Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018

DESIGN AND ANALYSIS OF CONDENSER USING 3D MODELING SOFTWARE

A. Harsha Vardhan Reddy¹, G.Rajasekhar Reddy², G.Phanindra³, K. Vijay Kumar⁴

¹Asst. Professor, Mechanical, Gurunanak Institutions, Telangana, India
 ²Student, mechanical, Gurunanak Institutions, Telangana, India
 ³Student, mechanical, Gurunanak Institutions, Telangana, India
 ⁴Student, mechanical, Gurunanak Institutions, Telangana, India

Abstract

Refrigeration systems have condenser that removes unwanted heat from the refrigerant and transfers that heat outdoors. The primary component of a condenser is typically the condenser coil, through which the refrigerant flows. Since, the condenser coil contains refrigerant that absorbs heat from the surrounding air, the refrigerant temperature must be higher than the air. In this thesis heat transfer by convection in refrigeration by varying the condenser length are determined by CFD and thermal analysis. The assessment is out on an air-cooled tube condenser of a vapour compression cycle for refrigeration system. The materials considered for tubes are Copper and Aluminum alloys. The refrigerants varied will be R 12. CFD analysis is done to determine temperature distribution and heat transfer rates by varying the refrigerants. Heat transfer analysis is done on the condenser to evaluate the better material. 3D modeling is done in CREO and analysis is done in ANSYS.

Keywords: CREO, ANSYS, CFD, FEA

1. INTRODUCTION

In systems involving heat transfer, a **condenser** is a device or unit used to condense a substance from its gaseous to its liquid state, by cooling it. In so doing, the latent heat is given up by the substance, and will transfer to the condenser coolant. Condensers can be made according to numerous designs, and come in many sizes ranging from rather small (hand-held) to very large (industrial-scale units used in plant processes). For example, a refrigerator uses a condenser to get rid of heat extracted from the interior of the unit to the outside air. Condensers are used in air conditioning, industrial chemical processes such as distillation, steam power plants and other heat-exchange systems. Use of cooling water or surrounding air as the coolant is common in many condensers

Fig 1: Condenser of refrigerator

1.1 Types of Condensers

- Direct contact condenser
- Water-cooled
- Air-cooled
- Evaporative

1.2 Block Diagram of a Condencer

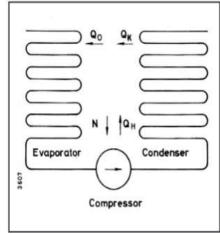
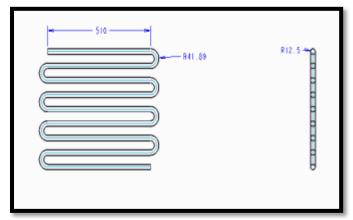


Fig 2: Block diagram

2. LITERATURE REVIEW


A comprehensive review of the literature on Vapor Absorption Systems, Compression-Absorption System and Vapor Compression System has been carried out on various aspects of energy analysis, the type of cycles analyzed, working pairs used and energy analysis. With regards to

vapor absorption cycles, it is found that mostly the studies are carried out on large capacity systems and the investigation had been carried out with in a limited range of system design parameters. The literature on small vapor absorption systems is scant and very few studies have been done on smaller systems. The above studies are simulation studies. Regarding compression-absorption systems studies have been carried out by many researchers mostly analytically and experimentally. The investigations have been done on wet compression cycles which eliminated the need of solution pump. The literature provides details with regard to the applications.

3. INTRODUCTION TO CREO

PTC CREO, formerly known as Pro/ENGINEER, is 3D modeling software used in mechanical engineering, design, manufacturing, and in CAD drafting service firms. It was one of the first 3D CAD modeling applications that used a rule-based parametric system. Using parameters, dimensions and features to capture the behavior of the product, it can optimize the development product as well as the design itself.

3D Model

4. INTRODUCTION TO ANSYS

Structural Analysis

ANSYS Autodyn is computer simulation tool for simulating the response of materials to short duration severe loadings from impact, high pressure or explosions.

ANSYS Mechanical

ANSYS Mechanical is a finite element analysis tool for structural analysis, including linear, nonlinear and dynamic studies. This computer simulation product provides finite elements to model behavior, and supports material models and equation solvers for a wide range of mechanical design problems. ANSYS Mechanical also includes thermal analysis and coupled-physics capabilities involving acoustics, piezoelectric, thermal–structural and thermoelectric analysis.

Fluid Dynamics

ANSYS Fluent, CFD, CFX, FENSAP-ICE and related software are Computational Fluid Dynamics software tools used by engineers for design and analysis.

4.1 Thermal Analysis of Condenser

4.1.1 Condenser Length-345mm

Material-Aluminum Alloy

Imported Model

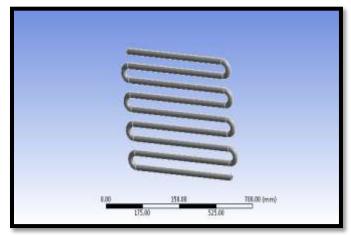
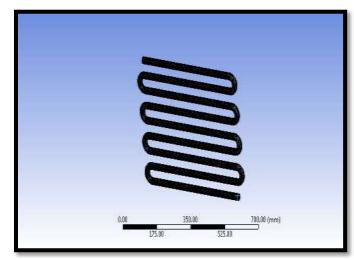
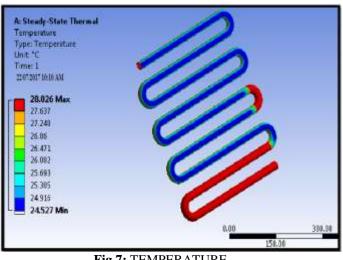


Fig 5: Imported Model

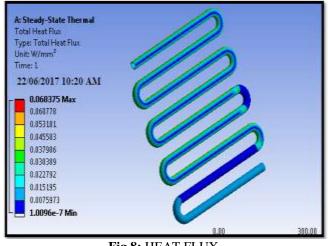
Meshed Model



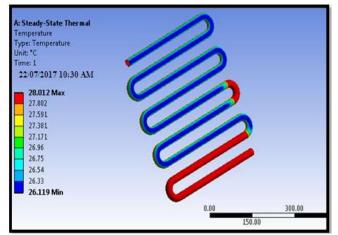

Fig 6: Meshed Model

Finite element analysis or FEA representing a real project as a "mesh" a series of small, regularly shaped tetrahedron connected elements, as shown in the above fig.

BOUNDARY CONDITIONS T =278K


Temperature

Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018



Material -Copper

Temperature

Heat Flux

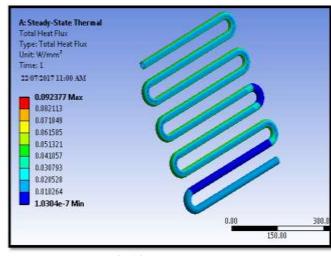


Fig 10: HEAT FLUX

4.1.2 Condenser Length-405mm

Material -Aluminum

Temperature

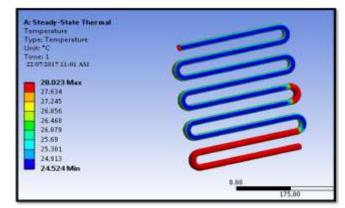


Fig 11: TEMPERATURE

Heat Flux

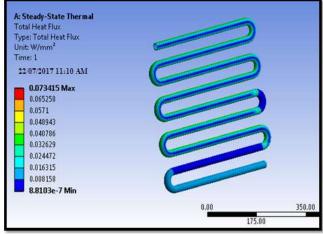


Fig 12: HEAT FLUX

Material -Copper

Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018

Temperature

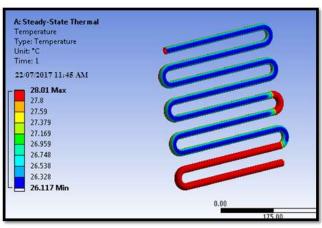


Fig 13: TEMPERATURE

Heat Flux

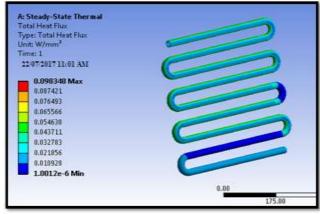


Fig 14: HEAT FLUX

4.1.3 Condenser Length-465mm

Material -Aluminum

Temperature

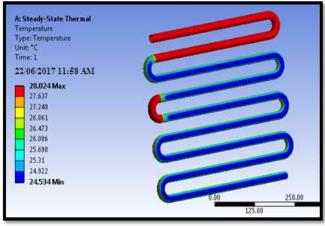


Fig 15: TEMPERATURE

Heat Flux

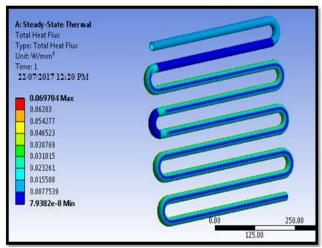


Fig 16: HEAT FLUX

Material -Copper

Temperature

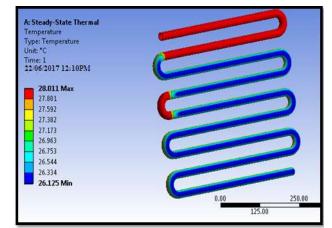


Fig 17: TEMPERATURE

Heat Flux

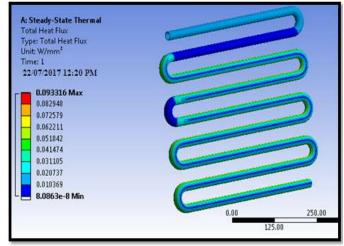


Fig 18: Heat Flux

4.2 CFD Analysis of Condenser

Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018

4.2.1 At Condenser Length-345mm Imported Model

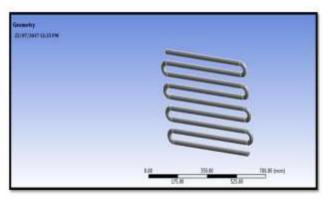


Fig 19: IMPORTED MODEL

MESHED MODEL

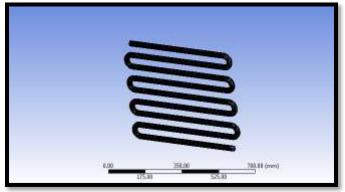


Fig 20: MESHED MODEL

Specifying the Boundaries for Inlet & Outlet

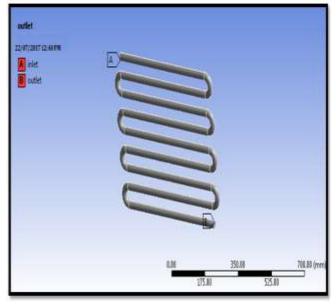


Fig 21: SPECIFYING THE BOUNDARIES FOR INLET & OUTLET
Temperature=278K

Pressure

Temperature

104	ANSYS
04	
19.0	
194	
34	
184	
und .	
the C	
1946	
1945	
164	
10-0	
12-0	
UHE	
30.0	
204	
254	
194	
Ind	1
10-6	~
ded.	
	22.0720071.20 PM
tours of Bladic Pressure (paocal)	##*V/##27 5.#0 E3L

Fig 22: PRESSURE

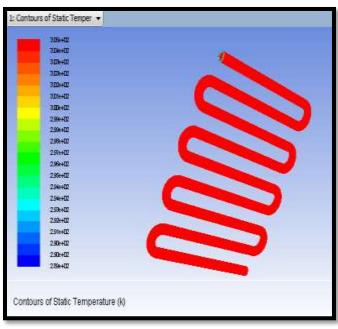


Fig 23: TEMPERATURE

Volume: 07 Issue: 04 | Apr-2018, Available @ www.ijret.org

Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018

Heat Transfer Coefficient

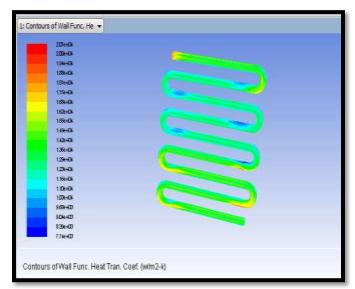


Fig 24: HEAT TRANSFER COEFFICIENT

Mass Flow Rate

(kg/s)	Mass Flow Rate
1.99999995 2209.5713 -1.9981513	inlet interiormsbr outlet
-1.9981913	wall- <u></u> msbr
0.0018482208	Net

Heat Transfer Rate

Total Heat Transfer Rate	(W)
inlet outlet wallmsbr	-36353.133 -11344.112 46663.844
Net	-1033.4014

4.2.2 At Condenser Length-405mm

Pressure

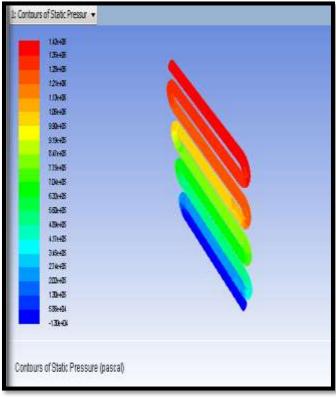


Fig 25: PRESSURE

Temperature

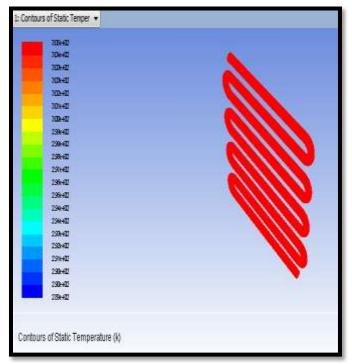


Fig 26: TEMPERATURE

Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018

Heat Transfer Coefficient

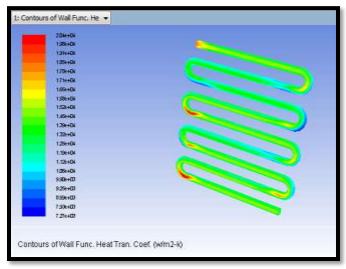


Fig 27: HEAT TRANSFER COEFFICIENT

Mass Flow Rate

(kg/s)	Mass Flow Rate
1.9999999 2544.5417 -2.0020876 0	inlet interiormsbr outlet wallmsbr
-0.0020877123	Net

Heat Transfer Rate

Total Heat Transfer Rate	(w)
inlet outlet wallmsbr	-36353.172 -11745.404 47533.996
Net	-564.58008

4.2.3 At Condenser Length-455mm

Pressure

Fig 28: PRESSURE

Temperature

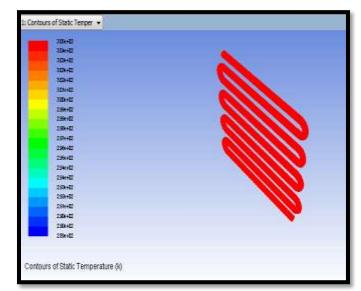
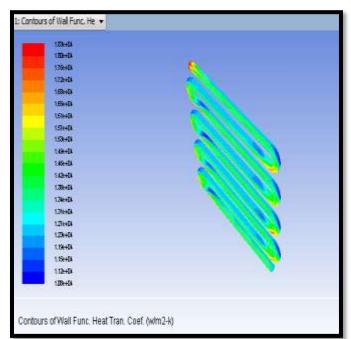



Fig 29: Temperature

Heat Transfer Coefficient

Fig 30: HEAT TRANSFER COEFFICIENT

Mass Flow Rate

; Flow Rate (k	g/s)
inlet 1.999 prmsbr 2815 outlet -2.012 .1msbr	.469
Net -0.01206	2311

Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018

Heat Transfer Rate

Total Heat Transfer Rate	(w)
inlet outlet wallmsbr	-36353.23 -12102.532 47752.813
Net	-7 02 . 95 02

4.2.4 At Condenser Length-505mm

Pressure

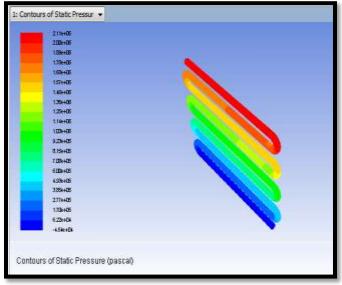
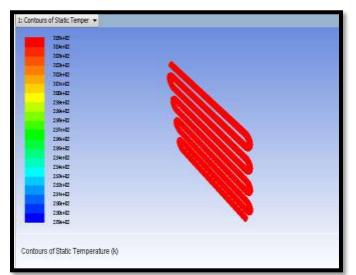



Fig 31: PRESSURE

Temperature

Fig 32: TEMPERATURE

Heat Transfer Coefficient

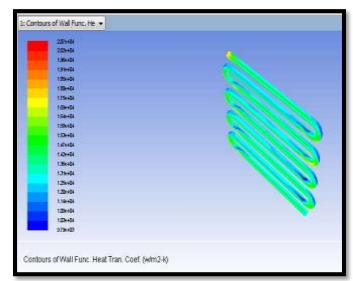


Fig 33: HEAT TRANSFER COEFFICIENT

Mass Flow Rate

(kg/s)	Mass Flow Rate
2 3092.1719 -1.9881539 0	inlet interiormsbr outlet wallmsbr
0.011846066	Net

Heat Transfer Rate

Total Heat Transfer Rate	(w)
inlet outlet wallmsbr	-36353.117 -12102.339 48077.563
Net	-377.89355

RESULT TABLES

Table 1: Thermal Analysis				
Material	Condenser	Temperature	Heat	
	length(mm)	(k)	flux	
			(w/mm^2)	
Aluminum	345	28.026	0.068375	
alloy	405	28.023	0.073415	
	465	28.024	0.069784	
	505	28.025	0.069883	
Copper	345	28.012	0.092377	
	405	28.01	0.098348	
	465	28.011	0.093316	
	505	28.015	0.093398	

Received: 02-02-2018, Accepted: 16-03-2018, Published: 06-04-2018

TABLE 2: CFD Analysis					
Conde nser length (mm)	Pressu re(Pa)	Tempe rature (K)	Heat transfer coeffiecient (W/ ^{mm2k})	Mass flow rate(k g/sec)	Hea t tran sfer rate (w)
345	1.34e+	3.05e+	2.01e+04	0.0018	103
	06	02		48208	3.40
405	1.43e+	3.05e+	2.04e+04	0.0020	564
	06	02		87713	
455	2.15e+	3.05e+	1.83e+04	0.0126	702.
	06	02		2311	95

5. CONCLUSION

In this thesis heat transfer by convection in refrigeration by varying the condenser length are determined by CFD and thermal analysis. The assessment is out on an air-cooled tube condenser of a vapor compression cycle for refrigeration system.

The materials considered for tubes are Copper and Aluminum alloys. The refrigerants varied will be R 12. CFD analysis is done to determine temperature distribution and heat transfer rates.

In cfd analysis, the heat transfer confident more at condenser length 505mm.

In thermal analysis , the heat flux is more for copper material at condenser length 405mm.

So we can conclude that the better material is copper.

REFERENCES

- [1] Air-Conditioning Facts from the 1997 Residential Energy Consumption Survey. http://www.eia.doe.gov/emeu/consumptionbriefs/recs /aircond_use.htm
- [2] Hayter, Richard B., Ph.D., P.E. The Future of HVAC: The Perspective of One American. Presented at the 40th anniversary of the Netherlands Technical Association for Building Services (TVVL), June11, 1999, Amsterdam, The Netherlands. http://www.engg.ksu.edu/people/rhayter/tvvlpapr.htm
- [3] Home Energy Saver Web page. http://homenergysaver.lbl.gov
- [4] Propst, James L. "Air Conditioner Condenser Optimization". Georgia Institute of Technology Thesis. August, 1975.vBeans, E. William. "Computer program for refrigeration cycle analysis".
- [5] Thermodynamics and the Design, Analysis, and Improvement of Energy Systems. ASME Adv Energy system Div Publ, AES v27, 1992, ASME, New York, NY, p 153-159.