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This paper deals with fault estimation problem for a class of nonlinear system with parameter uncertainties subjecting to Bernoulli-
distributed white sequences with known conditional probabilities. In order to reflect the reality more closely, parameter
uncertainties are considered in both the state parameter matrix and the output parameter matrix. Compared with existing
observer-based fault estimation approaches, the proposed iterative learning observer considers the state error information and
fault estimating information from the previous iteration to improve the fault estimation performance in the current iteration.
Simultaneously, the stability and convergence of the designed observer are achieved by employing the Lyapunov stability theory.
On the other hand, a novel optimal function using expectation is presented to ensure the uniform convergence of the fault
estimation scheme, thus reducing the impact of randomly occurring parameter uncertainties. Finally, linear matrix inequality
(LMI) is employed to obtain the solutions of sufficient condition for further improvement of iterative learning law performance.
The results are suitable for the systems with time-varying uncertainties as well as constant uncertainties. Additionally, a
numerical example is given to demonstrate the effectiveness of the proposed design scheme.

1. Introduction

With the ever-increasing demand on reliability, safety, and
maintainability, researches on fault diagnosis [1–4] and
fault-tolerant control [5–7] have received more attention in
both academic and industrial areas. Fault estimation [8, 9]
provides the precise magnitude and shape of the faults to
guarantee a high system performance, thereby becoming
the most critical factor and one of the basic researches in this
field. In fault diagnosis problems, fault estimation often helps
to generate a residual by comparing measured output with
estimated output. By analyzing this residual signal, a decision
is made to give a conclusion on whether a fault condition
occurred and an attempt is made to determine its location.
On the other hand, the fault estimate is usually added into
the controller to compensate for the actual fault in fault-
tolerant control strategies. Hence, fault estimation is further

needed for the purpose of active fault-tolerant control to
maintain the normal performance of systems.

Up to date, considerable research results on this topic
have been reported in the literature; see [10–12] and refer-
ences therein [13, 14, 15, 16]. However, most of the indus-
trial systems are repeated systems [17, 18], and the
learning experience and performance from the previous iter-
ation are ignored in conventional fault estimation methods
above. With the development of information processing
technology, tremendous research efforts have been devoted
to design and analysis of a fault estimation scheme by using
computer-based learning techniques including neural
network-based methods [19–21] and iterative learning
scheme-based approaches [22, 23]. In general, neural
network-based methods have been capable for complex sys-
tems that the model process is unavailable. Nevertheless,
for fault estimation problems based on an accurate system
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model, an iterative learning scheme is a more sustainable tra-
jectory. A fault tracking approximator (FTA) and an iterative
learning algorithm are utilized to obtain estimates of the
fault functions for time-delay systems in [23]. In [24], an
iterative learning observer is constructed by using previous
output estimation errors and inputs for the purpose of
periodically occurring fault estimations in nonlinear time-
varying systems. Motivated by predictive and iterative
learning control theories, the fault tracking approximator
uses iterative algorithms to detect and identify nonlinear
system faults, even in the presence of model uncertainty
[25]. The latest work of the iterative learning scheme-
based fault estimation observer is designed for multiphase
batch processes with delays, disturbances, and actuator
faults [26, 27]; a class of differential time-delay batch pro-
cesses with actuator faults [28, 29]; and nonlinear systems
with randomly changed trial length, period intermittent
fault, and time delay [30–32]. Unfortunately, to the best
of the authors’ knowledge, the iterative learning scheme-
based fault estimation problem has not been fully investi-
gated, not to mention the case where the systems also
involve parameter uncertainties.

In reality, parameter uncertainties usually enter systems
in an unknown way and such variations are unknown but
with known bounds due to simplified modeling, ever-
changing environments, and accidental operation. It may
reduce systematic performance badly and even cause disas-
ter, which gives the economy and social aspects a huge nega-
tive impact. Therefore, many researchers have devoted efforts
to fault estimation problems for systems with parameter
uncertainties [33–35]. In [33], an auxiliary system is con-
structed with a certain indefinite quadratic form to deal with
the uncertainties in linear discrete time-varying systems with
known inputs. In [34], a fault detection and identification
procedure is introduced to estimate the fault magnitude,
and a fault-tolerant control scheme is presented for linear
parameter varying systems. The paper [35] considers robust
filtering for discrete uncertain systems where parameter
uncertainties are caused by missing measurements, and the
measurement missing rate of each sensor is allowed to vary
in a range. It should be pointed out that, in the literature
mentioned earlier, most results are capable of handling cer-
tain uncertainties and may introduce significant conserva-
tiveness. Simultaneously, recent works have demonstrated
that parameter uncertainties will be randomly occurring in
actual systems [36, 37]. It is, therefore, the main purpose of
this paper to consider the randomly occurring uncertainties
in fault estimation problems for a class of nonlinear systems.

Motivated by these considerations, this paper presents
an iterative learning scheme-based fault estimation design
for nonlinear systems with randomly occurring parameter
uncertainties. Two sets of Bernoulli-distributed white
sequences with known conditional probabilities are intro-
duced to describe the parameter uncertainties within a
unified framework. Then, an iterative learning observer is
designed to estimate the exact information of fault. By
employing the Lyapunov stability theory, optimal function
is further proposed to ensure the uniform convergence of
the error system. Compared with the existing results, the

main contributions of this technical note are highlighted
as follows:

(1) The existing observer-based fault estimation
approaches including sliding mode observer, adap-
tive observer, and other observers therein are
designed by using only the state and output errors
in the current iteration which are considered in the
fault estimating law. The proposed method using
the iterative learning scheme considers state error
information and fault estimating information from
the previous iteration to improve the fault estimation
performance in the current iteration.

(2) This method represents the first of few attempts to
deal with iterative learning observer-based fault esti-
mation problems for nonlinear uncertain systems.
Unlike the conventional iterative learning scheme-
based fault estimation methods, this technical note
designed a novel optimal function using expectation
to deal with the randomly occurring parameter
uncertainties.

(3) The proposed method inherits the advantages of a
conventional iterative learning scheme, and LMI is
used to improve the performance of fault estimation
due to the accurate system model. As a result, it can
reduce the computing complexity and enormously
increase the efficiency and veracity of this method.

(4) The rest of this paper is organized as follows. In
Section 2, the problem formulation and nonlinear
system with randomly occurring parameter uncer-
tainties are introduced. In Section 3, fault estima-
tion using an iterative learning scheme is proposed
to achieve desired fault estimation results. Then,
convergence analysis based on LMI is used to solve
the problem in Section 4. Simulation results are pre-
sented to illustrate the effectiveness of the proposed
method in Section 5, followed by some concluding
remarks in Section 6.

2. Problem Statement and Preliminaries

Consider the following nonlinear uncertain system

x t = Ax t + Bu t + Bgg x t , t + Bf f t ,

y t = Cx t ,
1

where t ∈ 0, T is the continuous-time index, x t ∈ℜn is the
state vector, y t ∈ℜp is the output vector, u t ∈ℜm repre-
sents the input vector, and f t ∈ℜq stands for the fault sig-
nal. A = A + α t ΔA t and C = C + β t ΔC t denote the
state parameter matrix and output parameter matrix, respec-
tively. The function g x t , t ∈ℜr is a known nonlinear
function. A ∈ℜn×n, B ∈ℜn×r , Bg ∈ℜn×r , Bf ∈ℜn×q, and C ∈
ℜp×n are all constant matrices with appropriate dimensions
and n > p ≥ q.
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In this technical note, the random variables α t and β t
are defined to describe the parameter variations of a random
nature. For system (1), the following definitions and assump-
tions are made available.

Definition 1. The form Ξ • denotes the expectation of the
random variable. Meanwhile, the occurrence probability of
the event is defined as Prob • .

Assumption 1. The pairs A, B and A, C are stabilizable
and detectable, respectively.

Assumption 2. The matrices ΔA t and ΔC t represent the
norm bounded parameter uncertainties of the following
structure.

ΔA t =M1F1 t N1,
ΔC t =M2F2 t N2,

2

where Mi and Ni are known matrices with adequate
dimensions; the unknown matrices Fi t satisfy the condi-
tions Fi t FT

i t ≤ I, i = 1, 2. The stochastic variables α t
and β t are Bernoulli distributed white sequences taking
on values of either zero or one with

Prob α t = 1 = θ1,
Prob α t = 0 = 1 − θ1,
Prob β t = 1 = θ2,
Prob β t = 0 = 1 − θ2,

3

in which θ1 ∈ 0, 1 and θ2 ∈ 0, 1 are known constants. It is
assumed that α t and β t are independent of each other.

Assumption 3. The desired initial state value at each iteration
is xk 0 = x 0 with the definition that k is the iteration index.

Assumption 4. For the nonlinear term g x t , t , there exists a
known positive constant parameter δ1 which leads to satisfy
the Lipschitz conditions. For example,

g x1 t , t − g x2 t , t ≤ δ1 x1 t − x2 t , ∀x1 t , x2 t ∈ℜn,
4

where δ1 is called Lipschitz constant and g 0, t = 0 if the set
S =ℜn is globally Lipschitz.

In order to achieve the derivation of the iterative learning
observer, two lemmas are introduced in this paper at first.

Lemma 1. Consider that G and H are constant matrices with
appropriate dimensions, there exists matrix of adequacy
dimensions E t that satisfied the condition ET t E t ≤ I; for
any positive scalar ε, the following inequality is verified [38].

GE t H +HTET t GT ≤ ε−1FFT + εHTH 5

Lemma 2 (Schur complement theorem) [39, 40]. Consider
that there are two symmetric matrices R and Q, the inequality

Q S

ST R
> 0 6

is equal to equation (7).

R ≥ 0,
Q − SR+ST ≥ 0,
S I − RR+ ≥ 0

7

In reality, noise, time delay, model uncertainties, unknown
input, and sensor faults may come into the system inadver-
tently due to the complex environment and cumbersome pro-
cess. They will affect the operation performance in different
ways. For example, measurable precision of the sensor drops
greatly when there is noise. Model uncertainties will influence
the control precision and tracking accuracy. However, they
rarely appear together. Otherwise, it makes the system break-
down and even disaster. As a result, for expression to be concise,
this paper is addressed to analyze the impact of randomly
occurring parameter uncertainties.

3. Iterative Learning Observer Design

In this section, the state observer is designed to estimate the
system states and outputs, and an iterative learning law is
designed for fault estimation.

Based on system (1), the observer-based fault estimator
considered in this paper is proposed as

x̂k t = Ax̂k t + Bu t + Bgg x̂k t , t + Bf f̂ k t + L y t − ŷk t ,
ŷk t = Cx̂k t

8

The order of the observer equals the number of states.
In (7), x̂k t and ŷk t are the state estimate and output
estimate of state vector x t and output vector y t at k
iterations, respectively. The parameter matrix L represents
the observer gain. f̂ k t denotes the estimate of fault signal
f t at k iterations.

On the other hand, defining that Δgk t = g xk t , t −
g x̂k t , t , the state estimating error ek t is shown as the
following form.

ek t = x t − x̂k t = A − LC ek t + Bf rk t

+ BgΔgk t + α t ΔA − Lβ t ΔC x t
9

Then, the iterative learning scheme based on the fault
estimating law is proposed as

f̂ k+1 t = f̂ k t + K1ek t + K2ek t , 10
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in which K1 and K2 stand for iterative learning gain matrices.
In order to simplify the following derivation, one can give a
definition of the iterative learning error of fault estimation.

rk+1 t = f t − f̂ k+1 t = rk t − K1ek t − K2ek t

=Q1ek t +Q2rk t +Q3x t +Q4Δgk t
11

In (11), the matrices are defined as Q1 = − K1 + K2
A − LC , Q2 = I − K2Bf , Q3 = −K2Bg, and Q4 = −K2 α

t ΔA − Lβ t ΔC .
Assume that Θ = A − LC, ΔΘ = α t ΔA − Lβ t ΔC, and

Δy t = y t − ŷk t , then the dynamic error system will be
obtained as

ek t =Θek t + Bf rk t + ΔΘx t ,
Δy t = Cek t

12

4. Convergence Analysis

The following theorem gives the convergence of the proposed
iterative learning-based observer for the case that the initial
state is accurately reset. The Lyapunov function candidate
is constructed to guarantee the stability of error system
(12), and a novel optimal function is proposed to ensure
the perfect fault tracking trajectory.

Theorem 1. Consider that a nonlinear system with randomly
occurring uncertainties (1) and the iterative learning fault
estimation law (10) are applied as well as Assumptions 1, 2,
3, and 4 hold. According to Lemmas 1 and 2, for scalar γ
∈ 0, 1 , the error dynamic system (12) is asymptotically stable
while satisfying the fault estimating error convergence, if there
exists positive-definite matrices P = PT , Q =QT , scalar εi > 0,
εiεi

−1 = I, and i = 1,2,3, and the symmetric negative definite
matrix Π satisfies

in which Π12 = −K1 − K2A, Π13 = I − K2Bf , Π22 = ATP −

CTL̂
T + PA − L̂C, Π44 = ATQ +QA +G1 +G2 + ε1N

T
1N1 + ε2

NT
2N2, and L̂ = PL. Then, the observer gain matrix can

be obtained as L = P−1L̂. Theorem 1 presents the sufficient
condition for the existence and design of the iterative
learning fault estimator for system (1). It should point
out that (13) does not have a feasible solution for the exis-
tence of nonlinear terms. As a result, the following
remarks are introduced to improve the application of the
proposed method.

Remark 1. To linearize nonlinear term −γ2I in (13), the
following equation is defined:

φ = −γ2I 14

Remark 2. In (13), there exist nonlinear terms ε−13 P and ε3P;
we use the following constraint and approximation

P > ς1I,

ε3 +
1
ε3

≥ 2
15

Then, a new LMI is constructed of α and β = αε3. From
(15), we have 1/ε3P ≥ 2P − ε3P = 2ς1 − ς2 I and ε3P ≥ ε3ς1I
= ς2I. Hence, the terms 2ς1 − ς2 I and ς2I are used to
replace the blocks 1/ε3P and ε3P in (13), respectively.

Corollary 1. According to Remarks 1 and 2, Theorem 1 can
be rewritten as the following optimal functions subject to the
LMI in (16) if there exist symmetric positive definite matrixes
P = PT > 0, Q =QT > 0, scalars ς1 > 0 and ς2 > 0, φ ∈ 0, 1 ,
and εi > 0, i = 1, 2.

Π =

−I Π12 Π13 −K2Bg 0 −ρ1K2M1 0 K2 0
∗ Π22 PBf PBg 0 ρ1PM1 −ρ2L̂M2 0 CTL̂

T

∗ ∗ −γ2I 0 0 0 0 0 0
∗ ∗ ∗ −λ1I 0 0 0 0 0
∗ ∗ ∗ ∗ Π44 ρ1QM1 0 0 0
∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 ρ2M

T
2 L̂

T

∗ ∗ ∗ ∗ ∗ ∗ ∗ ε3
−1P 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ε3P

< 0, 13
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where Π77 = − 2ς1 − ς2 I. Feasible solutions will be obtained
through the LMI toolbox in Matlab. Then, the fault estimation
algorithm (10) using the iterative learning scheme can realize
ek t and rk t uniformly bounded. Namely, the monotonic
convergence of tracking error (11) and the H∞ performance
of the error-argued system (12) are achieved. As in the discus-
sion above, Corollary 1 can be employed for fault estimator
design of nonlinear uncertain system (1) directly.

Remark 3. In Corollary 1, one can find out that the theoretical
results are related only with the random distribution while
being free of the types of uncertainties. Hence, the proposed
schemeachieves ahigh generality and it could be integrated into
both constant uncertain case and time-varying uncertain case.

Proof 1. The first objective of this technical note is to achieve
the stability and convergence of the state observer, to realize
the desired state estimating results. Consider the Lyapunov
function as

V t = eTk t Pek t + xT t Qx t > 0 17

From (10) and (12), one can calculating the derivative of
V t with respect to time as

V t = eTk t Pek t + eTk t Pek t + xT t Qx t + xT t Qx t

= eTk t A − LC TPek t + xT t α t ΔA − Lβ t ΔC TPek t

+ eTk t P A − LC ek t + eTk t P α t ΔA − Lβ t ΔC x t

+ rTk t BT
f Pek t + eTk t PBf rk t + ΔgTk t BT

gPek t

+ eTk t PBgΔgk t + xT t A + α t ΔA TQx t

+ uT t BTQx t + f T t BT
f Qx t

+ xT t Q A + α t ΔA x t + xT t QBu t

+ xT t QBf f t

18

For two real symmetric positive definite symmetric
matrixes G1 and G2, the following inequalities are estab-
lished as

uT t BTQx t + xT t QBu t ≤ xT t G1x t

+ uT t BTQG−1
1 QBu t ≤ xT t G1x t

+ u1λ1 max BTQG−1QB ,

f T t BT
f Qx t + xT t QBf f t ≤ xT t G2x t

+ f T t BT
f QG

−1
2 QBf f t ≤ xT t G2x t

+ f1λ2 max BT
f QG

−1
2 QBf

19

One can further obtain that

V t ≤ ξTk t Π1ξ t + δ1 + δ2, 20

where

ξk t =

ek t

rk t

Δgk t

x t

,

Π1 =

ΘTP + PΘ PBf PBg PΔΘ
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ Π1 44

21

Π1 33 = ATQ +QA +G1 +G2, δ1 = u1λ1 max BTQG−1QB ,
and δ2 = f1λ2 max BT

f QG
−1
2 QBf . Based on the Lyapunov

Min   φ ,

s t  Π =

−I Π12 Π13 −K2Bg 0 −ρ1K2M1 0 K2 0
∗ Π22 PBf PBg 0 ρ1PM1 −ρ2L̂M2 0 CTL̂

T

∗ ∗ −φI 0 0 0 0 0 0
∗ ∗ ∗ −λ1I 0 0 0 0 0
∗ ∗ ∗ ∗ Π44 ρ1QM1 0 0 0
∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 ρ2M

T
2 L̂

T

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ς2P

< 0,
16

5Complexity



stability theory, the error dynamic system is stable and the
designed observer is converged if the inequalities V t > 0 and
V t < 0 hold. Based on Lemma 2, it is obvious that the inequal-

ity V t < 0 holds only if the equation ξTk t
2 > δ1 + δ2/ϕ is

true and Π1 < 0.
Notice that the Lyapunov function is constructed to only

ensure the stability of the output when the updating law is
applied in system (1). The second objective in this paper is
to obtain appropriate learning gain matrixes such that the
tracking error converges to zero for all within the whole time
interval t as 0, T . Moreover, in the sense of randomly occur-
ring uncertainties, a novel optimal function of the expecta-
tion form is proposed to ensure the convergence of fault
estimation. To attain H∞ robustness performance and con-
vergence of the proposed method, the following performance
index is introduced for the prescribed scalar γ ∈ 0, 1 at any
iteration k ∈ Z+.

J1 = Ξ
τ

0
rTk+1 t rk+1 t − γ2rTk t rk t dt ≤ 0 22

Using Assumption 4, there exists a positive scalar λ1
∈ 0, 1 that satisfies

J2 =
t

0
λ1δ1e

T
k t ek t − λ1ΔgTk t Δgk t dt ≥ 0 23

Then the derivative of V t and the inequality (23) are
taken into (22); the optimal function J1 is rewritten as follows:

J1 < J1 + J2 24

Denoting that J = J1 + J2, then one can get that

J = Ξ J1 + J2 = Ξ J1 + J2 + V t dt − V τ − V 0

= Ξ
τ

0
ξTk t Π2ξk t dt − V τ − V 0 ≤ 0

25

For convenience of later analysis, the expectations of
random terms are defined as Ξ α t = ρ1, Ξ β t = ρ2.
Based on Lemma 2 and (25), one can obtain that

Π2 =

Π2 11 +QT
1Q1 PBf +QT

1Q2 PBg +QT
1Q3 Π2 14

∗ −γ2I +QT
2Q2 QT

2Q3 QT
2Q4

∗ ∗ −λ1I +QT
3Q3 QT

3Q4
∗ ∗ ∗ Π1 33 +QT

4Q4

< 0,

26

where Π2 11 =ΘTP + PΘ +QT
1Q1 and Π2 14 = P ρ1ΔA − Lρ2

ΔC +QT
1Q3. According to Lemma 2, it is easy to see that (26)

holds if the following inequality holds:

Π3 =

−I Q1 Q2 Q3 Q4
∗ ΘTP + PΘ PBf PBg P ρ1ΔA − Lρ2ΔC
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ Π1 44

< 0

27

Then, matrix Π3 is well extracted into the summation of
two components. One is the constant term, and another is the
uncertain term.

Π3 =

−I Q1 Q2 Q3 0
∗ ΘTP + PΘ PBf PBg 0
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ ATQ +QA +G1 +G2

Π4

+

0 0 0 0 −K2 ρ1ΔA − Lρ2ΔC
∗ 0 0 0 P ρ1ΔA − Lρ2ΔC
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ρ1ΔATQ + ρ1QΔA

Π5

28

By expanding the uncertain term Π5 with (2), one has

Π5 = −

−ρ1K2M1

ρ1PM1

0

0

ρ1QM1

F1 0000N1 +

ρ2K2LM2

−ρ2PLM2

0

0

0

F2 0000N2

−

0

0

0

0

NT
1

FT
1 −ρ1M

T
1K

T
2 ρ1M

T
1 P00ρ1MT

1Q

+

0

0

0

0

NT
2

FT
2 ρ2M

T
2 LK

T
2 − ρ2M

T
2 L

TP000

29
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Moreover, using Lemma 1, the inequality (26) holds if and
only if there exists ε1 > 0 and ε2 > 0 such that

Π5 ≤ ε1
−1

−ρ1K2M1

ρ1PM1

0

0

ρ1QM1

−ρ1K2M1

ρ1PM1

0

0

ρ1QM1

T

+ ε1

0

0

0

0

NT
1

0

0

0

0

NT
1

T

+ ε2
−1

ρ2K2LM2

−ρ2PLM2

0

0

0

ρ2K2LM2

−ρ2PLM2

0

0

0

T

+ ε2

0

0

0

0

NT
2

0

0

0

0

NT
2

T

30

With Lemma 2, (27) can be further written as

Π6 =
Σ1

−ρ1K2M1

ρ1PM1

0
0

ρ1QM1

ρ2K1LM2

−ρ2PLM2

0
0
0

∗ −ε1I 0
∗ ∗ −ε2I

≤ 0 , 31

where

Σ1 =

−I Q1 Q2 Q3 0
∗ ΘTP + PΘ PBf PBg 0
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ Σ1 55

, 32

Σ1 55 = ATQ +QA +G1 + G2 + ε1N
T
1N1 + ε2N

T
2N2.

Similarly, expanding Π6, one has

Π6 =

Σ3

−ρ1K2M1

ρ1PM1

0

0

ρ1QM1

0

−ρ2PLM2

0

0

0
∗ −ε1I 0
∗ ∗ −ε2I

Π7

+

0 K2LC 0000 ρ2K2LM2

∗ 0 0000 0
∗ ∗ 0000 0
∗ ∗ ∗000 0
∗ ∗ ∗ ∗ 00 0
∗ ∗ ∗ ∗ ∗0 0
∗ ∗ ∗ ∗ ∗ ∗ 0

Π8

,

33

in which

Σ3 =

−I − K1 + K2A Q2 Q3 0
∗ ΘTP + PΘ PBf PBg 0
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ Σ1 55

34

By denoting L̂ = PL, then one can get that L = P−1L̂. Using
Lemma 1 and letting P = P−1, inequalities can immediately be
achieved for ε3 > 0.

Π8 =

K2

0

0

0

0

0

0

0LC0000ρ2LM2 +

0

CTLT

0

0

0

0

ρ2M
T
2 L

T

KT
2 000000

≤ ε3

K2

0

0

0

0

0

0

P

K2

0

0

0

0

0

0

T

+ ε3
−1

0

CTL̂
T

0

0

0

0

ρ2M
T
2 L̂

T

P

0

CTL̂
T

0

0

0

0

ρ2M
T
2 L̂

T

T 35
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Hence, Theorem 1 is obtained by employing Lemma 2.
This completes the proof.

5. Illustrative Example

In this section, a numerical example has been performed to
demonstrate the validity and effectiveness of the proposed
approach.

Consider the following nonlinear systems (36) with ran-
domly occurring parameter uncertainties according to (1),
where the state variables at k iteration is denoted by xk t =
x1,k t , x2,k t , x3,k t , x4,k t T :

xk t = A + α t ΔA t xk t + Buk t

+ Bgg xk t , t + Bf f t ,

yk t = C + β t ΔC t xk t

36

The constant matrixes are given by

A =

0 1 0 0
0 0 1 0

−21 6 −13 6 −4 2 16
−1 0 0 0

,

B =

0
0 2471

0
−0 4758

,

Bf =

0
0 5
0

−0 5

,

C =
0010
0100

,

37

and the nonlinear term is described as

Bg =

0 1
0
0
0

, 38

g xk t , t = sin x1,k t .
The initial desired value of state variables is set to be xd

0 = 0 0 0 0 T and the controller that is employed as
constant uk t = 1 1 1 1 T ; the sampling period is T
= 0 1. The following three cases of fault signals f t = f1 t ,

f t = f2 t , and f t = f3 t affecting the system output
behaviors are considered in this technical note.

Case 1 (sinusoidal fault signal).

f1 t =

0 5 sin 2πt , t ∈ 0, 1 s ,
sin 2πt , t ∈ 1 s, 2 s ,

1 5 sin 2πt , t ∈ 2 s, 3 s ,
2 sin 2πt , t ∈ 3 s, 4 s ,
2 5 sin 2πt , t ∈ 4 s, 5 s

39

Case 2 (constant fault signal).

f2 t =

0 5, t ∈ 0, 1 s ,
1, t ∈ 1 s, 2 s ,
1 5, t ∈ 2 s, 3 s ,
2, t ∈ 3 s, 4 s ,
2 5, t ∈ 4 s, 5 s

40

Case 3 (intermittent fault signal).

f3 t =

sin πt , t ∈ 0, 1 s ,
2 sin 2πt , t ∈ 1 s, 2 s ,

0, t ∈ 2 s, 3 s ,
sin πt , t ∈ 3 s, 4 s ,

2 sin 2πt , t ∈ 4 s, 5 s

41

In the simulation, the randomly occurring uncertainties
(2) with probability distribution (3) are addressed for dem-
onstrating the effectiveness of the iterative learning fault esti-
mator. The constant matrices of uncertainties for ΔA t and
ΔC t are given as

M1 =

0
0 1
0
0 1

,

M2 =
10
01

,

N1 = 0 020 010 010 01 ,

N2 =
0 20 10 10 2
0 10 20 20 1

42

Moreover, the probability distribution is described as Pr
ob α t = 1 = 0 6, Prob α t = 0 = 0 4, t ∈ 0, Td and Pro
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b β t = 1 = 0 9, Prob β t = 0 = 0 1, t ∈ 0, Td , in which
• t = 1 denotes the fault occurring and • t = 0 represents
there is no inverse fault (• is α or β).

To further illustrate the effectiveness of the proposed
fault estimation approach in a class of nonlinear uncertain
systems, the maximum value of absolute error Ek is intro-
duced to evaluate the effectiveness of fault estimating per-
formance in different iterations. The definition of Ek is
shown as follows.

Ek = sup
t∈ 0,Td

f t − f̂ k t 43

Denoting that ς1 = 2, ς2 = 3, φ = 0 5, λ1 = 0 1, ε1 = 0 8,
and ε2 = 0 3 and letting G1 =G2, by solving the optimiza-
tion problem under LMI constraints in Theorem 1, results

of the observer and fault estimator gain matrices are
shown as follows.

P =

1 8394 0 6114 0 2447 −1 1955
0 6114 0 6373 0 1154 −0 6696
0 2447 0 1154 0 0858 −0 1665
−1 1955 −0 6696 −0 1665 1 2815

,

Q =

11 4011 5 3333 0 8285 −8 8311
5 3333 3 4603 0 5080 −4 4231
0 8285 0 5080 0 2193 −0 4700
−8 8311 −4 4231 −0 4700 8 5802

,

G =

3 9136 1 5742 0 8356 −2 4157
1 5742 0 9316 0 3007 −0 5092
0 8356 0 3007 0 2809 −0 3881
−2 4157 −0 5092 −0 3881 1 9898

,

K1 = −0 2873 0 3319 −0 6793 −0 4973 ,
K2 = 0 0001 0 7516 0 0000 −0 7489 ,

L =

−0 0721 −0 0373
−0 0021 0 2055
0 2646 −0 0010
0 0173 0 0711

44

For definiteness and without loss of generality, consid-
ering that F1 t = 0 5 sin 2πt and F2 t = cos πt , the
fault estimation results in the nonlinear system with con-
stant randomly occurring parameter uncertainties are
shown in Figures 1–6.
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Figure 2: The tracking trajectory of slow variation fault for a
nonlinear system with constant parameter uncertainties.
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Figure 3: The tracking trajectory of intermittent fault for a
nonlinear system with constant parameter uncertainties.
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Figure 1: The tracking trajectory of abrupt fault for a nonlinear
system with constant parameter uncertainties.
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Figures 1, 3, and 5 show the fault estimating results and
actual fault signals of constant fault, time-varying fault, and
intermittent fault, respectively, in which f t , f̂ 2 t , f̂ 3 t ,
and f̂ 5 t represent actual fault signal and estimated fault sig-
nals at the second, third, and fifth iterations, respectively. The
fault estimating results are more close to the actual fault with
iterations increasing. The estimated fault signal at the fifth
iteration has plenty of overlaps with the actual fault signal.
One can see that constant fault, time-varying fault, and inter-
mittent fault are estimated with good accuracy. It can be con-
cluded that the proposed fault estimation observer and
algorithm have an excellent performance to estimate the
actual fault.

The variation trend of maximum absolute error is exhib-
ited in Figures 2, 4, and 6, respectively. It can be seen that
decreases with iterations increase and converge to zero.
One can conclude that a satisfactory estimation performance

has been achieved. It should be pointed that the state estimat-
ing error and fault estimating results in previous iterations
are utilized in the current iteration to improve the estimation
performance. Compared with the conventional observer-
based fault estimation approaches, the proposed method
has a better performance after few iterations.

6. Conclusion

This paper presents a novel observer-based fault estimation
method using an iterative leaning scheme for nonlinear
uncertain systems where parameter uncertainties are ran-
domly occurring. Firstly, a state observer is constructed to
monitor the system status and the Lyapunov function is uti-
lized to ensure the stability of the system. After providing the
design problem of a robust monotonical convergence for the
error system, an optimal function using expectation is
presented to ensure the iterative learning law is applicable
to systems. Meanwhile, two lemmas and two reasonable
assumptions are utilized to linearize the nonlinear terms in
our initial results. The LMI toolbox is utilized to obtain the
results of the learning gain. Finally, the theoretical results
have been verified through simulation tests. In addition, it
is shown that the proposed fault estimation approach can
be applicable to more general nonlinear uncertain systems.
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Figure 6: The tracking trajectory of intermittent fault for a
nonlinear system with time-varying parameter uncertainties.
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Figure 5: The tracking trajectory of slow variation fault for a
nonlinear system with time-varying parameter uncertainties.
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