leverage Effect (continued)

Thus expected return on PVNR must equal weighted average
return on PVC and NPV :

rNRPVNR = rCPVC + r∗NPV

r∗ = [rNRPVNR − rCPVC ]/NPV

We can rewrite this as:

r∗ = rNR + (rNR − rC ) PVC
NPV

In most cases, rNR > rC , so that r∗ > rNR . If PVC >> NPV ,
then r∗ >> rNR .
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Leverage Effect (continued)

What is the equivalent β?

r∗ = rf + β(rm − rf )

β∗ = (r∗ − rf )/(rm − rf )

Suppose βNR = 1 so that rNR = rm. Then r∗ > rm, and
β∗ > 1.

This is the leverage effect. Not that it has nothing to do with
any adjustment for the riskiness of the R&D.
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A Simple Example

Three-stage project.

At t = 0 (Stage 1), spend $10 million on R&D. Probability of
success = 1

2 . If successful:
At t = 1, spend $30 million on next stage of R&D. Probability
of success = 1

2 . If successful:
At t = 2, you have a commercial product that generates net
revenues with βNR = 1 and PVNR =$160 million.
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A Simple Example (continued)

Stage 1

PVNR = (1
2)2 160

(1+rNR )2 = 40
(1.1)2 = $33.1M

PVc = 10 + (1
2) 30

1.05 = $24.3M

NPV = 33.1− 24.3 = $8.8M

What is cost of capital at Stage 1?
r∗1 = rNR + (rNR − rC ) PVC

NPV

= .10 + (.05)24.3
8.8 = 23.8%

What is equivalent β for Stage 1?

r∗ = rf + β(rm − rf ) = .05 + .05β

β∗1 = (.238− .05)/.05 = 3.76
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A Simple Example (continued)

Stage 2 (assuming Stage 1 is successful)

PVNR = (1
2)160

1.1 = $72.7M

PVC = $30M

NPV = 72.7− 30 = $42.7M

What is the cost of capital at Stage 2?

r∗2 = .10 + (.05) 30
42.7 = 13.5%

What is β for Stage 2?

β∗2 = (.135− .05)/.05 = 1.70
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A Simple Example (continued)

SUMMARY r∗ β∗

Stage 1 R&D: 23.8% 3.76

Stage 2 R&D: 13.5% 1.70

Production and Sales: 10% 1.00
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Questions

Here are some recent estimates of equity betas:

Merck: β = 0.4
Onxx Pharmaceuticals: β = 1.90
Amazon.com: β = 2.55
eBay: β = 2.62

Merck has been developing a large number of new molecules.
Why is its beta so low?

Onxx is developing a viral anti-cancer agent and doing little else.
Is this conisitent with a beta of 1.90?

Amazon and eBay are relatively mature companies. Why are
their betas around 2.5?

In our simple example, NPV at Stage 1 was positive but small.
Would this be representative of a typical startup project?
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