Warm Up

Lesson Presentation

Lesson Quiz

7-2 Factoring by GCF

Warm Up

Simplify.

1. $2(w+1) \quad 2 w+2$
2. $3 x\left(x^{2}-4\right) 3 x^{3}-12 x$

Find the GCF of each pair of monomials.
3. $4 h^{2}$ and $6 h 2 h$
4. $13 p$ and $26 p^{5} 13 p$

(7-2) Factoring by GCF

Objective

Factor polynomials by using the greatest common factor.

7-2 Factoring by GCF

Recall that the Distributive Property states that $a b+a c=a(b+c)$. The Distributive Property allows you to "factor" out the GCF of the terms in a polynomial to write a factored form of the polynomial.

A polynomial is in its factored form when it is written as a product of monomials and polynomials that cannot be factored further. The polynomial $2(3 x-4 x)$ is not fully factored because the terms in the parentheses have a common factor of x.

7-2 Factoring by GCF

Example 1A: Factoring by Using the GCF

 Factor each polynomial. Check your answer.```
2x
 2x =2. x - x Find the GCF.
 4=2.2
 2
The GCF of \(2 x^{2}\) and 4 is 2 .
2x 2-(2-2)
2(x2-2)
```

Check 2( $x^{2}-2$ )

$$
2 x^{2}-4^{\sqrt{\prime}}
$$

Write terms as products using the GCF as a factor.
Use the Distributive Property to factor out the GCF.
Multiply to check your answer.
The product is the original polynomial.

## Writing Math

Aligning common factors can help you find the greatest common factor of two or more terms.

## 7-2 Factoring by GCF

## Example 1B: Factoring by Using the GCF

Factor each polynomial. Check your answer.

$$
8 x^{3}-4 x^{2}-16 x
$$

$$
\begin{aligned}
& 8 x^{3}=2 \\
& 1 v^{2}-2
\end{aligned} \cdot 2 \cdot 2 \cdot \quad \begin{aligned}
& x \\
& x
\end{aligned} \cdot x \cdot x \text { Find the GCF. }
$$

The GCF of $8 x^{3}, 4 x^{2}$, and $16 x$ is $4 x$.
2•2• $\quad x=4 x$ Write terms as products using
$2 x^{2}(4 x)-x(4 x)-4(4 x)$
$4 x\left(2 x^{2}-x-4\right)$ the GCF as a factor.
Use the Distributive Property to factor out the GCF. Multiply to check your answer. The product is the original polynomials.

## 7-2 Factoring by GCF

Example 1C: Factoring by Using the GCF Factor each polynomial. Check your answer.
$-14 x-12 x^{2}$
$-1\left(14 x+12 x^{2}\right)$


$-1[7(2 x)+6 x(2 x)]$
$-1[2 x(7+6 x)]$
$-2 x(7+6 x)$

Both coefficients are negative. Factor out-1. Find the GCF.

The GCF of $14 x$ and $12 x^{2}$ is $2 x$.
Write each term as a product using the GCF.
Use the Distributive Property to factor out the GCF.

## (7-2) Factoring by GCF

## Example 1C: Continued

Factor each polynomial. Check your answer. $-14 x-12 x^{2}$

Check $-2 x(7+6 x)$

$$
\begin{gathered}
-14 x-12 x^{2} \checkmark \quad \begin{array}{c}
\text { The product is the original } \\
\text { polynomial. }
\end{array}
\end{gathered}
$$

## (7-2) Factoring by GCF

## Caution!

When you factor out -1 as the first step, be sure to include it in all the other steps as well.

## 7-2 Factoring by GCF

## Example 1D: Factoring by Using the GCF

 Factor each polynomial. Check your answer.$$
3 x^{3}+2 x^{2}-10
$$

There are no common factors other than 1.

The polynomial cannot be factored further.

$$
\begin{aligned}
& 3 x^{3}+2 x^{2}-10 \\
& 3 x^{3}=3 \quad \cdot x \cdot x \cdot x \text { Find the GCF. } \\
& 2 x^{2}=2 \cdot x \cdot x \\
& 10=2 \cdot 5
\end{aligned}
$$

## 7-2 Factoring by GCF

## Check It Out! Example 1a

Factor each polynomial. Check your answer.
$5 b+9 b^{3}$

$$
\begin{aligned}
& 5 b=5 \cdot \\
& 9 b=3 \cdot 3 \cdot \begin{array}{l}
b \\
b \\
b
\end{array} \cdot b \cdot b
\end{aligned}
$$

$$
5(b)+9 b^{2}(b)
$$

$$
b\left(5+9 b^{2}\right)
$$

Check $b\left(5+9 b^{2}\right)$
$5 b+9 b^{3}$

Find the GCF.
The GCF of $5 b$ and $9 b^{3}$ is $b$.
Write terms as products using the GCF as a factor.
Use the Distributive Property to factor out the GCF.
Multiply to check your answer.
The product is the original polynomial.

## 7-2 Factoring by GCF

## Check It Out! Example 1b

Factor each polynomial. Check your answer.

$$
\begin{aligned}
& 9 \boldsymbol{d}^{2}-\mathbf{8}^{2} \\
& 9 d^{2}=3 \cdot 3 \cdot d \cdot d \\
& 8^{2}= \\
& 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\
& 9 d^{2}-8^{2}
\end{aligned} \quad \begin{aligned}
& \text { Find the GCF. } \\
& \text { There are no common } \\
& \text { factors other than } 1 .
\end{aligned}
$$

The polynomial cannot be factored further.

## 7-2 Factoring by GCF

## Check It Out! Example 1c

## Factor each polynomial. Check your answer.

$$
-18 y^{3}-7 y^{2}
$$

$$
-1\left(18 y^{3}+7 y^{2}\right)
$$

Both coefficients are negative. Factor out-1.


$-1\left[18 y\left(y^{2}\right)+7\left(y^{2}\right)\right]$
$-1\left[y^{2}(18 y+7)\right]$
$-y^{2}(18 y+7)$

Write each term as a product using the GCF.
Use the Distributive Property to factor out the GCF..

## 7-2 Factoring by GCF

## Check It Out! Example 1d

Factor each polynomial. Check your answer.

$$
8 x^{4}+4 x^{3}-2 x^{2}
$$



Find the GCF.
$4 x^{2}\left(2 x^{2}\right)+2 x\left(2 x^{2}\right)-1\left(2 x^{2}\right)$ Write terms as products using the GCF as a factor.
$2 x^{2}\left(4 x^{2}+2 x-1\right)$ Use the Distributive Property to factor out the GCF.
Check $2 x^{2}\left(4 x^{2}+2 x-1\right) \quad$ Multiply to check your answer.
$8 x^{4}+4 x^{3}-2 x^{2} \quad$ The product is the original polynomial.

To write expressions for the length and width of a rectangle with area expressed by a polynomial, you need to write the polynomial as a product. You can write a polynomial as a product by factoring it.

## 7-2 Factoring by GCF

## Example 2: Application

The area of a court for the game squash is ( $9 x^{2}+6 x$ ) square meters. Factor this polynomial to find possible expressions for the dimensions of the squash court.

$$
\begin{array}{rlrl}
\boldsymbol{A} & =\mathbf{9} \boldsymbol{x}^{2}+\mathbf{6 x} & & \text { The GCF of } 9 x^{2} \text { and } 6 x \text { is } 3 x . \\
& =3 x(3 x)+2(3 x) & \begin{aligned}
\text { Write each term as a product } \\
\text { using the GCF as a factor. }
\end{aligned} \\
& =3 x(3 x+2) & & \begin{array}{l}
\text { Use the Distributive Property to } \\
\text { factor out the GCF. }
\end{array}
\end{array}
$$

Possible expressions for the dimensions of the squash court are $3 x \mathrm{~m}$ and $(3 x+2) \mathrm{m}$.

## 7-2 Factoring by GCF

## Check It Out! Example 2

What if...? The area of the solar panel on another calculator is $\left(2 x^{2}+4 x\right) \mathbf{c m}^{2}$. Factor this polynomial to find possible expressions for the dimensions of the solar panel.

$$
\begin{aligned}
\boldsymbol{A} & =\mathbf{2} \boldsymbol{x}^{2}+\mathbf{4} \boldsymbol{x} \\
& =x(2 x)+2(2 x) \\
& =2 x(x+2)
\end{aligned}
$$

The GCF of $2 x^{2}$ and $4 x$ is $2 x$.
Write each term as a product using the GCF as a factor.
Use the Distributive Property to factor out the GCF.
Possible expressions for the dimensions of the solar panel are $2 x \mathrm{~cm}$, and $(x+2) \mathrm{cm}$.

Sometimes the GCF of terms is a binomial. This GCF is called a common binomial factor. You factor out a common binomial factor the same way you factor out a monomial factor.

## 7-2 Factoring by GCF

## Example 3: Factoring Out a Common Binomial Factor

## Factor each expression.

## A. $5(x+2)+3 x(x+2)$

$$
5(x+2)+3 x(x+2)
$$

$$
(x+2)(5+3 x) \quad \text { Factor out }(x+2)
$$

$$
\text { B. }-2 b\left(b^{2}+1\right)+\left(b^{2}+1\right)
$$

$$
-2 b\left(b^{2}+1\right)+\left(b^{2}+1\right)
$$

The terms have a common binomial factor of ( $b^{2}+1$ ).
$-2 b\left(b^{2}+1\right)+1\left(b^{2}+1\right)\left(b^{2}+1\right)=1\left(b^{2}+1\right)$

$$
\left(b^{2}+1\right)(-2 b+1) \quad \text { Factor out }\left(b^{2}+1\right) .
$$

## 7-2 Factoring by GCF

## Example 3: Factoring Out a Common Binomial Factor

## Factor each expression.

C. $\mathbf{4 z}\left(z^{2}-7\right)+\mathbf{9}\left(2 z^{3}+1\right)$

$$
4 z\left(z^{2}-7\right)+9\left(2 z^{3}+1\right)
$$

There are no common factors.
The expression cannot be factored.

## 7-2 Factoring by GCF

## Check It Out! Example 3

## Factor each expression.

$$
\text { a. } 4 s(s+6)-5(s+6)
$$

$$
\begin{array}{ll}
4 s(s+6)-5(s+6) & \text { The terms have a common } \\
(4 s-5)(s+6) & \text { binomial factor of }(s+6) .
\end{array}
$$

## b. $7 x(2 x+3)+(2 x+3)$

$7 x(2 x+3)+(2 x+3) \quad$ The terms have a common binomial factor of $(2 x+3)$.

$$
7 x(2 x+3)+1(2 x+3) \quad(2 x+3)=1(2 x+3)
$$

$$
(2 x+3)(7 x+1) \quad \text { Factor out }(2 x+3)
$$

## 7-2 Factoring by GCF

## Check It Out! Example 3: Continued

## Factor each expression.

c. $\mathbf{3 x}(\boldsymbol{y}+4) \mathbf{- 2 y}(\boldsymbol{x}+\mathbf{4})$ There are no common

$$
3 x(y+4)-2 y(x+4) \quad \text { factors }
$$

The expression cannot be factored.
d. $5 x(5 x-2)-2(5 x-2)$

$$
\begin{array}{ll}
5 x(5 x-2)-2(5 x-2) & \text { The terms have a common } \\
(5 x-2)(5 x-2) & \text { binomial factor of }(5 x-2) . \\
(5 x-2)^{2} & (5 x-2)(5 x-2)=(5 x-2)^{2}
\end{array}
$$

You may be able to factor a polynomial by grouping. When a polynomial has four terms, you can make two groups and factor out the GCF from each group.

## 7-2 Factoring by GCF

## Example 4A: Factoring by Grouping

## Factor each polynomial by grouping. Check your answer.

## $6 h^{4}-4 h^{3}+12 h-8$

$\left(6 h^{4}-4 h^{3}\right)+(12 h-8) \quad$ Group terms that have a common number or variable as a factor.
$2 h^{3}(3 h-2)+4(3 h-2) \quad$ Factor out the GCF of each group.
$2 h^{3}(3 h-2)+4(3 h-2) \quad(3 h-2)$ is another common factor.
$(3 h-2)\left(2 h^{3}+4\right) \quad$ Factor out $(3 h-2)$.

## (7-2) Factoring by GCF

## Example 4A Continued

Factor each polynomial by grouping. Check your answer.


Multiply to check your solution.

$$
3 h\left(2 h^{3}\right)+3 h(4)-2\left(2 h^{3}\right)-2(4)
$$

$6 h^{4}+12 h-4 h^{3}-8$
$6 h^{4}-4 h^{3}+12 h-8^{\checkmark}$
The product is the original polynomial.

## 7-2 Factoring by GCF

## Example 4B: Factoring by Grouping

 Factor each polynomial by grouping. Check your answer.$$
\begin{aligned}
& 5 \boldsymbol{y}^{\mathbf{4}}-\mathbf{1 5} \boldsymbol{y}^{\mathbf{3}}+\boldsymbol{y}^{\mathbf{2}} \mathbf{- 3 y} \\
& \left(5 y^{4}-15 y^{3}\right)+\left(y^{2}-3 y\right) \quad \text { Group terms. }
\end{aligned}
$$

$$
5 y^{3}(y-3)+y(y-3)
$$

Factor out the GCF of each group.
$5 y^{3}(y-3)+y(y-3) \quad(y-3)$ is a common factor.
$(y-3)\left(5 y^{3}+y\right) \quad$ Factor out $(y-3)$.

## 7-2 Factoring by GCF

## Example 4B Continued

Factor each polynomial by grouping. Check your answer.
$5 y^{4}-15 y^{3}+y^{2}-3 y$
Check $(y-3)\left(5 y^{3}+y\right)$

$$
y\left(5 y^{3}\right)+y(y)-3\left(5 y^{3}\right)-3(y) \begin{gathered}
\text { Multiply to check your } \\
\text { solution. }
\end{gathered}
$$

$$
5 y^{4}+y^{2}-15 y^{3}-3 y
$$

$5 y^{4}-15 y^{3}+y^{2}-3 y \checkmark \quad$ The product is the original polynomial.

## (7-2) Factoring by GCF

## Check It Out! Example 4a

## Factor each polynomial by grouping. Check your answer.

$\mathbf{6} b^{\mathbf{3}}+\mathbf{8} b^{\mathbf{2}}+\mathbf{9 b}+\mathbf{1 2}$
$\left(6 b^{3}+8 b^{2}\right)+(9 b+12) \quad$ Group terms.
$2 b^{2}(3 b+4)+3(3 b+4) \quad$ Factor out the GCF of each group.
$(3 b+4)$ is a common factor.
$(3 b+4)\left(2 b^{2}+3\right)$
Factor out $(3 b+4)$.

## 7-2 Factoring by GCF

## Check It Out! Example 4a Continued

Factor each polynomial by grouping. Check your answer.
$6 b^{3}+8 b^{2}+9 b+12$
Check $(3 b+4)\left(2 b^{2}+3\right)$
Multiply to check your solution.
$3 b\left(2 b^{2}\right)+3 b(3)+(4)\left(2 b^{2}\right)+(4)(3)$
$6 b^{3}+9 b+8 b^{2}+12$
$6 b^{3}+8 b^{2}+9 b+12$

The product is the original polynomial.

## (7-2) Factoring by GCF

## Check It Out! Example 4b

Factor each polynomial by grouping. Check your answer.

$$
\begin{array}{ll}
\mathbf{4} r^{3}+24 r+r^{2}+\mathbf{6} & \\
\left(4 r^{3}+24 r\right)+\left(r^{2}+6\right) & \text { Group terms. } \\
4 r\left(r^{2}+6\right)+1\left(r^{2}+6\right) & \begin{array}{l}
\text { Factor out the GCF of } \\
\text { each group. }
\end{array} \\
4 r\left(r^{2}+6\right)+1\left(r^{2}+6\right) & \begin{array}{l}
\left(r^{2}+6\right) \text { is a common } \\
\text { factor. }
\end{array} \\
\left(r^{2}+6\right)(4 r+1) & \text { Factor out }\left(r^{2}+6\right) .
\end{array}
$$

## 7-2 Factoring by GCF

## Check It Out! Example 4b Continued

Factor each polynomial by grouping. Check your answer.

Check $(4 r+1)\left(r^{2}+6\right)$

$$
\begin{array}{ll}
4 r\left(r^{2}\right)+4 r(6)+1\left(r^{2}\right)+1(6) & \begin{array}{c}
\text { Multiply to check your } \\
\text { solution. }
\end{array} \\
4 r^{3}+24 r+r^{2}+6 & \begin{array}{l}
\text { The product is the } \\
\text { original polynomial. }
\end{array} \\
4 r^{3}+24 r+r^{2}+6 \checkmark &
\end{array}
$$

## (7-2) Factoring by GCF

## Helpful Hint

If two quantities are opposites, their sum is 0 .

$$
\begin{gathered}
(5-x)+(x-5) \\
5-x+x-5 \\
-x+x+5-5 \\
0+0 \\
0
\end{gathered}
$$

## 7-2 Factoring by GCF

Recognizing opposite binomials can help you factor polynomials. The binomials (5-x) and ( $x-5$ ) are opposites. Notice $(5-x)$ can be written as $-1(x-5)$.

$$
\begin{aligned}
-1(x-5) & =(-1)(x)+(-1)(-5) & & \text { Distributive Property. } \\
& =-x+5 & & \text { Simplify. }
\end{aligned}
$$

$$
=5-x
$$

Commutative Property of Addition.

$$
\text { So, }(5-x)=-1(x-5)
$$

## 7-2 Factoring by GCF

## Example 5: Factoring with Opposites

Factor $2 x^{\mathbf{3}}-12 x^{\mathbf{2}}+18-3 x$ by grouping.

$$
\begin{aligned}
& 2 x^{3}-12 x^{2}+18-3 x \\
& \left(2 x^{3}-12 x^{2}\right)+(18-3 x) \\
& 2 x^{2}(x-6)+3(6-x) \\
& 2 x^{2}(x-6)+3(-1)(x-6) \\
& 2 x^{2}(x-6)-3(x-6) \\
& (x-6)\left(2 x^{2}-3\right)
\end{aligned}
$$

Group terms.

Factor out the GCF of each group.
Write $(6-x)$ as $-1(x-6)$.
Simplify. $(x-6)$ is a common factor.
Factor out ( $x-6$ ).

## 7-2 Factoring by GCF

## Check It Out! Example 5a

## Factor each polynomial by grouping.

```
15x}\mp@subsup{\boldsymbol{2}}{}{2}-10\mp@subsup{x}{}{3}+8x-1
```

$$
\left(15 x^{2}-10 x^{3}\right)+(8 x-12) \quad \text { Group terms. }
$$

$$
5 x^{2}(3-2 x)+4(2 x-3)
$$

Factor out the GCF of each group.
$5 x^{2}(3-2 x)+4(-1)(3-2 x)$ Write $(2 x-3)$ as $-1(3-2 x)$.
$5 x^{2}(3-2 x)-4(3-2 x) \quad$ Simplify. $(3-2 x)$ is a common factor.
$(3-2 x)\left(5 x^{2}-4\right) \quad$ Factor out $(3-2 x)$.

## 7-2 Factoring by GCF

## Check It Out! Example 5b

## Factor each polynomial by grouping.

$$
\begin{array}{ll}
\mathbf{8 y}-\mathbf{8}-\boldsymbol{x}+\boldsymbol{x} \boldsymbol{y} & \\
(8 y-8)+(-x+x y) & \text { Group terms. } \\
8(y-1)+(x)(-1+y) & \begin{array}{l}
\text { Factor out the GCF of } \\
\text { each group. }
\end{array} \\
8(y-1)+(x)(y-1) & \begin{array}{l}
(y-1) \text { is a common } \\
\text { factor. }
\end{array} \\
(y-1)(8+x) & \text { Factor out }(y-1) .
\end{array}
$$

## 7-2 Factoring by GCF

## Lesson Quiz: Part I

## Factor each polynomial. Check your answer.

1. $16 x+20 x^{3} \quad 4 x\left(4+5 x^{2}\right)$
2. $4 m^{4}-12 m^{2}+8 m 4 m\left(m^{3}-3 m+2\right)$

Factor each expression.
3. $7 k(k-3)+4(k-3) \quad(k-3)(7 k+4)$
4. $3 y(2 y+3)-5(2 y+3)(2 y+3)(3 y-5)$

## 7-2 Factoring by GCF

## Lesson Quiz: Part II

Factor each polynomial by grouping. Check your answer.
5. $2 x^{3}+x^{2}-6 x-3 \quad(2 x+1)\left(x^{2}-3\right)$
6. $7 p^{4}-2 p^{3}+63 p-18(7 p-2)\left(p^{3}+9\right)$
7. A rocket is fired vertically into the air at $40 \mathrm{~m} / \mathrm{s}$.

The expression $-5 t^{2}+40 t+20$ gives the rocket's height after $t$ seconds. Factor this expression. $-5\left(t^{2}-8 t-4\right)$

